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ABSTRACT

MULTI-STEP FORECAST OF THE IMPLIED VOLATILITY SURFACE USING DEEP

LEARNING

NIKITA MEDVEDEV

2019

Implied volatility is an essential input to price an option. Machine learning

architectures have shown strengths in learning option pricing formulas and estimating

implied volatility cross-sectionally. However, implied volatility time series forecasting is

typically done using the univariate time series and often for short intervals. When a

univariate implied volatility series is forecasted, important implied volatility properties

such as volatility skew and the term structure are lost. More importantly, short term

forecasts can’t take advantage of the long term persistence in the volatility series.

The thesis attempts to bridge the gap between machine learning-based implied

volatility modeling and multivariate multi-step implied volatility forecasting. The thesis

contributes to the literature by modeling the entire implied volatility surface (IVS) using

recurrent neural network architectures. I implement Convolutional Long Short Term

Memory Neural Network (ConvLSTM) to produce multivariate and multi-step forecasts

of the S&P 500 implied volatility surface. The ConvLSTM model is capable of

understanding the spatiotemporal relationships between strikes and maturities (term

structure), and of modeling volatility surface dynamics non-parametrically.

I benchmark the ConvLSTM model against traditional multivariate time series

Vector autoregression (VAR), Vector Error Correction (VEC) model, and deep

learning-based Long-Short-Term Memory (LSTM) neural network. I find that the

ConvLSTM significantly outperforms traditional time series models, as well as the

benchmark Long Short Term Memory(LSTM) model in predicting the implied volatility

surface for a 1-day, 30-day, and 90-day horizon, for out-of-the-money and at-the-money

calls and puts.
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1 INTRODUCTION

1.1 BACKGROUND

The typical performance of a financial asset is measured via its return. The fluctuations in

the returns, as well as their randomness, is described by the asset’s volatility. Volatility

modeling has been extensively researched in the areas of finance, risk management, and

policymaking. Volatility is an essential component of financial derivatives; models and

forecasts are particularly important for the institutions involved in derivative trading.

Good forecasts of the volatility of asset returns enable institutions to asses their investment

risk and optimize their investment portfolios. Two measures of volatilities exist: 1)

historical (realized) volatility, which can be observed from the historical data and realized

at a certain point in time; 2) implied volatility (IV), which is not directly observable, but

instead is an investor’s forward-looking view on the underlying asset’s future returns.

Market expectations, macroeconomic conditions, and general market supply and demand

are common factors that drive future volatility. Implied volatility is typically derived

through a closed-form formula. Changes in implied volatility are market-driven and

dynamic, which makes predicting future implied volatility a challenging task.

1.2 PROBLEM

As identified in the survey by Samsudin and Mohamad (2016), the vast majority of

volatility forecasting models fall into two major categories: 1) option-implied volatility

models and 2) historical time series models. The former represents traders’

forward-looking view on the future direction of an asset’s volatility throughout the

life-cycle of the contract. Because the market attempts to predict the future expected

volatility of the underlying asset that changes dynamically, the incorrect parameters to the

closed-form option pricing formula lead to a degree of overpricing of the options as the

time to maturity of the contract increases (Hull and White, 1987). On the other hand,
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Figure 1: Average interpolated Implied Volatility Surface (IVS) between 2007-08-17
and 2007-12-31.

historical time series tries to express future price trends relying on past price trends. This

approach doesn’t take into consideration the market’s expectations of future returns.

Likewise, time series methods tend to ignore the underlying asset’s fundamental

information, such as earnings, debt, revenues, or other news.

Implied volatility (IV) has two important empirically observed properties: 1) IV

term structure; 2) IV skew. The first property implies that the future IV is typically higher

than today’s IV because of the large degree of uncertainty in future returns. The second

property implies that the market sentiment and investor preferences can cause option

strikes to have differences in IV levels. The voluminous literature has popularized the

Skew following empirical studies such as Rubinstein (1985), Dupire (1994), and Dumas,

Fleming, and Whaley (1998) that collectively bring out that IV’s vary with strike prices

and time-to-maturities, in contrast with the assumptions of the (Black and Scholes, 1973)

option pricing model (BSM), which assumes constant volatility and log-normal price

distribution of the underlying asset. IV skew and IV term structure can be captured in a

dynamic 3D figure known as the implied volatility surface (IVS). In the short term,

deviations, from the classical IVS shape can be observed, such as upward skew for some

strikes, or downward term structure. For instance, in Figure 1 between 2007-08-17 and

2007-12-31, it is observed that the IV is higher for OTM puts than OTM calls and that IVS
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has a downward IV term structure. Much of the previous research on option-implied

volatility modeling and forecasting focuses on producing cross-sectional results

spearheaded by the non-parametric methods for volatility pricing and not time series

forecasting. This is an area where machine learning architectures have shown significant

strengths. Adaptation of these data-driven machine learning techniques in volatility

research tends to focus on three major areas: 1) forecasting future historical volatility of

an underlying asset; 2) non-parametric framework or solvers for option or pricing; 3) time

series forecasting on the option implied volatility, volatility products (e.g., VIX), or

volatility distributions. The term structure dimension used to be a secondary priority for

earlier researchers but is thoroughly addressed in the more modern research

(Chalamandaris and Tsekrekos, 2011). The thesis contributes to the third major subsection

of the literature that focuses on implied volatility forecasting and proposes a data-driven

machine learning technique for pricing IV and multi-step forecast of both IV skew and IV

term structure through the IVS.

1.3 PRELIMINARIES

Forecasting historical volatility means predicting future volatility using historical

volatility. A number of studies had been conducted over the years using the financial time

series or econometric models to address this. One of the assumptions of a typical

regression model is constant variance (random noise) of the residuals, also known as

homoscedasticity. However, it is well known that financial time series tend to experience

unequal differences in means, medians, and interquartile ranges across different periods,

and thus, the residuals follow a mixture of distributions, also known as heteroscedasticity.

Up until more recent years, autoregressive conditional heteroscedasticity (ARCH) model

(Engle, 1982) where the lagged variance of the series is expressed as a function of time,

and generalized autoregressive conditional heteroscedasticity (GARCH) family models

(Bollerslev, 1986), were among the best models in forecasting realized volatility.
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However, GARCH family models tend to produce a term structure that reverts to the

long-term mean (Sinclair, 2013) and fails to capture the volatility skew (Dupire, 1994).

Throughout the years, many GARCH family models have evolved to address the failure of

capturing the IV skew. However, Hansen and Lunde (2005), tested over 330 GARCH

family models, seeking to identify advantages of the more sophisticated models to a

standard GARCH(1,1) model. The research found no evidence that more sophisticated

GARCH models significantly outperform the standard GARCH(1,1) model.

The results of a number of empirical studies suggest that option-implied volatility

can be used to predict future volatility. Time series predictions of IV can outperform

historical volatility (HV) as a predictor of future realized volatility (RV) (Samsudin and

Mohamad, 2016; Chalamandaris and Tsekrekos, 2011). More-so forecasted IV and

historical IV are more closely related than RV and IV, and the conditions in the options

market can impact this relationship (Zumbach, 2009). More recently, studies had emerged

that utilize a hybrid approach by combining various iterations of neural networks with

GARCH models, specifically to address the relative weakness of capturing the IV skew.

Neural networks have shown advantages in estimating complex non-linear functions,

which is often achieved through the depth of the networks, number of neurons, and the

activation (transfer) functions between the layers, and given a suitable degree of

complexity can be trained to estimate any non-parametric function. This, however, comes

at a higher performance cost and a lengthy training process. However, the rise of the new

data warehousing techniques, as well as high-performance computing in the 1990s,

kick-started a new branch of non-parametric financial derivative research that

predominantly focuses on providing efficient solutions to the partial differential equations

(PDEs). Often the use of the non-parametric algorithms and techniques, such as forests,

boosting, support vectors, and neural networks for volatility estimation can lead to far

more superior results (Park, Kim, and Lee, 2014). The usage of the artificial neural

networks (ANNs) primarily focuses on development of efficient alternatives to the time
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consuming numerical solvers which fail to deliver fast on-line solutions (Liu, Oosterlee,

and Bohte, 2019). Because of this performance bottleneck, the ANNs are trained to

approximate the PDEs. The solutions are expressed as a set of matrix multiplication, and

the workload distributed to the graphical processing units (GPUs) and run in parallel,

which significantly improves the computational performance. Multiple researchers have

noted significant performance gains from applying these techniques to the widely

recognized options pricing models. Culkin and Das (2017) applied the simplest form of

ANN, multi-layer perceptron (MLP) neural network to the BSM option pricing model.

They note that deep neural networks can serve as a universal approximator for almost any

function. In particular, the results were significant when applied to the BSM model. Liu,

Oosterlee, and Bohte (2019) did the same for both BSM and Heston stochastic volatility

(Heston, 1993) models, which confirmed the findings of Culkin and Das (2017).

