11 research outputs found

    Predictor-Based Compensation for Electromechanical Delay During Neuromuscular Electrical Stimulation

    Full text link

    Closed-Loop Neural Network-Based NMES Control for Human Limb Tracking

    Full text link

    Robust Model Predictive Control of An Input Delayed Functional Electrical Stimulation

    Get PDF
    Functional electrical stimulation (FES) is an external application of low-level currents to elicit muscle contractions that can potentially restore limb function in persons with spinal cord injury. However, FES often leads to the rapid onset of muscle fatigue, which limits performance of FES-based devices due to reduction in force generation capability. Fatigue is caused by unnatural muscle recruitment and synchronous and repetitive recruitment of muscle fibers. In this situation, overstimulation of the muscle fibers further aggravates the muscle fatigue. Therefore, a motivation exists to use optimal controls that minimize muscle stimulation while providing a desired performance. Model predictive controller (MPC) is one such optimal control method. However, the traditional MPC is dependent on exact model knowledge of the musculoskeletal dynamics and cannot handle modeling uncertainties. Motivated to address modeling uncertainties, robust MPC approach is used to control FES. Moreover, two new robust MPC techniques are studied to address electromechanical delay (EMD) during FES, which often causes performance issues and stability problems. This thesis compares two types of robust MPCs: a Lyapunov-based MPC and a tube- based MPC for controlling knee extension elicited through FES. Lyapunov-based MPC incorporated a contractive constraint that bounds the Lyapunov function of the MPC with a Lyapunov function that was used to derive an EMD compensation control law. The Lyapunov-based MPC was simulated to validate its performance. In the tube-based MPC, the EMD compensation controller was chosen to be the tube that eliminated output of the nominal MPC and the output of the real system. Regulation experiments were performed for the tube-based MPC on a leg extension machine and the controller showed robust performance despite modeling uncertainties

    Robust Model Predictive Control of An Input Delayed Functional Electrical Stimulation

    Get PDF
    Functional electrical stimulation (FES) is an external application of low-level currents to elicit muscle contractions that can potentially restore limb function in persons with spinal cord injury. However, FES often leads to the rapid onset of muscle fatigue, which limits performance of FES-based devices due to reduction in force generation capability. Fatigue is caused by unnatural muscle recruitment and synchronous and repetitive recruitment of muscle fibers. In this situation, overstimulation of the muscle fibers further aggravates the muscle fatigue. Therefore, a motivation exists to use optimal controls that minimize muscle stimulation while providing a desired performance. Model predictive controller (MPC) is one such optimal control method. However, the traditional MPC is dependent on exact model knowledge of the musculoskeletal dynamics and cannot handle modeling uncertainties. Motivated to address modeling uncertainties, robust MPC approach is used to control FES. Moreover, two new robust MPC techniques are studied to address electromechanical delay (EMD) during FES, which often causes performance issues and stability problems. This thesis compares two types of robust MPCs: a Lyapunov-based MPC and a tube- based MPC for controlling knee extension elicited through FES. Lyapunov-based MPC incorporated a contractive constraint that bounds the Lyapunov function of the MPC with a Lyapunov function that was used to derive an EMD compensation control law. The Lyapunov-based MPC was simulated to validate its performance. In the tube-based MPC, the EMD compensation controller was chosen to be the tube that eliminated output of the nominal MPC and the output of the real system. Regulation experiments were performed for the tube-based MPC on a leg extension machine and the controller showed robust performance despite modeling uncertainties

    A Human Motor Control Framework based on Muscle Synergies

    Get PDF
    In spite of the complexities of the human musculoskeletal system, the central nervous system has the ability to orchestrate difficult motor tasks. Many researchers have tried to understand how the human nervous system works. Yet, our knowledge about the integration of sensory information and motor control is incomplete. This thesis presents a mathematical motor control framework that is developed to give the scientific community a biologically-plausible feedback controller for fast and efficient control of musculoskeletal systems. This motor control framework can be applied to musculoskeletal systems of various complexities, which makes it a viable tool for many predictive musculoskeletal simulations, assistive device design and control, and general motor control studies. The most important feature of this real-time motor control framework is its emphasis on the intended task. In this framework, a task is distinguished by the kinematic variables that need to be controlled. For example, in a reaching task, the task variables are the position of the hand (individual joint angles are irrelevant to the reaching task). Consequently, the task space is defined as the subspace that is formed by all the controlled variables. This motor control framework employs a hierarchical structure to speed up the calculations while maintaining high control efficiency. In this framework, there is a high-level controller, which deals with path planning and error compensation in the task space. The output of this task space controller is the acceleration vector in the task space, which needs to be fulfilled by muscle activities. The fast and efficient transformation of the task space accelerations to muscle activities in real-time is a main contribution of this research. Instead of using optimization to solve for the muscle activations (the usual practice in the past), this acceleration-to-activation (A2A) mapping uses muscle synergies to keep the computations simple enough to be real-time implementable. This A2A mapping takes advantage of the known effect of muscle synergies in the task space, thereby reducing the optimization problem to a vector decomposition problem. To make the result of the A2A mapping more efficient, the novel concept of posture-dependent synergies is introduced. The validity of the assumptions and the performance of the motor control framework are assessed using experimental trials. The experimental results show that the motor control framework can reconstruct the measured muscle activities only using the task-related kinematic/dynamic information. The application of the motor control framework to feedback motion control of musculoskeletal systems is also presented in this thesis. The framework is applied to musculoskeletal systems of various complexities (up to four-degree-of-freedom systems with 15 muscles) to show its effectiveness and generalizability to different dimensions. The control of functional electrical stimulation (FES) is another important application of my motor control framework. In FES, the muscles are activated by external electrical pulses to generate force, and consequently motion in paralysed limbs. There exists no feedback FES controller of upper extremity movements in the literature. The proposed motor control model is the first feedback FES controller that can be used for the control of reaching movements to arbitrary targets. Experimental results show that the motor control model is fast enough and accurate enough to be used as a practical motion controller for FES systems. Using such a biologically-plausible motor control model, it is possible to control the motion of a patient's arm (for example a stroke survivor) in a natural way, to accelerate recovery and improve the patient's quality of life

