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ABSTRACT This article presents a learning robust controller for high-quality position tracking control of
robot manipulators. A basic time-delay estimator is adopted to effectively approximate the system dynamics.
A low-level control layer is structured from the control error as an indirect control objective using new
nonlinear sliding-mode synthetization. To realize the control objective with desired transient time, a robust
sliding mode control signal is then designed based on the obtained estimation results in a high-level control
layer. To promptly suppress unpredictable disturbances, adaptation ability is integrated to the controller
using two-level gain-learning laws. Reaching gains and sliding gain are automatically tuned for asymptotic
control performance. Effectiveness of the designed controller is concretely confirmed by the Lyapunov-based
stability criterion, comparative simulations, and real-time experiments.

INDEX TERMS Manipulators, gain adaptive control, nonlinear sliding mode, position control, robust
adaptive control, time-delay estimation.

I. INTRODUCTION
Robots have been playing a key role in automation and
are integral parts of developed industries such as heavy
industries, mining, automobiles, construction, and consumer
goods [1], [2]. Robots will continue to be the cornerstone
of upcoming industrial revolutions, thanks to the ability
of replacing humans perform production tasks and other
activities with very high efficiency [3]–[5]. To accomplish
such tasks, the robots need good controllers that can pro-
vide high-precision control and fast responses [3], [6]. How-
ever, nonlinear uncertain deviations and complicated working
environment are impediments in exhibiting excellent robotic
controllers [7]–[9].

To represent the system behaviors, mathematical-based
methods have been applied using Newton-Euler analyses,
Lagrange methods, or virtual decomposition principles [9],
[10]. Although general forms of the system dynamics could
be derived, it is not easy to determine all detailed parameters
due to the specific robot designs, and unknown disturbances
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[11], [12]. The mathematical-based problem could be tack-
led by fuzzy-logic or neural-network-based approaches [7],
[8], [13]. The system behaviors could be accurately esti-
mated by the soft computation methods but tuning a vast
number of weighted parameters could reduce their applica-
bility in real-life missions [7], [14]. As a result, a simpler
dynamical-approximation method, naming time-delay esti-
mation (TDE), has been recently developed to fill up such
the gap [15], [16]. By using past measuring acceleration and
control inputs, the current total dynamics could be computed
based on selected nominal input gains [6], [17]. Effectiveness
of the TDE methods resulted in a massive number of publi-
cations [18], [19].

To realize the control objective by dealing with mod-
eling errors and disturbances, robust nonlinear controllers
have been studied in backstepping, sliding-mode control
(SMC), or inverse model control schemes [20]–[25]. Indeed,
the total disturbances in the system dynamics could be
rejected by an integral-type control design [21], or well esti-
mated and then eliminated by a disturbance-observer con-
trol framework [23], [26]. Asymptotic control results were
obtained using such controllers but employing with fixed
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control gains might not uphold the excellent performances in
various working states [28], [29].
As a sequence, gain-adaptive model-based controllers

have been progressively researched based on sliding-mode
schemes for robotic systems [27]–[30]. For attenuating a
high-frequency switching problem, the robust gains were
allowed varying with respect to the controlled sliding sur-
face under a learning law [27]: the gain would dramatically
increase to force the surface into a given bound and relaxed
thereafter. Since the gain was coupled with a discontinuous
function, its so-large value, even in a short time, could lead
to a danger of the system hardware. Other learning rules
were applied to the nominal input gain matrix of the TD
estimation [30], [31] or focused on the driving gains [28] for
minimizing the control errors. Various versions of the sliding-
mode control (SMC) policies associated with robust-gain
estimation or disturbance observers were successfully applied
to mechatronic systems [32], [33]. Flexibility of the con-
troller operation has been improved but the terminal or super-
twisting SMC schemes provided excellent control perfor-
mances only in mall-attraction regions around the origin.
Their transient-convergence rates of reaching and sliding
phases were also slower than those of the linear SMC [34],
[35]. Furthermore, ones still need to tune the sliding gains for
different working conditions.

Another aspect in gain-learning designs has been discov-
ered using intelligent approaches. The best gains were solved
for the best control performance using backtracking search
algorithms applied on fuzzy logic background [36], or for sat-
isfying an optimal problem [37]. Their effect was confirmed
by simulation and experimental results, but gain-variation
dynamics need to be further considered.