The IV skew and the term structure can be captured in the implied volatility

surface (IVS). The IVS is used by the market participants to price the options. However,

because option volume is supply and demand-driven, markets often do not have quotes for

all of the strikes and maturities, so the IVS is interpolated to fill the missing quotes

(Orosi, 2012), which is why forecasting and interpolation techniques are especially

important for the market makers. For example, CBOE’s Volatility Index (VIX) is a

measure of expected annualized volatility implied by S&P 500 options that are measured

and published by the Chicago Board of Exchange (CBOE). The VIX itself is a measure

derived from the near term SPX option contract. VIX, due to its popularity, has been a

research topic of many studies. Traders consider VIX a mean-reverting asset, and thus a

variation of mean-reverting time series models (e.g., GARCH family) seems to be a

natural choice for a large number of studies for forecasting VIX. Although the calculation

of the VIX is transparent, the spot VIX is difficult to replicate because of the square root

function. So because of the difficulty to replicate VIX and VIX covering only the near

term contract, the forecast of the IVS from a traders perspective is of great importance.
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1.4 GOAL

Neural networks can learn IV equations accurately, and parametric time series models are

able to capture temporal relationships. The thesis bridges the gap between these two

methodologies by applying two new neural network architectures for multi-step time

series forecasting of the IVS that also takes advantage of non-parametrically learned

BS-IV function. The thesis contributes to the literature of modeling and forecasting

implied volatility using entirely machine learning techniques. The goal of this thesis is to

answer three overarching research questions: 1) Do the cointegrated relationships

significantly impact the multi-step forecast of the IVS? Cointegration is relevant because

of the short-run stochastic dynamics of volatility; 2) Can the recurrent neural network

architecture significantly outperform traditional time series models in a multi-step

out-of-sample forecast of the IVS? While MLP’s have shown strength in option pricing

and volatility estimation, supervised time-series predictions are computationally

expensive; 3) Does encoding spatiotemporal dynamics of the IVS significantly improve

the IVS forecasts? All traditional time series forecasting models require flattening of the

data input vector - this loses the important properties of the IV term structure and the IV

skew. Lastly, I will select the IVS forecasting methodology with the lowest forecasting

error for multiple time horizons. I aim to demonstrate that the combination of these

factors can lead to an overall improvement in forecasting the option based implied

volatility over the traditional time series approaches.

2 LITERATURE REVIEW

In this section, I will briefly discuss the geometric Brownian motion (GBM), which is a

core component of three widely popular option pricing models. I discuss the

Black-Scholes model and briefly mention other methods for option pricing and implied

volatility modeling. I will also review econometric and parametric methods that are
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relevant for volatility time-series forecasting. Lastly, I will review some of the more recent

methodologies used for option implied volatility forecasting and option pricing, with the

help of traditional Artificial Neural Networks and more recent deep learning architectures.

2.1 IMPLIED VOLATILITY

The BS model (Black and Scholes, 1973) undoubtedly had a significant impact on the

world of finance and provided a theoretical framework for options trading and hedging.

One of the main advantages of the model is that the BS formula can be inverted to produce

implied volatility and IVS.

The key underlying assumption of the model is that an underlying asset follows the

stochastic process St such that:

dSt = µStdt+ σStdWt (1)

where both µ or the drift and σ volatility are constant and Wt is a Brownian motion. Using

Ito’s lemma, the BS equation for the European call option can be denoted as:

∂C

∂t
+

1

2
σ2S2∂

2C

∂C2
+ rS

∂C

∂S
= rC (2)

where t is time to maturity, risk-free rate is r. The Equation 2 serves as a closed form

solution for pricing European call and put options:

C(S, t) = N(d1)S− N(d2)Ke−rt

d1 =
1

σ
√

t

[
ln

(
S

K

)
+ t

(
r +

σ2

2

)]
d2 = d1 − σ

√
t

N(x) =
1√
2π

∫ x

−∞
e−

1
2
z2dz

(3)

where S is stock price, K is strike, N(x) is normal distribution.
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Although BS makes assumptions on the underlying asset that don’t hold

empirically such as log return of stock price with constant volatility it’s still an incredibly

useful and almost a universally used mechanism for extracting IV given the option market

data (Homescu, 2011).

σ(K, t) = BS−1(C, S,K, t, r) (4)

BS volatility σ can be derived by solving Equation 4, where BS−1 denotes inverse BS

function. The inverse Equation 4 can be solved numerically, with an iterative technique

that solves Newton-Raphson formula, since BS equation guarantees σ such that

σ ∈ [0,∞]1: solve for σimp:

σimp = σn −
BS(σn)− P

ν(σn)
(5)

where σimp is the IV, P is option price, v is the volatility derivative vega. Initially an

arbitrary σ0 is guessed, and given the market data, the iterative solution will converge to

the optimal σimp.2 The key limiting factor of the BS model is the constant volatility, which

fails to capture the skew (smile) present in the market data. Hull and White (1987)

identified that BS model under-prices at-the-money options and overprices deep-out-of

money options, and the effect is exaggerated as the time to maturity increases. Extensions

to the BS model had been made to account for the smile effect, but one has to break the

intuition behind Equation 2 that the options risk can be fully hedged by trading the

underlying. This adds non-tradable risk sources such as jump risk, stochastic volatility, or

transaction costs (Dupire, 1994; Eraker, Johannes, and Polson, 2003). Furthermore,

volatility is strike dependent and it’s attributed to an option trader’s belief in leptokurtosis

of an underlying asset and expectations of larger price swings than assumed by the GBM,

1BS(σ) for European options has a closed-form volatility derivative (vega) which is non-negative.
2Solution works well with European payoffs. Exotic payoffs require applying secant optimization

method.
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which would increase the market prices of the out-of-money options relative to the BS

prices (Alexander, 2004). This is because of the risk premium caused by the changes in

volatility (Heston, 1993).

Heston (1993) proposed a widely popular model that allows for a stochastic

correlation between underlying asset returns and its volatility. The resulting two-factor

stochastic volatility model (SV) can be used to explain the presence of the implied

volatility smile, especially in the long time to maturity options. The model is often used as

a benchmark for other option pricing models, or to extrapolate implied volatility, when

constructing the IVS. Orosi (2012) benchmarks Heston model against other methods of

constructing and predicting the IVS, and proposes a spline model, which has superior

performance compared with the benchmark models proposed in the study. Most notably,

the interpolation techniques are especially important for the market makers to price the

illiquid options.

2.2 HISTORICAL VOLATILITY FORECASTING

In contrary to the theoretical models, time series models seek to explain the movement in

volatility using some auto-regressive property of the series. Autoregressive conditional

heteroskedasticity (ARCH) and General Autoregressive Conditional Heteroskedasticity

(GARCH) models for modeling and forecasting volatility are explored in voluminous

papers and are among one of the most widely used benchmark models for both realized

and implied volatility forecasting. Hansen and Lunde (2005) benchmarked over 339 types

of volatility models, to the standard ARCH(1) and GARCH(1,1) for on-day ahead forecast

of realized volatility. They find no evidence that any of the tested models can outperform

the standard GARCH(1,1) model and find ARCH(1) model to be inferior to other models.

Gospodinov, Gavala, and Jiang (2006) proposed several parametric and

non-parametric methods for estimating RV and IV. They find evidence of volatility

clustering, high persistence of the volatility, and volatility to be a long, and slowly
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mean-reverting process, where the implied volatility has a longer memory than realized

volatility. The forecasts were performed one-step ahead for both realized and implied

volatility. They find evidence that implied volatility contains valuable information about

realized volatility, which, if included, can significantly improve the performance of

predicting realized volatility over a long time horizon.

Xiong, Nichols, and Shen (2016) proposed a new methodology for predicting

future realized volatility of the S&P 500 index, using macroeconomic factors obtained

from Google Trends. A 25-dimensional vector of 25 trend series representing a selected

number of keywords, beginning January 1st 2004, is fed into the Long-Short-Term

Memory (Hochreiter and Schmidhuber, 1997) neural network (LSTM) with 1 hidden

LSTM cell. 1-step forecast of future realized volatility is made, and researchers find that

the LSTM outperforms the benchmark GARCH model based on the

mean-absolute-percentage error metric and the root-mean-squared error.

More recently, Luong and Dokuchaev (2018) used a random forest model to

forecast the direction of realized volatility for multi-step out of sample forecast on

high-frequency data. The proposed model has accuracies of 80.05%, 72.85%, and 65.22

%, for 1-day, 5-day, and 22 forecasts. They find that the long term accuracy of the

directional forecast of the random forest model decreases over the 5day to 22-day

forecast. However, the random forest model was able to outperform the benchmark

Heterogeneous Autoregressive (HAR) model (Corsi, 2008). When compared to GARCH

or AR models, the HAR model helps capture the long autoregressive persistence of RV

due to the leptokurtosis of the returns that can be observed at different periods.

Specifically for predictions, the HAR model uses realized volatilities for the previous day,

week, and month interval. The model captures the aggregated high-frequency variance

and realized volatility over multiple horizons and has shown to outperform the AR and

ARFIMA models for short term volatility forecasts.

Luo et al. (2018) proposed a Neural Stochastic Volatility Model (NSVM), a joint
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network consisting of a pair of stacked stochastic recurrent neural networks. Internally,

the NSVM model closely resembles a special case of GARCH (1,1), often used for

volatility forecasting, and a stochastic component described by the GBM with the random

disturbance factor. The underlying model belongs to the class of stochastic volatility

models, where the generative sequence consists of the joint distribution of the input and

stochastic component, which get propagated to the hidden states of the RNN. In

comparison to the previous studies, NSVM is composed of two NNs, each with 10 hidden

nodes, which get bundled into a 2-layered fully connected neural network. The proposed

NSVM model outperforms standard GARCH(1,1), EGARCH(1,1), and

GJR-GRACH(1,1,1) models for volatility modeling and forecasting, however, the model

takes longer to train when compared to the traditional econometric models.

2.3 IMPLIED VOLATILITY FORECASTING

Majmudar and Banerjee (2004) explored various GARCH family models for VIX

forecasting and concluded, similarly to many other researchers, that EGARCH(1,1)

provides the the best overall results.