    A Human Motor Control Framework based on Muscle Synergies

    Get PDF
    In spite of the complexities of the human musculoskeletal system, the central nervous system has the ability to orchestrate difficult motor tasks. Many researchers have tried to understand how the human nervous system works. Yet, our knowledge about the integration of sensory information and motor control is incomplete. This thesis presents a mathematical motor control framework that is developed to give the scientific community a biologically-plausible feedback controller for fast and efficient control of musculoskeletal systems. This motor control framework can be applied to musculoskeletal systems of various complexities, which makes it a viable tool for many predictive musculoskeletal simulations, assistive device design and control, and general motor control studies. The most important feature of this real-time motor control framework is its emphasis on the intended task. In this framework, a task is distinguished by the kinematic variables that need to be controlled. For example, in a reaching task, the task variables are the position of the hand (individual joint angles are irrelevant to the reaching task). Consequently, the task space is defined as the subspace that is formed by all the controlled variables. This motor control framework employs a hierarchical structure to speed up the calculations while maintaining high control efficiency. In this framework, there is a high-level controller, which deals with path planning and error compensation in the task space. The output of this task space controller is the acceleration vector in the task space, which needs to be fulfilled by muscle activities. The fast and efficient transformation of the task space accelerations to muscle activities in real-time is a main contribution of this research. Instead of using optimization to solve for the muscle activations (the usual practice in the past), this acceleration-to-activation (A2A) mapping uses muscle synergies to keep the computations simple enough to be real-time implementable. This A2A mapping takes advantage of the known effect of muscle synergies in the task space, thereby reducing the optimization problem to a vector decomposition problem. To make the result of the A2A mapping more efficient, the novel concept of posture-dependent synergies is introduced. The validity of the assumptions and the performance of the motor control framework are assessed using experimental trials. The experimental results show that the motor control framework can reconstruct the measured muscle activities only using the task-related kinematic/dynamic information. The application of the motor control framework to feedback motion control of musculoskeletal systems is also presented in this thesis. The framework is applied to musculoskeletal systems of various complexities (up to four-degree-of-freedom systems with 15 muscles) to show its effectiveness and generalizability to different dimensions. The control of functional electrical stimulation (FES) is another important application of my motor control framework. In FES, the muscles are activated by external electrical pulses to generate force, and consequently motion in paralysed limbs. There exists no feedback FES controller of upper extremity movements in the literature. The proposed motor control model is the first feedback FES controller that can be used for the control of reaching movements to arbitrary targets. Experimental results show that the motor control model is fast enough and accurate enough to be used as a practical motion controller for FES systems. Using such a biologically-plausible motor control model, it is possible to control the motion of a patient's arm (for example a stroke survivor) in a natural way, to accelerate recovery and improve the patient's quality of life

    Control Methods for Compensation and Inhibition of Muscle Fatigue in Neuroprosthetic Devices

    Get PDF
    For individuals that suffer from paraplegia activities of daily life are greatly inhibited. With over 5,000 new cases of paraplegia each year in the United States alone there is a clear need to develop technologies to restore lower extremity function to these individuals. One method that has shown promise for restoring functional movement to paralyzed limbs is the use of functional electrical stimulation (FES), which is the application of electrical stimulation to produce a muscle contraction and create a functional movement. This technique has been shown to be able to restore numerous motor functions in persons with disability; however, the application of the electrical stimulation can cause rapid muscle fatigue, limiting the duration that these devices may be used. As an alternative some research has developed fully actuated orthoses to restore motor function via electric motors. These devices have been shown to be capable of achieving greater walking durations than FES systems; however, these systems can be significantly larger and heavier. To develop smaller and more efficient systems some research has explored hybrid neuroprostheses that use both FES and electric motors. However, these hybrid systems present new research challenges. In this dissertation novel control methods to compensate/inhibit muscle fatigue in neuroprosthetic and hybrid neuroprosthetic devices are developed. Some of these methods seek to compensate for the effects of fatigue by using fatigue dynamics in the control development or by minimizing the amount of stimulation used to produce a desired movement. Other control methods presented here seek to inhibit the effects of muscle fatigue by adding an electric motor as additional actuation. These control methods use either switching or cooperative control of FES and an electric motor to achieve longer durations of use than systems that strictly use FES. Finally, the necessity for the continued study of hybrid gait restoration systems is facilitated through simulations of walking with a hybrid neuroprosthesis. The results of these simulations demonstrate the potential for hybrid neuroprosthesis gait restoration devices to be more efficient and achieve greater walking durations than systems that use strictly FES or strictly electric motors
    corecore