A parallel series of the gain-learning direction is of the
backstepping approaches. The control error was well sup-
pressed using PID control design in which the control gains
were activated by a backstepping-based damping function
[38]. Facilitation of the controller was exhibited but outstand-
ing infinite-time control performances were not confirmed.
To provide an asymptotic control result with automatically
tunable gains, a flexible robust backstepping controller was
exploited [39]. Variation of all control gains were automati-
cally activated for an asymptotic control performance. How-
ever, the convergence rate of the control system did not gratify
given constraints.

For high-accuracy control quality both in transient and
steady-state phases, prescribed-performance (PP) transfor-
mation indexes were employed in nonlinear control structures
[13], [40],[41]. The PP controllers could drive the control
objective into a small bound around zero with a desired rate
[42], [43]. The great feature is hold if the initial conditions of
the control error are inside a known range. With few unpre-
dictable cases where the error is out of the desired range, the
system might be instable. Furthermore, the original PP con-
trollers do not provide an asymptotic control performance.

In this study, we propose a novel adaptive robust slid-
ing mode controller for position tracking control of robot

manipulators ensuring a prescribed asymptotic performance.
A conventional TDE is employed to eliminate influence of the
system dynamics on the control performance. By extending
results of the previous work [35], a new sliding mode man-
ifold is designed by synthesizing various information of the
control error as an indirect control objective in a low-level
control layer. A basic sliding-mode control rule is adopted as
a high-level control layer to stabilize the manifold around the
origin using driving and robust control signals. A two-level
gain-learning mechanism is designed to automatically tune
the driving, robust and sliding gains of both the two layers.
The adaptation laws could promptly suppress unpredictable
disturbances and efficiently distribute the robustness burden
of the closed-loop system to other potential terms. Key con-
tributions of the proposed controller are highlight as follows:

1) The sliding manifold, which is a nonlinear combi-
nation of the respect control errors, could speed up
the transient-convergence rate in sliding phases. The
learning law of the sliding gain is proposed in the low-
level control layer for improving the state-state control
accuracy.

2) Inspired from previous works [35], [39], learning laws
of the high-level control layer are modified for improv-
ing the reaching control performance. An adaptation
mechanism of the driving and robust gains is designed
to separately excite for large and small ranges of the
sliding surfaces, respectively.

3) Its effectiveness is theoretically proven using Lyapunov-
based analyses.

4) Feasibility and feasibility of the proposed controller
are intensively verified by simulations and real-time
experimental results.

The remainder of this article is organized as follows.
Section II describes the system modeling and control objec-
tive. The robust controller with full learning ability is
designed in Section III. The simulation results on a two-link
robot and real-time experiments on the first joint of a 6DOF
robot are discussed in Section IV. The paper is then concluded
in Section V.
Notation: •min, and •max are the minimum and maximum

values of •, respectively, •̂, •̄, •̆ , • − •̄ present the
estimation, nominal value and variation of •, respectively,
1• , |•|max denotes the bound of •, λ b•c is an eigen value
of the matrix •.

II. SYSTEM MODELING AND PROBLEM STATEMNTS
Behaviors of a serial n-link robot are described using the
following dynamics:

M bθc θ̈ + C
⌊
θ , θ̇

⌋
θ̇ + g bθc + f

⌊
θ̇
⌋
+ τd = τ (1)

where θ , θ̇ , θ̈ ∈ <n are vectors of joint positions, velocities,
and accelerations, respectively, M bθc ∈ <n×n is a positive-
definite mass matrix, τ ∈ <n is a control input vector,
C
⌊
θ , θ̇

⌋
θ̇ , g bθc , f

⌊
θ̇
⌋
, τd ∈ <n is a Coriolis-Centripetal

vector, gravitation, friction, and disturbance torques, respec-
tively.
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The general dynamics of the robot could be rewritten as in
(2) by eliminating the mass matrix M bθc in the left side of
(1).

θ̈ = v bθc + M̄−1 bθc τ (2)

where v , −M−1 (Cq̇+ g+ f+ τd − τ ) − M̄−1τ ∈ <n is
a total internal dynamical vector which is combined from the
mass variation, Coriolis/Centripetal, gravity, friction, distur-
bances, modeling errors and unmodeled terms.

Let define a tracking error of the system output (θ ) and a
constrained reference profile (θd) as a control objective. The
goal of this article is to control the error converge to zero
under a desired rate. However, the presence of the nonlinear
dynamics, uncertainties, modeling errors and unpredictable
disturbances could degrade the control performance of the
closed-loop system in complex working environments.