Hosker et al. (2018) compares the performance of 6 different supervised learning

models, including the recurrent neural network (RNN), and LSTM on the 1-month VIX

futures contract and options data. The models are benchmarked against a linear

regression, principal component analysis (PCA), and Autoregressive Integrated Moving

Average (ARIMA) model over a 3 to 5-day forecast window. They find that RNN and

LSTM had overall lower mean absolute errors when compared to other models.

A number of researchers have utilized deep learning architectures for option

pricing, or implied volatility estimation. For instance, Liu, Oosterlee, and Bohte (2019)

proposes a machine learning technique for efficiently computing implied volatility of 3

types: BS equation, Heston model, and Brent’s root finding the calculation of IV. As a

result, they present a more efficient solver, which boosts computational performance by a
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large factor. A similar technique is proposed by Culkin and Das (2017), where a simple

NN is trained on a dataset of 300,000 simulated options to be able to estimate the BS

equation. The model achieves very small out of sample RMSE and MAPE.

In summary, the majority of the literature focuses on future realized volatility

forecasting. The domain of non-parametric IV forecasting is still new but started

expanding in recent years with the emergence of several new machine learning techniques.

Machine learning techniques are more often used in the domain of implied volatility

modeling, and neural network architectures are more often used for option pricing.

However, utilizing machine learning and neural networks is far less common for

forecasting the IV or modeling and forecasting the IVS in general, due to the existing

parametric techniques that work reasonably well, and are widely accepted. Neural

networks have shown strengths in estimating the BS equation. Recurrent neural network

architectures have shown strength in univariate time series forecasting, in many cases

outperforming traditional AR, GARCH, and HAR models. The thesis aims to bridge the

gap between forecasting and non-parametric modeling of IV. I apply two recurrent neural

network architectures and produce multi-step forecast of the entire IVS.

3 DATA AND METHODOLOGY

3.1 DATA DESCRIPTION

This study focuses on the U.S. stock market index S&P 500 and its most popular financial

product offered through the Chicago Board Options Exchange (CBOE): the S&P 500

options (SPX) index, SPX option call and put chain.

The data for the European call and put options on the SPX are obtained from Delta

Neutral for the period between 2002-02-05 and 2007-12-31. The historical

open-high-low-close(OHLC) data for IRX - The U.S. treasury bill tracking index and SPX

- S&P 500 options index for the same periods are collected from Yahoo Finance. Delta

Neutral data contains the end of day quotes, implied volatility, and sensitivity information
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for the traded SPX options.

3.2 DATA PREPARATION

There are a total of 4765 unique contracts series3 in the sample. Due to the computational

constraints, I begin from down-sampling the 4765 contracts to 4 quarterly contracts:

March, June, September, December. By down-sampling, the number of unique contracts

is reduced to 1962.

Figure 2: Selected at-the-money (ATM) IV for March, June, September and Decem-
ber contracts and expirations.

3Series are labeled unique when a series has a unique strike-expiration combination
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I reconstruct the surface by using a splicing technique where the contracts are

stitched “head to toe” on expiration to form continuous series. Continues series are

required for constructing balanced panel, because the models used in the thesis are not

aware of the expiring nature of the contracts, and expect a continuous input.

Because the dataset contains nonstandardized daily option chains and only

includes historical option contracts that had been traded on a trading day, I am left with an

unequal number of time series observations for each contract. To address the unbalanced

panel, a pivoting operation where the number of observations is the same for all contract

series is required. After pivoting the unbalanced panel, it’s then required to interpolate a

total of 388,545 missing values out of 517,446 total synthetic observations, where 128,901

values are not missing. The missing values appear after producing a daily balanced panel

for each of the target moneyness bins. To address this, I elected a two way (forward and

backward direction) linear interpolation to fill the missing BS-IV values. I found that in

many cases, the implied volatility estimation method produced infinities or zeros, so these

values were blanked out, to be interpolated. This interpolation is also needed to produce

the target IV bins properly. The interpolation is conducted in 3 steps: 1) Interpolate based

on the implied volatility term structure; 2) Interpolate based on the volatility skew; 3)

Backfill based on the contracts log-moneyness group to fill remaining missing values.

Descriptive statistics of the transformed implied volatility observations are summarized in

Table 1. The step-by-step methodology along with the the IV binning technique discussed

in Section 3.4 is displayed in Algorithm 1.

The series follow an identical format where the panel is expressed as either m× n

2d matrix or 3d matrix, where i is a closing day index, j is contract expiration month

index, k is option contract’s log-moneyness bin ranging from -0.05 to 0.05, where -0.05

represents OTM put options and 0.05 OTM call options and x is BS-IV:
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Xi,j,k =



x0,0,0.10 x0,0,0.15 x0,0,0.20 . . . x0,0,k

x1,0,0.10 x1,0,0.15 x1,0,0.20 . . . x1,0,k
...

...
... . . . ...

xi,j,0.10 xi,j,0.15 xi,j,0.20 . . . xi,j,k


(6)

3.3 BS PDE SOLVER

I follow a traditional method for estimating the Black-Scholes implied volatility extracted

from the option market prices and inverting BS PDE for IV.

σ(K, t) = BS−1(C, S,K, t, r) (7)

C = Option price

K = Contract strike

S = Daily SPX index closing prices

t = (Contract Expiration-Closing day)/252

r = Daily IRX index closing prices (interest rate)

The required option prices are calculated by taking daily option closing mid-prices

((bid+ask)/2) for each month/strike combination. The volatility is extracted from options

prices using a numerical method with the help of Python’s pyvollib4 library, based on

LetsBeRational by Peter Jaeckel, to solve for the IV. For the case of option contracts,

moneyness can be used to discretize the target IV, to help produce a more generic output.

In particular, the information about the underlying, the strike, and the estimated BS-IV is

known, so option’s ln(K/S) (log-moneyness) can be used to generate the appropriate

BS-IV bins.
4https://github.com/vollib/py vollib
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3.4 IV LOG-MONEYNESS BINNING

A common problem with the financial time-series data is the stochastic trend and

non-stationarity. In particular, option contracts are strike dependant and have a finite

time-to-maturity. A number of techniques for parametric time series models can be used

to address these common problems. For example, one can integrate the series to address

the trend components and apply data transformation techniques when addressing

non-stationarity such as heteroscedasticity of the series. The supervised learning

methodology used for the neural networks, however, often requires a scaling technique

due to the fixed range transfer functions (such as sigmoid) between the layers, which

makes the model incapable of accepting new contracts(new strikes) without being refit or

retrained. Because of the expiring nature of the contracts encoding, a time-to-maturity of

the options series is difficult as no universal convention exists for representing forward

moneyness for machine learning models. Two common ways for machine learning models

are: 1) Parameterizing moneyness functions such as Equation 7 or M = (S,K, t, r, σ) and

using parameters as an input to a neural network-based IV/option pricing solver like in

Culkin and Das (2017); 2) Standardized forward moneyness: m =
ln(S/K)

σ
√
t

and using

this as a model feature. When passed to a machine learning model in either format, the

important empirically observed properties of the volatility series, such as mean reversion

and long-term persistence, are lost.

With a continuous volatility series I can generate a fixed range of buckets for each

expiration month of the contract. For each contract month I address this by 1) binning this

continuous variable into 20 evenly spaced log-moneys groups, 10 ranging from −0.05 to

0.0 for puts and 10 ranging from 0.0 to 0.05 for call side IV; 2) placing a derived BS-IV

into each bin based on each contract’s log-moneyness. The algorithm for discretizing the

IV term-structure is described in Algorithm 1.
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Algorithm 1: Algorithm for discretizing the IVS.

1: For each option contract calculate log-moneyness ln(K/S).
2: Select all observations where log-moneyness > -0.05 and log-moneyness < 0.05.
3: Arrange buckets from -0.049 to 0.051 increasing by 0.005.
4: For each observation add a bucket label.
5: Pivot table = index −→ date,expiration month; columns. −→ bucket label;

values −→ σBS.
6: Linear interpolation of IV skew.
7: Linear interpolation of IV term structure.
8: Select all observations where expiration month is in March, June, September,

December.
9: return For each day in days return (bucket labels, expiration months, σBS) like

Matrix 6.

3.5 STATIONARITY AND COINTEGRATION TESTS

The purpose of the statistical tests is to build a proper time series model for implied

volatility forecasting. The preliminary analysis includes the Augmented Dickey-Fuller

(ADF) Test, (Kwiatkowski et al., 1992) (KPSS) test, (Maddala and Wu, 1999) Unit-Root

test (MADWU) and (Johansen, 1991) procedure for cointegration analysis to help in the

selection of the appropriate lag terms for the AR models. Unit root tests are also needed to

determine a degree of differentiation for the AR models.

In particular, I intend to address two questions: 1) Do the option implied IV series

follow a stationary AR process? 2) Does the IV panel exhibit any meaningful short and

long-run cointegrated relationships?

In this case, unit-root tests are used to determine if the time-series should be first

differenced I(1) or regressed I(0). I prepare 3 variations of the series, similar to that of

Gospodinov, Gavala, and Jiang (2006). V̄t represents BS-IV series, ln(V̄t) represents a

log-transformed series and ln(V̄
1/2
t ). MADWU test for panel data stationarity, and is used

to address the lack of power of the ADF test in distinguishing unit root of the panel data,

because under ADF different null hypothesis are tested for each series (Maddala and
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Wu, 1999). For simplicity, consider IV series Vt decomposition:

V̄t = Tt + zt

Tt = β0 + βt

zt = φzt−1 + η′t ∼ WN(0, σ2)

(8)

where Tt is a deterministic linear trend and zt is a common AR(1) process. If φ < 1 , then

zt = z0 +
∑t

j=1 ηj , is a stochastic process and Vt is IV series with drift.

