1,893 research outputs found

    Design and Implementation of a (2, 2) and a (2, 3) Visual Cryptographic Scheme

    Get PDF
    In this paper two methods for (2, 2) and (2, 3) visual cryptographic scheme(VCS) is proposed. The first scheme considers 4 pixels of input image at a time and generates 4 output pixels in each share. As 4 output pixels are generated from 4 input pixels dimension and aspect ratio of the decrypted image remain same during the process. The second scheme considers 2 pixels (1 block) of input image at a time and generates 3 output pixels in each share. Here probability of 1/3 for black pixel is maintained in each share. The scheme improves the contrast of output image. The dimension of revealed image is increased by 1.5 times in horizontal direction and remains same in vertical direction

    Towards Secure and Intelligent Diagnosis: Deep Learning and Blockchain Technology for Computer-Aided Diagnosis Systems

    Get PDF
    Cancer is the second leading cause of death across the world after cardiovascular disease. The survival rate of patients with cancerous tissue can significantly decrease due to late-stage diagnosis. Nowadays, advancements of whole slide imaging scanners have resulted in a dramatic increase of patient data in the domain of digital pathology. Large-scale histopathology images need to be analyzed promptly for early cancer detection which is critical for improving patient's survival rate and treatment planning. Advances of medical image processing and deep learning methods have facilitated the extraction and analysis of high-level features from histopathological data that could assist in life-critical diagnosis and reduce the considerable healthcare cost associated with cancer. In clinical trials, due to the complexity and large variance of collected image data, developing computer-aided diagnosis systems to support quantitative medical image analysis is an area of active research. The first goal of this research is to automate the classification and segmentation process of cancerous regions in histopathology images of different cancer tissues by developing models using deep learning-based architectures. In this research, a framework with different modules is proposed, including (1) data pre-processing, (2) data augmentation, (3) feature extraction, and (4) deep learning architectures. Four validation studies were designed to conduct this research. (1) differentiating benign and malignant lesions in breast cancer (2) differentiating between immature leukemic blasts and normal cells in leukemia cancer (3) differentiating benign and malignant regions in lung cancer, and (4) differentiating benign and malignant regions in colorectal cancer. Training machine learning models, disease diagnosis, and treatment often requires collecting patients' medical data. Privacy and trusted authenticity concerns make data owners reluctant to share their personal and medical data. Motivated by the advantages of Blockchain technology in healthcare data sharing frameworks, the focus of the second part of this research is to integrate Blockchain technology in computer-aided diagnosis systems to address the problems of managing access control, authentication, provenance, and confidentiality of sensitive medical data. To do so, a hierarchical identity and attribute-based access control mechanism using smart contract and Ethereum Blockchain is proposed to securely process healthcare data without revealing sensitive information to an unauthorized party leveraging the trustworthiness of transactions in a collaborative healthcare environment. The proposed access control mechanism provides a solution to the challenges associated with centralized access control systems and ensures data transparency and traceability for secure data sharing, and data ownership

    State of the art in privacy preservation in video data

    Full text link
    Active and Assisted Living (AAL) technologies and services are a possible solution to address the crucial challenges regarding health and social care resulting from demographic changes and current economic conditions. AAL systems aim to improve quality of life and support independent and healthy living of older and frail people. AAL monitoring systems are composed of networks of sensors (worn by the users or embedded in their environment) processing elements and actuators that analyse the environment and its occupants to extract knowledge and to detect events, such as anomalous behaviours, launch alarms to tele-care centres, or support activities of daily living, among others. Therefore, innovation in AAL can address healthcare and social demands while generating economic opportunities. Recently, there has been far-reaching advancements in the development of video-based devices with improved processing capabilities, heightened quality, wireless data transfer, and increased interoperability with Internet of Things (IoT) devices. Computer vision gives the possibility to monitor an environment and report on visual information, which is commonly the most straightforward and human-like way of describing an event, a person, an object, interactions and actions. Therefore, cameras can offer more intelligent solutions for AAL but they may be considered intrusive by some end users. The General Data Protection Regulation (GDPR) establishes the obligation for technologies to meet the principles of data protection by design and by default. More specifically, Article 25 of the GDPR requires that organizations must "implement appropriate technical and organizational measures [...] which are designed to implement data protection principles [...] , in an effective manner and to integrate the necessary safeguards into [data] processing.” Thus, AAL solutions must consider privacy-by-design methodologies in order to protect the fundamental rights of those being monitored. Different methods have been proposed in the latest years to preserve visual privacy for identity protection. However, in many AAL applications, where mostly only one person would be present (e.g. an older person living alone), user identification might not be an issue; concerns are more related to the disclosure of appearance (e.g. if the person is dressed/naked) and behaviour, what we called bodily privacy. Visual obfuscation techniques, such as image filters, facial de-identification, body abstraction, and gait anonymization, can be employed to protect privacy and agreed upon by the users ensuring they feel comfortable. Moreover, it is difficult to ensure a high level of security and privacy during the transmission of video data. If data is transmitted over several network domains using different transmission technologies and protocols, and finally processed at a remote location and stored on a server in a data center, it becomes demanding to implement and guarantee the highest level of protection over the entire transmission and storage system and for the whole lifetime of the data. The development of video technologies, increase in data rates and processing speeds, wide use of the Internet and cloud computing as well as highly efficient video compression methods have made video encryption even more challenging. Consequently, efficient and robust encryption of multimedia data together with using efficient compression methods are important prerequisites in achieving secure and efficient video transmission and storage.This publication is based upon work from COST Action GoodBrother - Network on Privacy-Aware Audio- and Video-Based Applications for Active and Assisted Living (CA19121), supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation. www.cost.e