III. TWO-LEVEL GAIN-LEARNING NONLINEAR SLIDING
MODE CONTROLLER
In the following, a robust position controller is developed
using a time-delay estimator and nonlinear sliding manifold
synthetization. Gain-learning laws are studied to effectively
treat the lumped disturbance for a desired control quality.

A. ROBUST NONLINEAR SLIDING MODE CONTROL
Assume that the desired trajectory (θd) is a known, bounded
and twice continuously differentiable signal, and also assume
that the system outputs (θ , θ̇ ) are measurable. To achieve a
high control accuracy by abating unexpected effect of the sys-
tematic certainties and disturbances, a TDE control term and
robust driving functionality are employed with the following
design.

The position control error is mathematically presented as

e = θ − θd (3)

A nonlinear sliding manifold is then synthesized as an indi-
rect control objective of the studied system in a low-level
control layer:

s = ė+K0
(
e+ ep1/q1

)
(4)

whereK0 = diag bk0c = diag b[k01; ...; k0n]c is a positive-
definite diagonal sliding gain matrix, and p1, q1 are positive
odd constants satisfying a constraint of (q1 < p1 < 2q1).

Differentiating the manifold (4) with respect to time and
yielding the dynamics (2), we have

ṡ = v+M−1τ − θ̈d +K0

(
I+

p1
q1

diag
⌊
e(p1−q1)/q1

⌋)
ė

(5)

From the system (5), the final control signal can be simply
designed to stabilize the tracking error to zero in infinite time
using the following structure:

τ = M̄ (τMOD + τDRI + τROB) (6)

The detailed control signals (τMOD, τDRI, τROB) are
explained hereafter. τMOD is a model-compensation signal

that is used to eliminate the internal dynamics (v) and other
terms of the surface dynamics (5). Hence, the signal is formed
as follows:

τMOD=−v̂+ θ̈d −K0

(
I+

p1
q1

diag
⌊
e(p1−q1)/q1

⌋)
ė (7)

Estimation of the internal dynamics (v) is obtained by using
the simple time-delay estimator [15], [27]:

v̂ = θ̈ t−Ts − M̄−1τ t−Ts (8)

where (t − Ts) is a time-delay value, and Ts is the sampling
time.

By applying the designed control signal (6)-(7), the dynam-
ics (5) of the sliding manifold are reformed as

ṡ = δ + τDRI + τROB (9)

where δ , [δ1; δ2; ...; δn] = −ṽ ∈ <n is an estimation-error
vector.

The second term τDRI acts as a driving signal that forces
the sliding manifold from everywhere back to around zero.
Thus, it is designed as

τDRI = −K1s (10)

whereK1 = diag bk1c = diag b[k11; ...; k1n]c is a positive-
definite diagonal driving gain matrix.

The last signal τROB is a robust control term that is used
to suppress the estimation error (δ). The signal is designed as
follows:

τROB = −K2sgn bsc (11)

whereK2 = diag bk2c = diag b[k21; ...; k2n]c is a positive-
definite robust gain which should be greater than the bound
of the overall error:

k2i|i=1..n ≥ 1|δi| (12)

Remark 1: As noted in the TDE theory [17], [18], [27],
[30], the nominal inertial matrix is recommended to be satis-
fied the following condition:∥∥∥I−M−1M̄

∥∥∥
2
< 1 (13)

In fact, the nominal value M̄ could be chosen to be small
enough.
Remark 2: For accomplishing the reaching phase,

the robust gain (K2) should be selected to be large
enough or as least comply with the constraint (12). Never-
theless, employing very-big values of the gain would create
chattering phenomena that could reduce lifetime of used
actuators [27], [28].
Remark 3: The transient control rate of the reaching phase

could be speed up by the large driving gain (K1) which could
yet increase the overall estimation error (δ) [18], [44], [45].
Remark 4: As noted in [35], the transient control quality

of the sliding phase is improved by employing the nonlinear
sliding manifold (4). However, this effect is diminished when
the control errors approach to the origin.
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Remark 5: the steady-state control accuracy could be
increased with the large gain (K0) [4], [5], [28]. Notwith-
standing, from the control signal (7), the sliding gain (K0) is
coupled with a time-derivative term. Hence, employing such
the so-big values in cases of numerical velocity computation
might amplify the noise effect. Generally, the proposed TDE
sliding mode design could provide an excellent control result
with the proper control gains regardless of the presence of
the disturbances. Tuning such the perfect gains for various
working conditions in the real-time control is not a trivial
work.

TABLE 1. Detailed parameters of the simulation model.

B. TWO-LEVEL GAIN ADAPTATION
To support the gain-selection effort for the users, an auto-
matic gain-tuning feature is integrated into the robust control
design.