The ADF tests the null hypothesis of the presence of the unit root against an

alternative hypothesis of series being stationary, where the ADF t-statistic is the result of

the least square estimates for the regression in Equation 8.

ADFt =
ˆφ− 1

SE(φ)
(9)

When the ADF test is applied to the original non-differenced series, I fail to reject

the null-hypothesis, implying that series are non-stationary I(0) in most of the cases and

need to be differenced. Non-stationarity is quite common for financial series. The original

series are first differenced, and the ADF test is applied to the I(1) series, I reject the null

hypothesis for the majority of the series for 2002-2007 samples and conclude that the first

differencing is sufficient to make the series stationary. In general, the mean-reverting

aspect (no unit root) of the long term implied volatility has been empirically observed due

to the long-memory of the volatility series. The unit root cannot however be entirely

rejected because, in the short term, the unit root is often observed, which is attributed to

the sudden spikes in short term volatility because of the crash-like behavior of the

underlying asset or other extreme events. In fact, the impact of heterogeneity of these

volatility returns is addressed by Corsi (2008). The findings that non-differenced IV series

follow a non-stationary process are somewhat inconsistent with the earlier research.

Although sampling methodology and sampling window or even the IV instrument can
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Figure 3: ADF Test for 2002-2007.

also be attributed to differences in ADF results, as previous researchers indicate, these

differences are attributed to sampling period or the methodology of constructing the

volatility series (Gospodinov, Gavala, and Jiang, 2006). As the result of these findings, I

continue treating the volatility series as I(1) process

As a complement to the ADF test, I conduct the KPSS test (Kwiatkowski

et al., 1992) to test whether series are level stationery. KPSS test decomposes IV series Vt

into deterministic, random walk and stationary error term:

yt = Tt + zt + ηt (10)

where Tt is a deterministic linear trend, zt is a random walk with the properties

like Equation 8 and η ∼ N(0, σ2) is the stationary error. The partial sum of OLS residuals

St from Equation 10 is constructed to obtain the KPSS test statistic:

KPSS = n−2
n∑

t=1

S2
t

σ̂2
(11)

where σ̂2 is the long-run variance of the estimate of the residual. The null hypothesis for
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Figure 4: KPSS Test for 2002-2007.

the test is that the data is level stationary, and the alternative is that the data is not level

stationary. Similar to the ADF test, when the original series are first differenced, I fail to

reject the null hypothesis for the majority of the series, concluding that the series are level

stationary for the 2002-2007 sample.

Although it’s confirmed that no unit root is present in the majority of first

differenced series, in some cases, the unit root was still present. To test whether the unit

root is present cross-sectionally across the panel, I utilize Madwu fisher type test:

MADWU = P = −2
N∑
t=1

ln pi (12)

where pi is the p-value from the unit-root root test, that results in a χ2 distribution P .

Some advantages of the test are especially noteworthy in case of the IV panel data: 1)

dimension of N (contract series) can be finite or infinite, 2) each group can have it’s own

set of stochastic or deterministic components, 3) unbalanced series may be present 4) unit

root rule is not strictly enforced and would allow some groups to have unit root while

others have no unit root. The null hypothesis matches the ADF null hypothesis, that unit

root is present.

Following this test, I find no evidence of the presence of the unit-root and again
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confirm that that individual intercepts are stationary. Because the test statistic is a

chi-squared distribution, I can conclude that although some series tend to exhibit unit-root,

these series don’t significantly impact the overall stationarity of the panel, yielding critical

values 8462.8 and 9436.2 respectively.

Now that I’ve established that the panel exhibits stationarity when first differenced.

I am also interested in exploring a presence of any spurious correlation between groups,

i.e if the linear combination of these series is stationary or not. In other words, with the

help of the Johansen (1991) procedure, one can observe the existence of any common

long-term equilibriums between the groups. This step is essential for the model selection,

because if the series do not exhibit long-run relationships, then the usage of the long-term

error correction models is not appropriate. I utilize the urca5 package in R to construct a

Johansen test. The null hypothesis for the test is r = 0 that no cointegration is present and

alternative hypothesis is based on the number of cointegration equations. Based on the the

critical values of the trace statistic in Table 2, I find strong evidence to reject the null

hypothesis of no cointegration relations, and conclude that rank of the matrix is greater

than 19, which implies that a combination of all series (moneyness groups) is needed to

make the series stationary, so there exists a large number of cointegration relations.

5https://cran.r-project.org/web/packages/urca/index.html
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Table 2: Johansen test trace statistic critical values.

Relations Critical Value
r ≤ 19 138.466
r ≤ 18 1622.217
r ≤ 17 3722.018
r ≤16 5904.430
r ≤ 15 8191.562
r ≤ 14 10493.895
r ≤ 13 12835.898
r ≤ 12 15191.440
r ≤ 11 17551.433
r ≤ 10 19918.851
r ≤ 9 22286.508
r ≤ 8 24656.662
r ≤ 7 27028.054
r ≤ 6 29408.080
r ≤ 5 31795.009
r ≤ 4 34190.643
r ≤ 3 36605.766
r ≤ 2 39054.031
r ≤ 1 41648.846
r ≤ 0 47320.253
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3.6 FORECASTING MODELS

The primary goal is to propose a forecasting methodology that as observed from the

statistical tests incorporates: 1) series autocorrelation behavior 2) is able to

non-paramterically estimate the cointegrated behavior of the panel 3) accounts for long

term error correction (or long memory of the series). The model evaluation process is

based on yt+1...yt+30 forecasting window results where the residual error et = yt − ŷt is

minimized, and residuals of each model are diagnosed and checked for robustness by

conducting several statistical tests and side-by-side comparisons of the predicted IVS. I

summarize the findings in Chapter 5.

3.6.1 LONG-SHORT TERM MEMORY MODEL

Long Short Term Memory neural network (Hochreiter and Schmidhuber, 1997) is a type

of recurrent neural network (RNN) that is often used for sequence learning. The network

contains recurrent loops that help model retain the past information and carry it forward

throughout time. Unlike a simple MLP where the layers and neurons are fully connected

to each consecutive layer, and the weight and biases matrices of each layer are propagated

unidirectionally forward, the RNN extension reuses the same set of weights that are

shared across time. Sharing weights is not only beneficial for retaining the long memory

of the input sequence but also an optimization step that makes RNN’s use less

computational resources than MLP’s. Given an input sequence: x = (xt1, xt2, ..., xtn) the

one layer hidden state at time t, ht = f(ht−1, xt) can be written as a function of the

previous time step ht−1, which serves as a memory. However, this introduces a problem

where the gradients can vanish or explode over time. During the backpropagation, the

network accumulates the error gradients recurrently, which could cause large updates to

the weights, making a cell output an infinitely large or small gradient. Hochreiter and

Schmidhuber (1997) addressed this problem in their paper by expanding an RNN cell to

include the forget and output gates, as shown in Figure 5. Forget gate and output gates are
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Figure 5: Simple RNN cell and LSTM memeory cell as presented in Greff et al. (2017).

the most critical component of the LSTM (Greff et al., 2017). When the sequence passes

through an input gate, the hidden state from the previous timesteps and the current

timestep pass through an activation function (hyperbolic tangent) and then a forget gate

(sigmoid), which dictates whether the new hidden state should be updated and carried

forward to the next time step. The simple RNN cell, on the other hand, contains no gates,

so the information flow is purely controlled by the activation function.

The model is implemented in Google’s deep learning framework Keras6 and the

flow for the models is generated in Tensorboard7 and visualised in Figure 6. The input

passes through a LSTM cell, and the hidden state of the cell at each of 30-time steps

passes through a dropout layer, which randomly drops the connections for the output of

the hidden state lstm 15 to reduce the possibility of over-fitting. A second LSTM layer is

stacked to extract the time distributed hidden state from the first LSTM layer, and finally

output a fixed 30-day (-1,30,80) vector as an output of the fully connected dense 8 layer.

6https://keras.io/
7https://www.tensorflow.org/tensorboard
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Figure 6: LSTM and ConvLSTM model flowcharts.

3.6.2 CONVOLUTIONAL LONG-SHORT TERM MEMORY MODEL

The main disadvantage of the simple fully connected LSTM (FC-LSTM) for IVS

forecasting is that the inputs are flattened before being passed to the hidden state, so the

essential spatiotemporal relations of the IVS are lost. This is addressed by Shi

et al. (2015), who proposed an extension to the FC-LSTM, which adds additional filter

dimensions to the cells, hidden states and output gates. The proposed model determines

the future state of the fixed-size cell in the grid by the inputs at current time-step, and the

previous states of it’s neighboring cells, as visualized in Figure 7.

As shown by Shi et al. (2015) the ConvLSTM is shown to consistently outperform

the fully connected LSTM on multiple spatiotemporal datasets, on various configurations.
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Figure 7: Forecasting ConvLSTM as presented in Shi et al. (2015).

The researchers found that larger kernel size significantly helps the receptive fields in

capturing the spatiotemporal correlations and spatiotemporal motion patters, with a

smaller number of parameters required. The convolutional filter on its own adds a layer of

non-linearity, which is quite relevant for modeling the IVS. During the convolutional

operation, the fixed-sized N ×M grid, known as a filter (kernel), slides over the shape of

the IVS and continuously adjusts its weights. Orosi (2012) describes that the majority of

the practical methodologies for modeling and interpolating the IVS rely on non-linear

methods such as fitting the quadratic function, cubic spline, or a low-order polynomial, so

the mechanics of the ConvLSTM seem to align well with the mechanics of the IVS.

