15 research outputs found

    Improved ACD-based financial trade durations prediction leveraging LSTM networks and Attention Mechanism

    Full text link
    The liquidity risk factor of security market plays an important role in the formulation of trading strategies. A more liquid stock market means that the securities can be bought or sold more easily. As a sound indicator of market liquidity, the transaction duration is the focus of this study. We concentrate on estimating the probability density function p({\Delta}t_(i+1) |G_i) where {\Delta}t_(i+1) represents the duration of the (i+1)-th transaction, G_i represents the historical information at the time when the (i+1)-th transaction occurs. In this paper, we propose a new ultra-high-frequency (UHF) duration modelling framework by utilizing long short-term memory (LSTM) networks to extend the conditional mean equation of classic autoregressive conditional duration (ACD) model while retaining the probabilistic inference ability. And then the attention mechanism is leveraged to unveil the internal mechanism of the constructed model. In order to minimize the impact of manual parameter tuning, we adopt fixed hyperparameters during the training process. The experiments applied to a large-scale dataset prove the superiority of the proposed hybrid models. In the input sequence, the temporal positions which are more important for predicting the next duration can be efficiently highlighted via the added attention mechanism layer

    Multi-Step Forecast of the Implied Volatility Surface Using Deep Learning

    Get PDF
    Implied volatility is an essential input to price an option. Machine learning architectures have shown strengths in learning option pricing formulas and estimating implied volatility cross-sectionally. However, implied volatility time series forecasting is typically done using the univariate time series and often for short intervals. When a univariate implied volatility series is forecasted, important implied volatility properties such as volatility skew and the term structure are lost. More importantly, short term forecasts can’t take advantage of the long term persistence in the volatility series. The thesis attempts to bridge the gap between machine learning-based implied volatility modeling and multivariate multi-step implied volatility forecasting. The thesis contributes to the literature by modeling the entire implied volatility surface (IVS) using recurrent neural network architectures. I implement Convolutional Long Short Term Memory Neural Network (ConvLSTM) to produce multivariate and multi-step forecasts of the S&P 500 implied volatility surface. The ConvLSTM model is capable of understanding the spatiotemporal relationships between strikes and maturities (term structure), and of modeling volatility surface dynamics non-parametrically. I benchmark the ConvLSTM model against traditional multivariate time series Vector autoregression (VAR), Vector Error Correction (VEC) model, and deep learning-based Long-Short-Term Memory (LSTM) neural network. I find that the ConvLSTM significantly outperforms traditional time series models, as well as the benchmark Long Short Term Memory(LSTM) model in predicting the implied volatility surface for a 1-day, 30-day, and 90-day horizon, for out-of-the-money and at-the-money calls and puts

    HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and Regime-Switch VAE

    Full text link
    Factor model is a fundamental investment tool in quantitative investment, which can be empowered by deep learning to become more flexible and efficient in practical complicated investing situations. However, it is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting, where the model can adapt itself to match the current market regime identified based on only point-in-time market information. To tackle this problem, we propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the underlying relationship between the market situation and stock-wise latent factors, so that HireVAE can effectively estimate useful latent factors given only historical market information and subsequently predict accurate stock returns. Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods, verifying the potential of such online and adaptive factor model.Comment: Accepted to IJCAI 202

    Do artificial neural networks provide improved volatility forecasts:Evidence from Asian markets

    Get PDF
    This paper enters the ongoing volatility forecasting debate by examining the ability of a wide range of Machine Learning methods (ML), and specifically Artificial Neural Network (ANN) models. The ANN models are compared against traditional econometric models for ten Asian markets using daily data for the time period from 12 September 1994 to 05 March 2018. The empirical results indicate that ML algorithms, across the range of countries, can better approximate dependencies compared to traditional benchmark models. Notably, the predictive performance of such deep learning models is superior perhaps due to its ability in capturing long-range dependencies. For example, the Neuro Fuzzy models of ANFIS and CANFIS, which outperform the EGARCH model, are more flexible in modelling both asymmetry and long memory properties. This offers new insights for Asian markets. In addition to standard statistics forecast metrics, we also consider risk management measures including the value-at-risk (VaR) average failure rate, the Kupiec LR test, the Christoffersen independence test, the expected shortfall (ES) and the dynamic quantile test. The study concludes that ML algorithms provide improving volatility forecasts in the stock markets of Asia and suggest that this may be a fruitful approach for risk management.</p

    Do artificial neural networks provide improved volatility forecasts:Evidence from Asian markets

    Get PDF
    This paper enters the ongoing volatility forecasting debate by examining the ability of a wide range of Machine Learning methods (ML), and specifically Artificial Neural Network (ANN) models. The ANN models are compared against traditional econometric models for ten Asian markets using daily data for the time period from 12 September 1994 to 05 March 2018. The empirical results indicate that ML algorithms, across the range of countries, can better approximate dependencies compared to traditional benchmark models. Notably, the predictive performance of such deep learning models is superior perhaps due to its ability in capturing long-range dependencies. For example, the Neuro Fuzzy models of ANFIS and CANFIS, which outperform the EGARCH model, are more flexible in modelling both asymmetry and long memory properties. This offers new insights for Asian markets. In addition to standard statistics forecast metrics, we also consider risk management measures including the value-at-risk (VaR) average failure rate, the Kupiec LR test, the Christoffersen independence test, the expected shortfall (ES) and the dynamic quantile test. The study concludes that ML algorithms provide improving volatility forecasts in the stock markets of Asia and suggest that this may be a fruitful approach for risk management.</p

    Introducing the σ\sigma-Cell: Unifying GARCH, Stochastic Fluctuations and Evolving Mechanisms in RNN-based Volatility Forecasting

    Full text link
    This paper introduces the σ\sigma-Cell, a novel Recurrent Neural Network (RNN) architecture for financial volatility modeling. Bridging traditional econometric approaches like GARCH with deep learning, the σ\sigma-Cell incorporates stochastic layers and time-varying parameters to capture dynamic volatility patterns. Our model serves as a generative network, approximating the conditional distribution of latent variables. We employ a log-likelihood-based loss function and a specialized activation function to enhance performance. Experimental results demonstrate superior forecasting accuracy compared to traditional GARCH and Stochastic Volatility models, making the next step in integrating domain knowledge with neural networks
    corecore