The driving and robust control gains (k1 andk2) in the
high-level control layer are separated into two terms: nominal
gains (k̄1 and k̄2) and variation gains (k̆1 and k̆2). The nomi-
nal values play a groundwork role in ensuring the stability
and the convergence rate of the reaching phase. Influence
of unpredictable disturbances on the reaching control perfor-
mance is overcome by variation gains, which are tuned using
the following mechanism:{

˙̆k1 = −diag
⌊
η1
⌋
k̆1 +4ss(p2+q2)/q2

˙̆k2 = −diag
⌊
η2
⌋
k̆2 +4s |s|p2/q2

(14)

where 4s, diag
⌊
η1
⌋
and diag

⌊
η2
⌋

are positive-definite
diagonal constant matrices, p2, q2 are positive odd constants
satisfying a constraint of (0 < p2 < q2).
The driving and robust gains only force the sliding man-

ifold (s) back to zero in infinite time in the reaching phase.
For promptly driving the control error to zero in the sliding
phase, in the low-level control layer, a new learning law
is proposed for the sliding gain (k0). The gain is designed
as follows:

k0 = k̄0 + k̆20 (15)

Here, the selected nominal gain (k̄0) is positive, while the
variation gain is updating using the mechanism (16).

˙̆k0 = −diag
⌊
η0
⌋
k̆0 +4ee(p1−q1)/q1 −40 |s| (16)

where 4e,40 and diag
⌊
η0
⌋
are positive-definite diagonal

constant matrices.

Note that, in cases of using the varying sliding gain, the
model-compensation control signal (7) is modified as fol-
lows:

τMOD

= −v̂+ θ̈d −K0

(
I+

p1
q1

diag
⌊
e(p1−q1)/q1

⌋)
ė

+ 2K̆0

(
diag

⌊
η0
⌋
K̆0 +40diag b|s|c

)
e

− 2K̆0

((
4e − diag

⌊
η0
⌋
K̆0 −40diag b|s|c

)
ep1/q1

+4ee(2p1−q1)/q1
)

−

(
diag becK0 − diag

⌊
e2
⌋
K̆040diag bsgn bscc

)
× |s|(q2−p2)/q2 (17)

C. STABILITY ANALYSIS
Effectiveness of the closed-loop system is achieved by the
following statements.
Theorem 1:
If applying the robust nonlinear sliding mode design (6)-

(11) and (17) with gain-adaptation laws (14)-(16) to a non-
linear uncertain system (2), for a predefined nominal robust
gain ( k̄2) and proper excitation coefficient (4e ≤ K̄0),
the following properties hold:

a) If the estimation error ( δ) satisfies the constraint
(12), the closed-loop system asymptotically converges to
the origin under a certain exponential rate of σ =

2min
⌊
k̄1min, η1min, η2min, k̄0min

⌋
.

b) Otherwise, the control error converges to the fol-
lowing bound under an exponential rate of σ =

2min
⌊
(k̄1min −

p2
p2+q2

), η1min, η2min, k̄0min

⌋
with ( k̄1min >

1):

‖e‖→

√√√√√√√
2

σλmaxb4sK0c
q2

p2+q2
trace

⌊
4s
(
1δ − K̄2

)(p2+q2)/q2⌋
−

1
λmaxb4sK0c

((
sp2/q2

)T
4ss +

2∑
i=1

(
k̆Ti k̆i

))
(18)

Theorem 1 is proven in Appendix A.
Remark 6: The estimation error ( δ) reflexes the change

of the internal disturbances [17], [38]. The first statement
of Theorem 1 indicates that the closed-loop system would
be asymptotically stable for static loads or low-frequency
tracking profiles, and the nominal robust gain ( k̄0 and k̄2)
could be chosen with proper values for desired convergence
rates.
Remark 7: The bound (18) and the learn rule (16) reveal

that the high-level variation gains ( k̆1, k̆2) work as active-
disturbance-compensation terms in the reaching phase, while
the sliding-gain variation ( k̆0) would strongly activate in the
sliding phase or as the sliding manifold is inside a certain
range. Different from previous works [35], [39], the learning
law (14) is designed such that the variation gains ( k̆1, k̆2)
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TABLE 2. Selected parameters of the controllers.

are respectively strongly activated in two specific ranges of
the sliding manifold.
Remark 8: The total control idea is summarized in Fig. 1.