The model is also implemented in Google’s deep learning framework Keras, and

the flow for the models is generated in Tensorboard and visualized in Figure 6. While a

FC-LSTM accepts the 3D vector shaped as (batch, timesteps, features), the ConvLSTM

accepts the 5D input vector of (batch, timesteps, rows, columns, features), where rows and

columns represent the grid as shown in Figure 7.

I also add a pooling layer to reduce the dimensionality of the input. An additional

benefit of using a pooling layer is addressing the mean-reverting property of the IV. The

average pooling layer of the ConvLSTM extracts average past states of the neighboring

features, which helps maintain long term dynamics of the IV. Similar to the LSTM

architecture, I stack a second ConvLSTM layer, to capture a more detailed representation

of the first ConvLSTM layer. Following a second ConvLSTM layer, the outputs are

flattened and fully connected to a simple, fully connected (dense) layer, which is shaped
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as a fixed 30 timestep vector of size (1,30,80), to produce a fixed 30-day forecast for all 20

log-moneyness groups and 4 months (March, June, September, December).

3.6.3 VECTOR AUTOREGRESSION MODEL

From the stationarity test, I found that series are stationary when first differenced I(1), and

due to the multivariate regression requirement I use Vector Autoregression (VAR) model:

ŷt = A1yt + . . .+ Akyt−p + ut (13)

where ŷt is a K × 1 vector of either forecast yt+ i or lagged observation yt, yt−1, ..., yt−p,

A1, ..., Ak are K coefficient matrices and ut represents k-vector of error terms. The lag

term for the model was selected based on the PACF and turned out to be significant only at

lag 1. VAR model gives a good baseline model, but because significant cointegrated

relationships r > 0 are evident between contract log-moneyness groups and expiration

months, the error correction term (EC) can be added to the VAR model to account for the

long-term relationships (stochastic trend) and still be able to capture the short term

dynamics, to improve the forecast.

3.6.4 VECTOR ERROR CORRECTION MODEL

As observed in Johansen procedure, the volatility series experience long-run cointegrated

behavior, so the Vector Error Correction Model (VECM) is a restricted VAR model, where

the large swings in the short term can be restricted and converged to their cointegrated

(long-term) relation. So Equation 13 can be rewritten to include the cointegrated

transformation:

∆ŷt = Πyt−1 +

p−1∑
i=1

Γi∆yt−1 + ut (14)
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where Π = I −Π1 + ...+ Π is a long-run relationship k × k matrix and Γ = Γ1 + ...+ Γi

is a short run relationship.

4 ALGORITHMS AND OPTIMIZATIONS

I follow a traditional time series forecasting and backtesting methodology using a

train-test split that preserves temporal ordering. This is done for the time-series and the

neural networks to have similar and comparable results:

Algorithm 2: VAR and VEC training and validation algorithm.

train ←− Select all from prepared dataset where day < 2007-08-17
test ←− Select all from prepared dataset where day > 2007-08-17
if VAR(1) then

∆ train = traint - traint−1
model fit Xt−1
model predict Xt+90

predict inverse = ∆ train += model predict
return MAPE, RMSE ←− test - predict inverse

end if
if VEC(1,1) then

model fit Xt−1
model predict Xt+90

return MAPE, RMSE ←− test - predict
end if

Algorithm 2 is modified to interface with R to produce the VAR and VEC models

using tsDyn8 package in R.

In addition to the algorithm implementation with the deep learning framework

Keras, a number of modifications to the LSTM and ConvLSTM Algorithm 3 were done:

The data was transformed into a supervised learning problem where the data is

reorganized into 2 groups: an input group: X = Xt−1, Xt−2, ..., Xt−30 and the target

group: Y = Xt, Xt+1, ..., Xt+30, to match the fixed 30 day prediction window of the VAR

and VEC models. The implemented design utilizes a sliding window approach to help

maintain a universal model that can pick up from anywhere in the sequence yet still
8https://cran.r-project.org/web/packages/tsDyn/index.html
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Algorithm 3: LSTM and ConvLSTM training and validation algorithm.

train ←− Select all from prepared dataset where day < 2007-08-17
test ←− Select all from prepared dataset where day > 2007-08-17
Function SUPERVISED(data, history days, prediction days):
x = data.shift t − history days; y = data.shift t + prediction days
return [x, y]

Function SCALE(data):
return data.scale(-1,1)

Function INVERSE SCALE(data):
return prediction inverse scale

if LSTM then
model ←− reshape(n, 30, 80) ←− SCALE(.) ←− SUPERVISED(train, 30, 30)
model train for 1000 epochs

end if
if ConvLSTM then

model ←− reshape(n, 30, 20 , 4, 1) ←− SCALE(.) ←− SUPERVISED(train, 30
, 30)
model train for 1000 epochs

end if
for i in range 3 do

model predict Xt+30

INVERSE SCALE(prediction)
end for
return MAPE, RMSE ←− test - prediction
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produce meaningful forecasts. By default, the LSTM in Keras is stateless and treats each

batch sequence independently from the previous batch, and resets its internal memory

state for each batch; this is done so that the back-propagation algorithm could run between

batches and update the weights. Because it’s important to carry forward volatility

relationships for the lengthy periods of time as discussed in Section 3.5, each batch

contains a fixed 30-day history window and produced a fixed output window, which

classifies both LSTM and ConvLSTM models, as many-to-many models. This allows us

to carry forward the weights from the past time-windows effectively, learning a long-term

dependency of the volatility series. I begin by first scaling the features into a range of -1

and -1 due to the hyperbolic tangent activation function in the LSTM and ConvLSTM

hidden layers, before training.

The model is configured to save weights at each epoch and finally retain the best

weights for the models based on the lowest in-sample forecasting mean-squared-error

(MSE). For both models, I set the training period for 1000 epochs and add an early

stopping callback to stop the training once no improvements in the MSE were made for 50

epochs. The LSTM was trained for 1000 epochs, which took approximately 1 hour and 20

minutes on Google’s Research Colab9 GPU environment.

The ConvLSTM was trained for 851 epochs, triggering an early stop after

approximately 1 hour and 30 minutes. The training process is visualized in the Figure 8.

A similar reduction in MSE for both LSTM and ConvLSTM is observed; however, the

LSTM has a larger training variance when compared to the ConvLSTM. This is an

inherent problem when constructing data-driven supervised learning models, often

referred to as bias-variance tradeoff. High bias in the context of neural network-based

supervised learning architectures would mean that the model is underfitting the data, so

adding more data, or hyperparameter optimization such as increasing the number of

neurons, network depth or learning rate, might assist in capturing more complex feature

9https://colab.research.google.com/
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Figure 8: LSTM (blue) vs ConvLSTM (orange) training process with minimizing
scaled IV MSE.

representation. High variance, on the other hand, means that the model is overfitting the

data and captures random noise. For the purpose of constructing the IVS, both low

variance and low bias are important, but because of this tradeoff, one must tune the

hyperparameters to achieve the optimal balance between bias and variance. The LSTM

produces overall lower training error, however experiences higher variance. ConvLSTM

has a slightly higher (MSE) training error but overall lower variance.

Both models output a 30-day IVS prediction vector. For the LSTM and

ConvLSTM, the transformation is a three-step process. Original training values are first

scaled to a range of -1 to 1 due to the hyperbolic transfer function in the hidden layer.

Appropriate scaling has been shown to significantly improve the out-of-sample neural

network performance for implied volatility forecasting (Liu, Oosterlee, and Bohte, 2019);

output of the recurrent hidden layer is flattened and connected into a 1d fully connected

output layer shaped 1× 20× 4× 30; an output vector is inverse scaled to the original

BS-IV volatility level, as discussed in Section 4. The output vector is a 30-day prediction

window for the March, June, September, December month contracts for each of the 20

log-moneyness categories, 10 for the OTM puts, and 10 for the OTM calls.
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5 RESULTS AND DISCUSSION

In this section, I discuss the results of the machine learning models and finally compare

the forecasting accuracy of these models to the benchmark VAR and VEC model. The

comparison is made out of two subtopics to answer two questions: 1) Which of the

models performs the best for the 1-day, 30-day, and 90-day windowed forecast. To

support the findings, I conduct the (Diebold and Mariano, 1995) (DM) test for the equal

predictive accuracy of the models 2) Which of the models can correctly model and predict

the IVS dynamics. I conduct a Welch’s t-test to test whether the distribution of the

predictions is significantly different and test whether the models can capture the skew and

the term structure of the IVS. 4 models are compared side-by-side, and the evaluation is

based on the 90 trading-day hold out period from 2007-08-17 to 2007-12-31 over a 1-day,

30-day and 90-day prediction windows. In this section, I present findings that convolution

operation in the LSTM memory cell, significantly improves modeling and forecasting

future implied volatility and outperforms traditional time-series approaches for

long-horizon predictions.

