6,262 research outputs found

    On Code Design for Interference Channels

    Get PDF
    abstract: There has been a lot of work on the characterization of capacity and achievable rate regions, and rate region outer-bounds for various multi-user channels of interest. Parallel to the developed information theoretic results, practical codes have also been designed for some multi-user channels such as multiple access channels, broadcast channels and relay channels; however, interference channels have not received much attention and only a limited amount of work has been conducted on them. With this motivation, in this dissertation, design of practical and implementable channel codes is studied focusing on multi-user channels with special emphasis on interference channels; in particular, irregular low-density-parity-check codes are exploited for a variety of cases and trellis based codes for short block length designs are performed. Novel code design approaches are first studied for the two-user Gaussian multiple access channel. Exploiting Gaussian mixture approximation, new methods are proposed wherein the optimized codes are shown to improve upon the available designs and off-the-shelf point-to-point codes applied to the multiple access channel scenario. The code design is then examined for the two-user Gaussian interference channel implementing the Han-Kobayashi encoding and decoding strategy. Compared with the point-to-point codes, the newly designed codes consistently offer better performance. Parallel to this work, code design is explored for the discrete memoryless interference channels wherein the channel inputs and outputs are taken from a finite alphabet and it is demonstrated that the designed codes are superior to the single user codes used with time sharing. Finally, the code design principles are also investigated for the two-user Gaussian interference channel employing trellis-based codes with short block lengths for the case of strong and mixed interference levels.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Cooperative Transmission for a Vector Gaussian Parallel Relay Network

    Full text link
    In this paper, we consider a parallel relay network where two relays cooperatively help a source transmit to a destination. We assume the source and the destination nodes are equipped with multiple antennas. Three basic schemes and their achievable rates are studied: Decode-and-Forward (DF), Amplify-and-Forward (AF), and Compress-and-Forward (CF). For the DF scheme, the source transmits two private signals, one for each relay, where dirty paper coding (DPC) is used between the two private streams, and a common signal for both relays. The relays make efficient use of the common information to introduce a proper amount of correlation in the transmission to the destination. We show that the DF scheme achieves the capacity under certain conditions. We also show that the CF scheme is asymptotically optimal in the high relay power limit, regardless of channel ranks. It turns out that the AF scheme also achieves the asymptotic optimality but only when the relays-to-destination channel is full rank. The relative advantages of the three schemes are discussed with numerical results.Comment: 35 pages, 10 figures, submitted to IEEE Transactions on Information Theor

    Secure Communication over Parallel Relay Channel

    Full text link
    We investigate the problem of secure communication over parallel relay channel in the presence of a passive eavesdropper. We consider a four terminal relay-eavesdropper channel which consists of multiple relay-eavesdropper channels as subchannels. For the discrete memoryless model, we establish outer and inner bounds on the rate-equivocation region. The inner bound allows mode selection at the relay. For each subchannel, secure transmission is obtained through one of two coding schemes at the relay: decoding-and-forwarding the source message or confusing the eavesdropper through noise injection. For the Gaussian memoryless channel, we establish lower and upper bounds on the perfect secrecy rate. Furthermore, we study a special case in which the relay does not hear the source and show that under certain conditions the lower and upper bounds coincide. The results established for the parallel Gaussian relay-eavesdropper channel are then applied to study the fading relay-eavesdropper channel. Analytical results are illustrated through some numerical examples.Comment: To Appear in IEEE Transactions on Information Forensics and Securit

    On Secure Transmission over Parallel Relay Eavesdropper Channel

    Full text link
    We study a four terminal parallel relay-eavesdropper channel which consists of multiple independent relay-eavesdropper channels as subchannels. For the discrete memoryless case, we establish inner and outer bounds on the rate-equivocation region. For each subchannel, secure transmission is obtained through one of the two coding schemes at the relay: decoding-and-forwarding the source message or confusing the eavesdropper through noise injection. The inner bound allows relay mode selection. For the Gaussian model we establish lower and upper bounds on the perfect secrecy rate. We show that the bounds meet in some special cases, including when the relay does not hear the source. We illustrate the analytical results through some numerical examples.Comment: 8 pages, Presented at the Forty-Eighth Annual Allerton Conference on Communication, Control, and Computing, September 29 - October 1, 2010, Monticello, IL, US

    Asymptotic Analysis of Amplify and Forward Relaying in a Parallel MIMO Relay Network

    Full text link
    This paper considers the setup of a parallel MIMO relay network in which KK relays, each equipped with NN antennas, assist the transmitter and the receiver, each equipped with MM antennas, in the half-duplex mode, under the assumption that N≄MN\geq{M}. This setup has been studied in the literature like in \cite{nabar}, \cite{nabar2}, and \cite{qr}. In this paper, a simple scheme, the so-called Incremental Cooperative Beamforming, is introduced and shown to achieve the capacity of the network in the asymptotic case of K→∞K\to{\infty} with a gap no more than O(1log⁥(K))O(\frac{1}{\log(K)}). This result is shown to hold, as long as the power of the relays scales as ω(log⁥9(K)K)\omega(\frac{\log^9(K)}{K}). Finally, the asymptotic SNR behavior is studied and it is proved that the proposed scheme achieves the full multiplexing gain, regardless of the number of relays

    Communicating over Filter-and-Forward Relay Networks with Channel Output Feedback

    Full text link
    Relay networks aid in increasing the rate of communication from source to destination. However, the capacity of even a three-terminal relay channel is an open problem. In this work, we propose a new lower bound for the capacity of the three-terminal relay channel with destination-to-source feedback in the presence of correlated noise. Our lower bound improves on the existing bounds in the literature. We then extend our lower bound to general relay network configurations using an arbitrary number of filter-and-forward relay nodes. Such network configurations are common in many multi-hop communication systems where the intermediate nodes can only perform minimal processing due to limited computational power. Simulation results show that significant improvements in the achievable rate can be obtained through our approach. We next derive a coding strategy (optimized using post processed signal-to-noise ratio as a criterion) for the three-terminal relay channel with noisy channel output feedback for two transmissions. This coding scheme can be used in conjunction with open-loop codes for applications like automatic repeat request (ARQ) or hybrid-ARQ.Comment: 15 pages, 8 figures, to appear in IEEE Transactions on Signal Processin
    • 

    corecore