On one hand, the control algorithm adopts two control lay-
ers with three main control gains (K0, K1, andK2) to real-
ize the control objective (3). The final control signal (17)
is combined from a simple TDE term and various forms
of the control error and the sliding manifold synthesized.
Thus, proposed control method has less computational bur-
den than previous intelligent controllers which are embed-
ded into fuzzy-logic and neural-network frameworks [7], [8],
[13], [14]. On the other hand, the stability of the closed-
loop system is theoretically ensured by the robust nonlinear
sliding mode design, while the proposed learning laws pro-

FIGURE 1. Scheme of the proposed controller.

vide the flexibility to user in preserving the desired control
performance. According to the inequality (22), the learning
(η0, η1, and η2) and excitation (4s, 4e, and40) rates can
be employed as fixed values depending on physical natures
of the control plant.

IV. VALIDATION RESULTS
Performance of the proposed controller was verified both
on simulation and extended real-time experiments. Three
state-of-the-art controllers, including robust-gain and mass-
gain learning TDE controllers (RLTDE vs MLTDE) and a
prescribed-performance proportional-derivative (PPPD) con-
troller, were also implemented on the same system as bench-
marks for the control-efficiency comparison. Design of the
comparative controllers is presented in Appendix B. The
obtained results are carefully discussed in the following
section.

A. SIMULATION RESULTS
The controllers were applied for position-tracking control
on simulation of a 2-Degree-of-freedom (DOF) robot, as
depicted in Fig. 2. Dynamics of the robot are presented in
Appendix C . Simulation parameters of the controllers and the
dynamics are shown in Tables I and II, respectively.

FIGURE 2. A 2-DOF manipulator.

Desired profiles of the robot joint control in the first sim-
ulation were sinusoidal signals that are plotted in Fig. 3. The
control results obtained are presented in Figs. 4 and 5.
As shown in Fig. 4(a), transient performances of the

RLTDE, MLTDE and proposed controllers for both joints
were satisfied the desired convergence rate, while that of the
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FIGURE 3. Reference signals in the first simulation.

FIGURE 4. Control errors achieved in the first simulation.

FIGURE 5. Comparative gain learning in the first simulation.

PPPD controller for the first joint was not good as expected.
In reality, by using the PPPD control method, the singularity
would be originated once the control error was out of the
desired range [13], [43], [48]. To attenuate this problem, a sat-

uration function of the extended error (ei/ρi) with 0.001 mar-
gin far from the bound were employed.

The steady-state control results shown in Fig. 4(b) indi-
cates that the PPPD performance complied with the given
constraints, but it tended to approach the bounds instead of
the origin.Minimizing dynamical perturbances by finding the
optimal nominal mass gains in the MLTDE control algorithm
also resulted in high control accuracy [31]. By possessing the
fast updating law for the robust gain, the RLTDE controller
efficiently suppressed large disturbances, but the closed-loop
system was disorganized as approaching the origin [49].
According to the first statement of Theorem 1 and Remark
6, very high control accuracy would be accomplished by the
proposed controller. To this end, as depicted in Fig. 5, all con-
trol gains were automatically tuned to optimize the control
error. Different from the key idea of the RLTDE controller
which only tuned the robust gain, as seen in learning rule (14),
the driving and robust gains of the proposed controller were
respectively strongly activated when the sliding manifold
was outside and inside of the unit circle. It made the gain
variations smoother and did not need to be too large for the
high-precision control results.

In the second simulation, these controllers were challenged
with a sudden disturbance in a short time at joint 2. Tracking
simulation results with respect to the same profiles under the
extreme disturbance, as plotted in Fig. 6, are shown in Figs. 7,
8, and 9.

FIGURE 6. Sudden disturbance affected to joint 2.

FIGURE 7. Comparative control errors in the second simulation.

Whenever the control error was kicked out of a safety
range, recovery ability of the PPPD controller was really
poor. This feature is not supported by the PPPD-type control
method. Asymptotic control performance was provided by
the MLTDE only inside of a certain range of the mass matrix
with slow learning rates [31]. Hence, the transient control per-
formance of the MLTDE was under expectation after facing
the large disturbance. As seen in Fig. 7, the RLTDE could
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FIGURE 8. Comparative gain variation with the large disturbance.

FIGURE 9. Control signals generated to suppress the disturbance in the
second simulation.

well deal with this problem thanks to the fast adaptation law
(29). As shown in Fig. 9, the large robust gain could however
generate the ripple or chattering control input. Instead of
increasing the robust gain, in the proposed controller, the
driving gain played a dominant role in such the case to force
the sliding manifold back to zero as fast as possible and the
sliding gain worked as a damping term to avoid rebounding
problems. The gain behaviors are demonstrated in Fig. 8.
Influence of the proposed controller against the disturbance
is reflexed in Figs. 7 and 9.