5.1 MODEL EVALUATION CRITERIA

In Section 3.1, I discussed the interpolation technique, to fill the missing values after

pivoting the option chain. Before scoring the models, the predictions are inverted back to

the original BS-IV volatility level, and scoring is based on the original BS-IV. For the

VAR Model, the data was initially first differenced to achieve stationarity, so the predicted

observations are added back to the non-differenced values, to recreate the original

continuous volatility series. For the VEC model, the output is an IV volatility of an

appropriate scale, so the inverse difference is not necessary 10. To fairly compare the

models, all 4 models are trained on the same training set of 1370 days. One of the

10Differencing in the VEC model is done internally thought an implementation in the tsDyn library
in R, through the integration and co-integration factor parameter
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differences in the supervised, sliding window approach for the LSTM and ConvLSTM,

when compared to the VAR and VEC models, is that the forecast is a fixed size 30-day

vector. The LSTM and ConvLSTM are not retrained for the 90 trading-day out-of-sample

predictions. Instead, the 30-day historical window is passed as an input to the model, to

get the next fixed 30-day forecast window. This is done because the LSTM learns to

generalize the sequences and can predict sequences based on the weights learned from the

long series. To make the comparison between the neural networks and time-series models

fair, The VAR and VEC models are fit on a train set, and the same set of coefficients is

reused for predicting 1-day, 30-day, and 90-day windows. As the evaluation criteria I

choose:

RMSE =

√√√√ 1

N

N∑
i=1

(σactual − σforecast)2

where the RMSE metric is expressed in the actual BS IV volatility level, and:

MAPE =
100%

n

n∑
t=1

∣∣∣∣σactual − σforecastσactual

∣∣∣∣
MAPE is expressed as a real percentage point difference between the actual and the

predicted BS-IV. I compare the performance of the models based on the RMSE, MAPE

for the entire prediction vector. These loss metrics were chosen to be consistent with

previous machine learning research in the area of IV modeling and forecasting, which

tends to use a combination of MSE, RMSE, or MAPE (Gospodinov, Gavala, and

Jiang, 2006; Xiong, Nichols, and Shen, 2016; Culkin and Das, 2017; Luong and

Dokuchaev, 2018; Liu, Oosterlee, and Bohte, 2019).

Lastly, I conduct the Welch’s t-test to test whether the distribution of the

predictions is significantly different across groups, and the DM test for significance of the

forecasts at various time horizons.
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Table 3: Mean in-sample performance, mean out-of-sample performance and
Savitzky-Golay filter smoothed prediction performance on the out-of-sample set.

Model In Sample Out-of-Sample Out-of-Sample(filter smoothed)
RMSE MAPE RMSE MAPE RMSE MAPE

VAR 0.194 102.89 0.041 19.28 0.04 18.87
VEC 0.193 102.88 0.041 19.13 0.04 18.75
LSTM 0.020 3.49 0.068 20.07 0.06 18.60
ConvLSTM 0.045 4.29 0.030 12.28 0.03 11.35

Table 4: Mean out-of-sample RMSE and MAPE grouped by expiration month and
contract type.

OTM call buckets are X > 0.001, OTM puts are X < −0.004 and ATM buckets are
X > −0.004;X < 0.001, where X = ln(K/S) group.

Expiration Month type RMSE MAPE

ConvLSTM LSTM VAR VEC ConvLSTM LSTM VAR VEC

3 ATM 0.019 0.035 0.024 0.024 8.802 14.56 12.35 12.39
OTM calls 0.019 0.034 0.023 0.023 8.701 14.77 11.91 11.94
OTM puts 0.018 0.035 0.023 0.023 7.314 12.97 11.22 11.27

6 ATM 0.016 0.032 0.019 0.02 7.101 12.98 9.915 10.45
OTM calls 0.015 0.028 0.02 0.02 6.85 11.36 10.34 10.45
OTM puts 0.016 0.03 0.021 0.021 6.559 11.7 10.21 10.45

9 ATM 0.04 0.057 0.057 0.058 16.38 25.23 29.52 29.59
OTM calls 0.038 0.055 0.048 0.048 16.99 25.7 26.5 26.59
OTM puts 0.043 0.057 0.075 0.075 17.61 25.55 40.55 40.65

12 ATM 0.038 0.129 0.041 0.041 18.21 29.94 21.71 22.64
OTM calls 0.03 0.077 0.034 0.032 14.99 25.73 19.91 17.99
OTM puts 0.043 0.136 0.049 0.047 18.58 31.64 23.92 23.16

5.2 RESULTS

In Table 3, I summarize the mean in-sample, out-of-sample, and out-of-sample errors with

the Savitzky-Golay filter applied. Much lower in-sample RMSE and MAPE for the

ConvLSTM and LSTM are observed, which could be attributed to an ability of the neural

networks to accurately approximate the BS-IV (Liu, Oosterlee, and Bohte, 2019; Culkin

and Das, 2017). Liu, Oosterlee, and Bohte (2019) used neural network for estimating

three IV equations (BS, Heston, Brent’s) and found that neural network is highly efficient

at approximating option prices and IVs, and because of the ability to “batch” process the

contracts, it can lead to significant performance gains for on-line predictions. Culkin and
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Table 5: Average out-of-sample forecast, for 1-day, 30-day, 60-day, and 90-day hori-
zons.

Model horizon RMSE MAPE
VAR h=1 0.020 6.06

h=30 0.042 20.46
h=60 0.044 22.10
h=90 0.041 19.28

VEC h=1 0.019 5.95
h=30 0.042 20.41
h=60 0.044 21.97
h=90 0.041 19.13

LSTM h=1 0.077 38.32
h=30 0.033 11.96
h=60 0.041 17.73
h=90 0.068 20.07

ConvLSTM h=1 0.025 7.80
h=30 0.030 11.14
h=60 0.027 11.18
h=90 0.030 12.28

Das (2017) found that ANN’s can learn to price options with the BS equation and produce

very low error rates.

The out of sample forecasts are divided into multiple time horizons, which are

summarized in Table 5. The horizon represents a daily mean IV across all log-moneyness

and maturity groups. It’s observed that LSTM and ConvLSTM have overall higher RMSE

and MAPE for a 1-day prediction horizon when compared to VAR and VEC models, and

for the LSTM the RMSE and MAPE are reduced for a 30-day forecasting horizon, the

errors become substantially larger for a longer forecast. For the ConvLSTM, the error

increases slightly from a 1-day forecast but remains near-constant for multiple forecasting

horizons. This behavior confirms observations of Shi et al. (2015) that were described for

a number of spatiotemporal datasets, that 1) the ConvLSTM is better at handling

spatiotemporal relationships than a regular fully connected LSTM and 2) larger kernel

sizes allow for the capture of the spatiotemporal motion patterns. By using an additional

average pooling layer between two ConvLSTM layers, it also allows us to capture the
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mean-reverting nature of the implied volatility over a long-term horizon allows and show

that historical spatial relationships between the maturities play an important role in the

forecasting of the IVS.

Figure 9: Average out-of-sample predicted IV.

Average predictions against true values are visualized in Figure 9. It is observed

that all 4 models seemingly predict the average IV pattern but overestimate the IV jumps

and magnitude of these jumps in the longer-term. Time-series models converge to a mean

value following 10 timesteps, and the output of the VAR and VEC model is the average

IVS of previous timesteps. The VEC model performs better than the VAR model due to

the cointegrated relationships between moneyness groups and maturities that are

significantly impacting the performance of the model. Because machine learning models

use a different architecture, the output IVS can be produced given the input IVS. The

LSTM produces a smoother forecast but experiences a period of instability from

2007-11-1 to 2007-12-14, as seen in Figure 9. This behavior can be observed for other
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Figure 10: Average out-of-sample predicted Savitzky-Golay smoothed IV.
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models as well, but machine learning models show better overall forecasting performance.

ConvLSTM produces a lower degree of under-estimation for long-term contracts.

ConvLSTM produces the closest prediction to the actual IV, which implies that

meaningful information is extracted during convolution operation over the volatility skew

and the term structure, which is subsequently captured in the average pooling layer. The

significance test for the forecasts at multiple time horizons and the side-by-side

comparison between the models is summarized in Table 6.

To mitigate the effect of the forecast instability, I apply the Savitzky-Golay

smoothing filter based on the 4th degree polynomial for each of the predicted 30-day

windows and plot it against the true IV in Figure 10. Similar to that of the unsmoothed

forecast, VAR and VEC models overestimate the IV level, but seemingly capture the

future dynamics of IVS. For LSTM and ConvLSTM smoothing the forecast with the

Savitzky-Golay filter helped reduce some of the output noise, that was observed in the raw

forecast. By applying the Savitzky-Golay smoothing filter, I saw a reduction in RMSE and

MAPE cross-sectionally for all models, and summarize the results in Table 3.

I construct a mean predicted IVS for the 90-day holdout period and compare it to

the mean actual IVS for the same period to investigate whether the future general

dynamics of IVS are captured by the VAR, VECM, LSTM and ConvLSTM models.

Figure 11e shows mean actual IVS is based on the same time-frame of 2007-08-17 to

2007-12-31 of the holdout window. The near term contracts observe higher IV levels than

longer-term contracts. In addition, the volatility skew is also present in Figure 11e. As

discussed in Section 3.4, the IVS is constructed by arranging 20 log-moneyness groups,

where values < 0, represent OTM puts, and values > 0 represent OTM calls. So to

properly capture the dynamics based on the holdout window, the models need to show

overall presence of the IV term structure, which in the case of the holdout window is

expressed through a higher IV for the September (Month 9) and December (Month 12)

contracts. As a second criterion, the models also need to capture the skew properly. Figure
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(a) VAR average predicted IVS. (b) VEC average predicted IVS

(c) LSTM average predicted IVS (d) ConvLSTM average predicted IVS

(e) Actual average IVS

Figure 11: Average and predicted IVS for the 90 day out-of-sample period
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(a) VAR average residuals. (b) VEC average residuals.

(c) LSTM average residuals. (d) ConvLSTM average residuals.

Figure 12: Average IV residual for the 90 day out-of-sample period.

11 shows the mean smoothed predictions for the entire holdout period for each model.

Figure 12 shows the residual plotted in 3D, constructed similarly to the IVS, where the

residual is a difference between mean true and mean predicted values for each moneyness

group.