    Authorization and authentication strategy for mobile highly constrained edge devices

    Get PDF
    The rising popularity of mobile devices has driven the need for faster connection speeds and more flexible authentication and authorization methods. This project aims to develop and implement an innovative system that provides authentication and authorization for both the device and the user. It also facilitates real-time user re-authentication within the application, ensuring transparency throughout the process. Additionally, the system aims to establish a secure architecture that minimizes the computational requirements on the client's device, thus optimizing the device's battery life. The achieved results have demonstrated satisfactory outcomes, validating the effectiveness of the proposed solution. However, there is still potential for further improvement to enhance its overall performance

    Sharing Secret Colour Images with Embedded Visual Cryptography Using the Stamping Algorithm and OTP Procedure

    Get PDF
    Finding a way to ensure the safety of media is becoming increasingly common in the modern world as digital media usage increases. Visual cryptography (VC) offers an efficient method for sending images securely. Images that have been protected using visual encryption can be decoded using features of human vision. Emails are not a highly safe method of exchanging private data because someone else can quickly weaken the content. In the visual cryptography technique, we presented for colour pictures, the divided shares are enclosed in additional pictures using stamping. Using a random number generator, the shares are created. Visual cryptography schemes (VCS) are a method of encoding pictures that conceals the secret information which is present in images. A secret image is encrypted using a straightforward visual cryptography technique by splitting it into n shares, and the stamping operation is carried out by overlapping k shares. It can be beneficial for hiding a secret image. There is a chance that employing cryptography for information exchange could cause security problems because the process of decryption of simple visual cryptographic algorithms can be completed by the human eye. To address this issue, we are using the OTP procedure. In the past, static ID and passwords were employed, making them susceptible to replay and eavesdropping attacks. One Time Password technology, which generates a unique password each time, is utilized to solve this issue. The suggested approach strengthens the security of the created transparencies by applying an envelope to each share and employing a stamping technique to address security vulnerabilities that the previous methods had, such as pixel expansion and noise

    Distributed Machine Learning Architecture for Security Improvement in Computer Drafting and Writing in Art Asset Identification System

    Get PDF
    Art asset identification service is becoming increasingly important in the art market, where the value of art assets is constantly changing. The service provides authentication, evaluation, and provenance research for artworks, which helps art collectors and institutions to protect their investments and ensure the authenticity of their collections. The effective management of big data is critical for the art asset identification service, and there are several big data management technologies that can be achieved. To improve security in the big data Management model uses Distributed Associative Rule Mining is implemented with Hashing based Symmetric Key Cryptography. The designed model comprises of Associate Rule Hashing Symmetric Key (ARHSK). The proposed ARHSK model comprises the symmetric key generated with the hashing model to secure art assets. With the ARHSK information is stored and processed for security features. The performance of the ARHSK model is implemented with the machine learning model for classification. Simulation analysis expressed that ARHSK exhibits an improved classification accuracy of 99.67% which is ~13% higher than the CNN and ANN models

    Trends on Computer Security: Cryptography, User Authentication, Denial of Service and Intrusion Detection

    Get PDF
    The new generation of security threats has beenpromoted by digital currencies and real-time applications, whereall users develop new ways to communicate on the Internet.Security has evolved in the need of privacy and anonymity forall users and his portable devices. New technologies in everyfield prove that users need security features integrated into theircommunication applications, parallel systems for mobile devices,internet, and identity management. This review presents the keyconcepts of the main areas in computer security and how it hasevolved in the last years. This work focuses on cryptography,user authentication, denial of service attacks, intrusion detectionand firewalls

    Cryptography and Its Applications in Information Security

    Get PDF
    Nowadays, mankind is living in a cyber world. Modern technologies involve fast communication links between potentially billions of devices through complex networks (satellite, mobile phone, Internet, Internet of Things (IoT), etc.). The main concern posed by these entangled complex networks is their protection against passive and active attacks that could compromise public security (sabotage, espionage, cyber-terrorism) and privacy. This Special Issue “Cryptography and Its Applications in Information Security” addresses the range of problems related to the security of information in networks and multimedia communications and to bring together researchers, practitioners, and industrials interested by such questions. It consists of eight peer-reviewed papers, however easily understandable, that cover a range of subjects and applications related security of information
    corecore