B. EXPERIMENTAL RESULTS
Real-time experiments were performed to investigate feasi-
bility of the proposed controller. A 6DOF robot was designed
and fabricated for the validation. The robot prototype is
shown in Fig. 10. Industrial motors were employed to actuate
the robot joints, and encoders with resolution of 5760ppr
were used to measure the joint positions. A compactRIO
9024 controller connecting with digital (NI 9401) and analog
(NI 9263) modules was setup as a data acquisition (DAQ)

system. The algorithms were deployed in the Labview envi-
ronment to control the first joint of the robot.

FIGURE 10. The experimental 6DOF robot.

FIGURE 11. Real-time comparative control errors.

FIGURE 12. Learning ability of the proposed and RLTDE controllers.

The desired profile chosen was: θ1d = 30 sin(0.3π t)(deg).
The control results obtained are shown in Figs. 11, 12, and
13. Transient control performances of the controllers were not
much different due to starting from small initial joint angles.
However, interesting information could be observed in the
steady-state control errors. The MLTDE provided a learn-
ing law to find the optimal nominal mass matrix subjected
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FIGURE 13. Real-time torques generated by the controllers.

to the minimal TDE error. Without employing any robust
control signal, the MLTDE only produced an acceptable
control error of 0.98 (deg). The control precision could be
enhanced by the RLTDE controller thanks to the fast robust-
gain learning or by the PPPD controller with the prescribed-
performance-guarantee mechanism: the RLTDE and PPPD
errors were 0.75 (deg) and 0.7 (deg), respectively. In fact,
the learning ability of the MLTDE and RLTDE was only
applied to the reaching phase of the sliding mode working
principles. With hard sliding procedures, at which the con-
stant sliding gains were employed, good sliding manifolds
would result in good control errors. As a solution, adaptation
laws of the proposed controller supported two phases of the
SMC algorithm. As seen in Fig. 12, the driving and robust
gains (K1 andK2) were strongly activated with respect to
large and small ranges of the sliding manifold in the reaching
phase, and a soft sliding policy (K0) was accomplished by the
new learning rules (15)-(16). Thus, higher control accuracy
of 0.39 (deg) was exhibited by the proposed controller. Con-
trol torques generated by the testing controllers are presented
in Fig. 13. The highest deviation could be observed from
the PPPD control signal which was created by logarithmic
implication control law to ensure the prescribed bound. The
MLTDE used the smoother control torque after the optimal
nominal mass matrix was found. To effectively suppress the
TDE error, the fast robust-learning law associated with a
signum function was employed by the RLTDE, but such the
robust rule made high-amplitude harmonics in the control
signal. The proposed adaptation laws (14)-(16) reveal that the
robust-gain (K2) was mainly bustled in the steady-state time
of the reaching phase. The high-performance control mission
was effectively shared by other control gains in proper control
gradation. Hence, as seen in Fig. 13, the large-deviation
problemwould be attenuated by the proposed control method.

As observed in the working progress of the sliding gain
(K0) illustrated in Fig. 12, the adaptation rule seemed going
to infinite. A long-time experiment with random disturbances
was performed to verify this issue. The data obtained are
displayed in Figs. 14 and 15. To cope with unknown external
disturbances, as shown in Fig. 15, all the control gains were
varied in different ways to maintain the stability of the closed-
loop system. Right after the sudden disturbances vanished,
the driving and robust gains were quickly reduced to make
the system relax while the optimal sliding gains, as noted in
Fig. 14, was found to result in the high control accuracy. Thus,

TABLE 3. Statistical performance comparison of the controllers from the
validation results.

the stability and feasibility of the proposed controller have
been demonstrated clearly in this test.

FIGURE 14. A long-time control error of the proposed controller under
sudden disturbances.

FIGURE 15. An adaptation progress of the control gains in a long-time
working under sudden disturbances.