In general, all 4 models were able to capture the presence of the skew and the term

structure component of the IV series. However, VAR, VEC, LSTM, and ConvLSTM tend

to overestimate the true IV levels for the near-term contracts and to underestimate the long

term contracts. The IVS of the VAR model in Figure 11a, overestimates the short-term IV

for the nearby contracts than actual, and a flat skew for the mid-term(Match) contract,

when normal IV skew is observed. The degree of overestimation of the IV is significantly

larger for the nearby (September and December) contracts by over 0.05 IV points when
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visualized in Figure 12a, as well as for the long term (March and June) contracts. VEC

model sees similar results and higher forecasting error for the nearby contracts, however

when compared to the VAR model, the degree of overestimation is smaller. The VEC

model is also able to capture both the skew and the term structure more accurately than the

VAR model. This again confirms that the long-run EC can be used to improve the

forecasts of the IVS. The LSTM sees a similar pattern to that of the VEC model, where

the predicted OTM put IV is often higher than the actual IV level, but the error reduction

is achieved through the overall narrower range of the residuals. This could be attributed to

an ability of the LSTM to more accurately represent complex non-linear relationships,

through the use of the activation and memory gates that can’t be modeled using a constant

ERC matrix of the VECM model. Similar to VEC and VAR models, the LSTM

underestimates the long-term put implied volatility, as well as overestimates the

short-term implied volatility, which indicates difficulty of capturing the term structure

component of the IVS, similar to that of the VAR and VEC models. The residuals of the

LSTM model are smaller for the June contract when compared to VAR and VEC models,

the same is observed for the ConvLSTM, which unlike other models predicts higher IV

values for the OTM calls of the near terms contracts and consistently predicts lower IV

values for the near-the-money puts. However, because of the convolutional layer, the

model is able to capture skew better than other 3 models.

In Table 4 I summarize the out-of-sample predictions for each contract month,

where similar dynamics to Figure 12a are observed. ConvLSTM produces the lowest

overall RMSE and MAPE for all expiration months and option types. The near-term

(December and September) contracts observe higher RMSE and MAPE cross-sectionally

for all-models, which hints at the difficulty of forecasting the near-term IV. ConvLSTM

produces the lowest MSE and RMSE for long-term (March and June) contracts. Another

thing to note is that ConvLSTM seemingly performs better at capturing the IV skew, since

both RMSE and MAPE remain relatively constant between option buckets for all
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expiration months when compared to other models.

I conduct the Welch’s t-test to compare the mean prediction significance between

time-series and machine learning models, and summarize the findings for the LSTM vs

VEC in Table 7, ConvLSTM vs VEC in Table 8 and ConvLSTM vs LSTM in Table 9. On

average, the LSTM significantly outperforms, (α = 0.05) for all moneyness groups and

months, except for a number of groups in the December contracts. I find that ConvLSTM

also significantly outperforms the VEC model for all groups and months. Lastly, I

compare ConvLSTM vs. LSTM and find mixed results for the significance of the mean

forecast window. So to test the significance of the prediction over multiple forecasting

horizons, the DM test for predictive accuracy between two models is chosen. I conduct a

side-by-side comparison, which is summarized in Table 6. I use a DM test of the R

package forecast11, which implements a modified DM test proposed by Harvey,

Leybourne, and Newbold (1997). The null hypothesis for the one-sided test is that two

models have the same predictive accuracy, and an alternative hypothesis is that the

prediction of the model 1 is significantly more accurate than the predictions of the model

2 over a particular time horizon.

I first convert the multivariate forecast into a mean forecast across all

log-moneyness groups and expirations, which converts a multivariate series into a

uni-variate series, like displayed in Figure 9, and collect standard errors for the forecasts. I

then run the test recursively for the time horizons of 1 trading day, 30 trading days, and 90

trading days to obtain the DM summary statistics and the associated p-values.

I confirm that ConvLSTM significantly outperforms VAR for 1 trading, and 90

trading day horizon, as well as the 30-day horizon but at a lower significance level

α = 0.14, with similar results when compared to the VEC model. ConvLSTM has better

predictive accuracy for 1 day and 30-day horizon, but similar accuracy for a full 90

trading day forecast when compared to LSTM. I find that VEC model significantly

11https://cran.r-project.org/web/packages/forecast/index.html
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outperforms VAR model in 1 trading day (p-value = 0.002014), 30 trading days (p-value

=0.008133) and 90 days ( p-value = 2.584e-06) forecasts, which confirms my earlier

findings of significance of the error-correlation terms. When the LSTM is compared to

VAR and VEC models, I fail to reject then null hypothesis and conclude that the LSTM

and VAR and VEC models have similar predictive accuracy for all 3-time horizons. This

is somewhat inconsistent with the findings summarized in Table 5, where I observe much

lower RMSE and MAPE for a 30 day and 60-day horizons and might be attributed to the

sampling methodology of the forecasting errors (small sample problem).



46

5.3 CONCLUSION

In this paper, I apply and analyze two new neural network architectures for forecasting

time-varying multi-step evolution of the implied volatility surface and benchmark them

against traditional time-series VAR and VEC models. I apply a new methodology for

encoding IV term-structure as a discrete dimension, which allows to apply two new types

of the recurrent neural network architectures for modeling and multi-step forecasting of

the IVS. The dataset in this thesis contains SPX call and put options traded between

2002-02-05 and 2007-12-31. I evaluate the out-of-sample forecasting performance on a 90

trading day holdout dataset from 2007-08-17 to 2007-12-31 using

root-mean-squared-error (RMSE) and mean-absolute-percentage-error (MAPE). I conduct

Welch’s t-test and one-sided DM test for statistical significance of the forecasts, between

time series and machine learning models for multiple time horizons. Lastly, the forecasts

are compared to the actual IV, and machine learning LSTM and ConvLSTM models are

benchmarked against the time-series VAR and VEC model. I aim to answer the research

question of whether ConvLSTM and LSTM neural networks can significantly outperform

traditional time series forecasting methods. Lastly, ConvLSTM was benchmarked against

the LSTM to answer the question of whether historical spatial IVS dynamics play a

significant role in reducing the forecasting error.

The first research question was to explore whether cointegrated relationships serve

a significant role in forecasting implied volatility. I find that including cointegrated

relationships, such as having an error correction term (EC) to adjust short term dynamics

to their long-term equilibrium, significantly reduces the forecasting error. In particular, I

found that including the EC, not only reduced the RMSE and MAPE for the multi-step

out-of-sample forecast of the IVS from 0.0441 RMSE to 0.032 RMSE but was also able to

capture the dynamics of the IV skew.

The second question was whether recurrent neural network architecture could

significantly outperform traditional time series models in the multi-step out-of-sample
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forecast of the IVS. I find that ConvLSTM produces the lowest overall out-of-sample error

RMSE (0.0301) and MAPE(12.12%) for the 90 trading day window. Unlike other models,

the forecast remains stable and significantly outperforms VAR, VEC, and LSTM models,

cross-sectional for almost all moneyness groups and time horizons. I find that ConvLSTM

produces cross-sectionally lower RMSE and MAPE for at-the-money (ATM),

out-of-the-money(OTM) calls, and OTM puts for all expiration months when compared to

other models. I also specifically find that ConvLSTM produces the lowest RMSE and

MAPE for longer-term (March and June) contracts, yielding mean RMSE of 0.0186 and

MAPE of 8.27% for March contract, and mean RMSE of 0.0156 and MAPE of 6.84% for

June contract. However, similar to previous research, I find that all models experience a

higher degree of overestimation when predicting IV for the near-term contracts and

underestimation when predicting IV for the long term expiration, which remains to be a

challenge for this topic.

The third research question was whether incorporating historical spatial dynamics

of implied volatility term structure and implied volatility skew, can significantly improve

the multi-step forecast of the IVS. I find that stacking convolutional and average pooling

layers for the ConvLSTM significantly reduces the RMSE when benchmarked against the

LSTM, VAR, and VEC models. By introducing the convolutional operation and an

average pooling layer, the ConvLSTM handles spatiotemporal patterns better than a

regular fully connected LSTM, and larger kernel sizes allow the model to capture the

important spatiotemporal properties of the IVS such as mean-reversion and the term

structure.

The thesis makes multiple contributions to the current research on modeling and

forecasting implied volatility. Firstly, the thesis proposes a different methodology for

encoding implied volatility term-structure as a separate discrete dimension. Previously,

the IVS term-structure and implied volatility were encoded as a continuous variable (such

as log forward moneyness, forward delta, or forward variance) and could only be used to
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produce cross-sectional results using basic fully-connected neural network architectures.

The new encoding method discussed in the thesis allows for more complex neural network

architectures such as LSTM and ConvLSTM to maintain time-varying evolution per each

contract group, for a large panel dataset. Secondly, I apply Convolutional LSTM

(ConvLSTM) to the domain of modeling and forecasting IVS. The convolutional neural

networks have shown good results in the domain of computer vision, handwriting

recognition, and modeling spatial relationships, but hadn’t found much application in the

domain of modeling and forecasting IVS. Lastly, I produce a 30-trading day forecast

window for an entire IVS, while previous research focuses on the short term forecast of a

few timesteps.