C. DISCUSSION
Table 3 presents the maximum absolute (MA) and root-
mean-square (RMS) values of the control errors obtained
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by the static computation of the control performances for a
manipulated time (5s to 8s). The PPPD controller normally
produced the largest RMS control errors as comparing to the
others even though its MA errors are in good ranges. The
information implies that the uncertain nonlinearities were
not treated well in the PPPD algorithm. The statical data
also reveal that this issue was efficiently dealt with by the
TDE control schemes. Searching the best mass matrix by the
MLTDE method could yield the very high control accuracy,
but its adjustability was slow in arduous working cases. The
RLTDE possessed a faster adaptation rate but its steady-state
control errors were still limited. Both the collected MA and
RMS outcomes of the proposed controller always got better
than those of the others. To this end, the TDE technique and
the multi-level learning rules were combined in a reasonable
manner. Hence, promising characteristics of the proposed
controller over the previous control methods were confirmed
throughout the analytical and testing results.

V. CONCLUSION
In this article, an adaptive robust controller is proposed for
high-quality position-tracking control of robot manipulators
based on a new nonlinear sliding mode scheme. Effect of
the system nonlinearities, uncertainties, and unpredictable
disturbances are compensated by a model-free estimator. The
control objective is realized using a two-layer control signal.
The adaptation ability is integrated into the layers of the
control architecture. A new gain-learning law of the high-
level control layer is developed to actively stabilize the sliding
manifold in a certain bound under a desired convergence rate.
Furthermore, another gain-learning law is proposed for the
low-level control layer to promptly force the control error
back to zero. Asymptotic stability and effectiveness of the
closed-loop system are confirmed by Lyapunov-based con-
straints, intensive simulations, and extended real-time exper-
iments. Ideally choosing the mass matrix would lead to the
small-possible TDE error. At that time, the learning burden
on the driving and robust gains could be effectively reduced
and the convergence rate of the reaching phase could be
improved. Theoretical integration of the new whole system
is a challenge that could open future research.

APPENDIX A: PROOF OF THEOREM 1
The following Lyapunov function is investigated:

L = 0.5sT4ssp2/q2 +0.5
2∑
i=1

(
k̆Ti k̆i

)
+0.5eT4sK0e (19)

The time derivative of the function (1) with noting the control
signals (5), (6), (10), (11), and (17) is

L̇ =
(
sp2/q2

)T
4sK̆0

˙̆K0
(
e+ ep1/q1

)
+

2∑
i=1

(
k̆Ti
˙̆ki
)

+
(
sp2/q2

)T
4s

(
v+M−1τ − θ̈d +K0

(
I+

p1
q1

diag
⌊
e(p1−q1)/q1

⌋)
ė
)

+ eT4sK0
(
s−K0

(
e+ ep1/q1

))
+ eT4sK̆0

˙̆K0e

=
(
sp2/q2

)T
4s

(
δ −K1s−K2sgn bsc + K̆0

˙̆K0

×
(
e+ ep1/q1

))
+
(
sp2/q2

)T
4sK̆0

((
diag

⌊
η0
⌋
K̆0 +40diag b|s|c

)
× e−4ee(2p1−q1)/q1

)
−
(
sp2/q2

)T
4sK̆0

×

((
4e − diag

⌊
η0
⌋
K̆0 −40diag b|s|c

)
ep1/q1

)
+
(
sp2/q2

)T
4sdiag

⌊
e2
⌋
K̆040diag bsgn bscc

× |s|(q2−p2)/q2

+

2∑
i=1

(
k̆Ti
˙̆ki
)
− eT4sK0K0

(
e+ ep1/q1

)
+ eT4sK̆0

˙̆K0e (20)

By adopting the separation law (15) and the learning rule (16)
of the low-level control gain, the function (20) becomes

L̇ =
(
sp2/q2

)T
4s (δ −K1s−K2sgn bsc)

− eT4sK̆0diag
⌊
η0
⌋
K̆0e0

+

2∑
i=1

(
k̆Ti
˙̆ki
)
− eT4sK0K0e− eT4s

×

(
K0K0 − K̆04e

)
ep1/q1 (21)

The function (21) is extended using the error dynamics (4)
and the gain-adaptation law (14) as follows:

L̇ =
(
sp2/q2

)T
4s
(
δ − K̄1s− K̄2sgn bsc

)
− eT4sK̆0diag

⌊
η0
⌋
K̆0e0

−

2∑
i=1

(
k̆Ti diag

⌊
ηi
⌋
k̆i
)
− eT4sK0K0e

− eT4s

(
K0K0 − K̆04e

)
ep1/q1

≤ −2min
⌊
k̄1min, η1min, η2min, k̄0min

⌋
L

− eT4sK̆0diag
⌊
η0
⌋
K̆0e0

−
(
sp2/q2

)T
4s
(
K̄2sgn bsc − δ

)
− eT4s

(
K0K0 − K̆04e

)
ep1/q1 (22)

Here, the first statement of Theorem 1 is proven.
If the estimation error ( δ) does not meet the constraint

(12), by noting Holder inequality [47], the time derivative
(22) could be rewritten as:

L̇ ≤ −2min
⌊(

k̄1min −
p2

p2 + q2

)
, η1min, η2min, k̄0min

⌋
L

+
q2

p2 + q2
trace

⌊
4s
(
1δ − K̄2

)(p2+q2)/q2⌋
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M bθc =
[
m2l22 + 2l1l2m2c2 + (m1 + m2)l21 m2l22 + l1l2m2c2

m2l22 + l1l2m2c2 m2l22

]
C
⌊
θ , θ̇

⌋
θ̇ =

[
−m2l1l2s2θ̇2

(
θ̇2 + 2θ̇1

)
m2l1l2s2θ̇21

]
g bθc =

[
m2l2gc12 + (m1 + m2) l1gc1

m2l2gc12

]
f
⌊
θ̇
⌋
=

[
a1θ̇1
a2θ̇2

]
(25)

≤ −σL +
q2

p2+q2
trace

⌊
4s
(
1δ−K̄2

)(p2+q2)/q2⌋ (23)

By applying integral inequalities [23], [46], a steady-state
bound of the control error is established:

‖e‖2 ≤
2

σλmax (4sK0)

q2
p2 + q2

trace

×

⌊
4s
(
1δ − K̄2

)(p2+q2)/q2⌋
−

1
λmax (4sK0)

((
sp2/q2

)T
4ss +

2∑
i=1

(
k̆Ti k̆i

))

−
2

λmax (4sK0)

1
σ

q2
p2 + q2

× trace
⌊
4s
(
1δ − K̄2

)(p2+q2)/q2⌋ e−σ t
+

2
λmax (4sK0)

L b0c e−σ t (24)

That leads to the proof of the second statement.

APPENDIX B: DESIGN OF COMPARATIVE CONTROLLERS
The prescribed-performance proportional-derivative (PPPD)
controller is designed based on a previous work [48]. First,
an error-decaying function is chosen as

ρi = (ρi0 − ρi∞) e−γ t + ρi∞ (26)

In fact, ρi is a bound-guaranteed function of the control error
(3) in which ρi0 and ρi∞ are initial and steady-state bounds,
respective. γ is the convergence rate.
A transformation function is next selected from the control

error (3), as follows:

εi =


ln
(
κ + (ei/ρi)
κ − κ (ei/ρi)

)
ei0 ≥ 0

ln
(
κ + κ (ei/ρi)
κ − (ei/ρi)

)
ei0 < 0

with 0 ≤ κ ≤ 1

(27)

where κ is called undershoot of the control error.
A PPPD control signal is then designed using both the

control error and the transformation error

τ = −Kvė−Kpe−Kε
∂ε

∂e
ε (28)

where Kv, Kp andKε are positive-definite gain matrices.

The design of the robust-gain-learning TDE (RLTDE) con-
troller is based on another previous work [27], as follows:

s = ė+Kc0e

τ = M̄
(
−θ̈ t−Ts + M̄−1τ t−Ts + θ̈d

−Kc0ė−Kc1s− K̂c2sgn bsc
)

˙̂kc2i =

 ϕi
(
α−1i |si btc|

)φbtc
φi btc , if k̂c2i > 0

ϕiα
−1
i |si btc| , otherwise

φi btc sgn , b‖s‖∞ − χc

(29)

whereKc0, Kc1 andKc2 are sliding, driving and robust gains,
respectively; χ is the steady-state sliding surface; and ϕi, αi
are learning rates.

Idea of the mass-gain-learning TDE (MLTDE) controller
is delimitated as [31]:
τ = τ t−Ts + M̄

(
−θ̈ t−Ts + θ̈d − 2K0ė−K2

0e
)

i=1..n


s = ė+K0e

M̄ii = −αii

(
ṡiisii + δs2ii

)
, if M̄ii > M̄−ii

M̄ii = M̄−ii , otherwise

(30)

where K0 is the sliding gain; M̄−ii is a defined lower bound;
and δii, αii are learning rates.

APPENDIX C: DYNAMICS OF A 2-DOF ROBOT
The robot dynamics depicted in Fig. 2 are derived as fol-
lows [9]:
where θi, l1, mi, and ai,|i1,2 are respectively joint angles,

link lengths, link masses, and frictional coefficients; g
is the gravitational acceleration; and ci, si, and cij denote
cos(θi), sin(θi), and cos(θi + θj), respectively.
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