The interpolation technique used to construct an initial training set is an important

step in constructing the IVS. In future research, I suggest developing a more advanced

technique for interpolating the training IVS. Orosi (2012) references practitioners’ way of

interpolating the IVS using a quadratic polynomial or a more advanced spline-based

non-parametric IVS. Another way could be training a fully connected neural network

similar to that of Liu, Oosterlee, and Bohte (2019) or Culkin and Das (2017) to interpolate

the entire surface and to feed the output to the proposed LSTM and ConvLSTM

architectures, given the methodology proposed in this study for encoding implied

volatility term-structure as a separate discrete dimension. I suggest using a larger number

of contracts and moneyness groups to take advantage of the performance gains from using

a larger kernel on the ConvLSTM as referenced in Shi et al. (2015). Another suggestion

would be conducting hyperparameter tuning (such as Grid Search) as discussed by Liu,

Oosterlee, and Bohte (2019) for the models, which could significantly improve the results.
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APPENDIX

A STATISTICAL RESULTS

Table 7: LSTM forecast vs VEC forecast Welch’s significance tests

month moneyness t p-value

3 -0.0490 -5.3696 0.0000

-0.0440 -6.5335 0.0000

-0.0390 -7.3608 0.0000

-0.0340 -7.8681 0.0000

-0.0290 -8.0969 0.0000

-0.0240 -8.0961 0.0000

-0.0190 -7.9158 0.0000

-0.0140 -7.6044 0.0000

-0.0090 -7.2074 0.0000

-0.0040 -6.7648 0.0000

0.0010 -6.3104 0.0000

0.0060 -5.8708 0.0000

0.0110 -5.4657 0.0000

0.0160 -5.1095 0.0000

0.0210 -4.8118 0.0000

0.0260 -4.3700 0.0000

0.0310 -3.9521 0.0002

0.0360 -3.7199 0.0003

0.0410 -3.6758 0.0004

0.0460 -3.7695 0.0003
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6 -0.0490 -3.9032 0.0002

-0.0440 -4.4132 0.0000

-0.0390 -4.9668 0.0000

-0.0340 -5.5267 0.0000

-0.0290 -6.0047 0.0000

-0.0240 -6.5317 0.0000

-0.0190 -7.5557 0.0000

-0.0140 -8.0647 0.0000

-0.0090 -7.3245 0.0000

-0.0040 -6.7420 0.0000

0.0010 -6.4237 0.0000

0.0060 -6.0709 0.0000

0.0110 -6.0113 0.0000

0.0160 -6.1951 0.0000

0.0210 -7.4528 0.0000

0.0260 -8.8083 0.0000

0.0310 -9.4584 0.0000

0.0360 -10.0375 0.0000

0.0410 -10.7352 0.0000

0.0460 -11.3451 0.0000

9 -0.0490 -12.0276 0.0000

-0.0440 -12.7410 0.0000

-0.0390 -13.5965 0.0000

-0.0340 -13.4764 0.0000

-0.0290 -14.4175 0.0000

-0.0240 -13.5172 0.0000

-0.0190 -13.5281 0.0000
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-0.0140 -12.8990 0.0000

-0.0090 -13.0803 0.0000

-0.0040 -13.2178 0.0000

0.0010 -12.5916 0.0000

0.0060 -12.2468 0.0000

0.0110 -11.3835 0.0000

0.0160 -10.6296 0.0000

0.0210 -9.9581 0.0000

0.0260 -9.7551 0.0000

0.0310 -9.0176 0.0000

0.0360 -9.0301 0.0000

0.0410 -8.1983 0.0000

0.0460 -5.9014 0.0000

12 -0.0490 -3.9624 0.0001

-0.0440 -2.5794 0.0115

-0.0390 -1.8518 0.0673

-0.0340 -1.3125 0.1927

-0.0290 -0.7524 0.4538

-0.0240 -0.5989 0.5507

-0.0190 -0.5919 0.5554

-0.0140 -0.6755 0.5011

-0.0090 -0.8629 0.3905

-0.0040 -1.1884 0.2378

0.0010 -1.7183 0.0892

0.0060 -2.5611 0.0121

0.0110 -3.8121 0.0003

0.0160 -5.1533 0.0000
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0.0210 -5.3749 0.0000

0.0260 -3.9376 0.0002

0.0310 -1.8210 0.0719

0.0360 -0.1978 0.8436

0.0410 0.7016 0.4847

0.0460 1.1589 0.2496

Table 8: ConvLSTM forecast vs VEC forecast Welch’s significance tests

month moneyness t p-value

3 -0.0490 -6.3338 0.0000

-0.0440 -7.5088 0.0000

-0.0390 -8.4413 0.0000

-0.0340 -9.0782 0.0000

-0.0290 -9.4299 0.0000

-0.0240 -9.5412 0.0000

-0.0190 -9.4661 0.0000

-0.0140 -9.2539 0.0000

-0.0090 -8.9457 0.0000

-0.0040 -8.5741 0.0000

0.0010 -8.1643 0.0000

0.0060 -7.7357 0.0000

0.0110 -7.3030 0.0000

0.0160 -6.8776 0.0000

0.0210 -6.4686 0.0000

0.0260 -5.8006 0.0000

0.0310 -4.9655 0.0000
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0.0360 -4.4849 0.0000

0.0410 -4.2424 0.0001

0.0460 -4.2045 0.0001

6 -0.0490 -4.2564 0.0001

-0.0440 -4.7970 0.0000

-0.0390 -5.4252 0.0000

-0.0340 -6.1044 0.0000

-0.0290 -6.8368 0.0000

-0.0240 -7.5057 0.0000

-0.0190 -8.7931 0.0000

-0.0140 -9.2308 0.0000

-0.0090 -8.6238 0.0000

-0.0040 -7.9427 0.0000

0.0010 -7.2052 0.0000

0.0060 -6.5461 0.0000

0.0110 -5.9833 0.0000

0.0160 -5.7288 0.0000

0.0210 -6.7578 0.0000

0.0260 -8.1973 0.0000

0.0310 -9.3268 0.0000

0.0360 -10.7155 0.0000

0.0410 -12.2382 0.0000

0.0460 -13.4621 0.0000

9 -0.0490 -14.5498 0.0000

-0.0440 -15.5603 0.0000

-0.0390 -17.3110 0.0000

-0.0340 -16.5635 0.0000
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-0.0290 -17.8931 0.0000

-0.0240 -16.8115 0.0000

-0.0190 -16.2710 0.0000

-0.0140 -15.3894 0.0000

-0.0090 -15.8603 0.0000

-0.0040 -16.4228 0.0000

0.0010 -16.6469 0.0000

0.0060 -17.0883 0.0000

0.0110 -17.5637 0.0000

0.0160 -17.7725 0.0000

0.0210 -18.1808 0.0000

0.0260 -19.2013 0.0000

0.0310 -18.4107 0.0000

0.0360 -17.3913 0.0000

0.0410 -16.7383 0.0000

0.0460 -16.3732 0.0000

12 -0.0490 -15.6219 0.0000

-0.0440 -15.0617 0.0000

-0.0390 -14.3601 0.0000

-0.0340 -13.0505 0.0000

-0.0290 -11.6275 0.0000

-0.0240 -11.1859 0.0000

-0.0190 -10.6810 0.0000

-0.0140 -10.2698 0.0000

-0.0090 -9.9202 0.0000

-0.0040 -9.6040 0.0000

0.0010 -9.2937 0.0000
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0.0060 -8.9606 0.0000

0.0110 -8.5750 0.0000

0.0160 -8.1127 0.0000

0.0210 -7.5701 0.0000

0.0260 -6.9837 0.0000

0.0310 -6.4351 0.0000

0.0360 -6.0144 0.0000

0.0410 -5.7569 0.0000

0.0460 -5.6289 0.0000

Table 9: ConvLSTM forecast vs LSTM forecast Welch’s significance tests

month moneyness t p-value

3 -0.0490 19.4779 0.0000

-0.0440 11.3172 0.0000

-0.0390 5.1866 0.0000

-0.0340 1.3916 0.1675

-0.0290 -0.3500 0.7272

-0.0240 -0.4201 0.6754

-0.0190 0.7981 0.4269

-0.0140 2.9018 0.0046

-0.0090 5.4814 0.0000

-0.0040 8.1794 0.0000

0.0010 10.7433 0.0000

0.0060 13.0323 0.0000

0.0110 14.9883 0.0000

0.0160 16.5972 0.0000
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0.0210 17.8581 0.0000

0.0260 18.8654 0.0000

0.0310 19.5299 0.0000

0.0360 19.7532 0.0000

0.0410 18.4332 0.0000

0.0460 17.2811 0.0000

6 -0.0490 14.7838 0.0000

-0.0440 12.7852 0.0000

-0.0390 11.4371 0.0000

-0.0340 9.2359 0.0000

-0.0290 6.7930 0.0000

-0.0240 4.4499 0.0000

-0.0190 2.9274 0.0039

-0.0140 3.3891 0.0009

-0.0090 5.1916 0.0000

-0.0040 2.2904 0.0232

0.0010 2.4834 0.0140

0.0060 2.8968 0.0043

0.0110 4.2217 0.0000

0.0160 5.5032 0.0000

0.0210 3.9640 0.0001

0.0260 7.9040 0.0000

0.0310 7.1076 0.0000

0.0360 2.5655 0.0117

0.0410 -3.9339 0.0001

0.0460 -9.2072 0.0000

9 -0.0490 -14.5065 0.0000
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-0.0440 -14.3058 0.0000

-0.0390 -17.7877 0.0000

-0.0340 -19.6364 0.0000

-0.0290 -19.6904 0.0000

-0.0240 -25.1214 0.0000

-0.0190 -27.2626 0.0000

-0.0140 -27.6970 0.0000

-0.0090 -26.9621 0.0000

-0.0040 -26.1503 0.0000

0.0010 -21.1726 0.0000

0.0060 -15.0577 0.0000

0.0110 -6.4500 0.0000

0.0160 4.1745 0.0000

0.0210 21.5505 0.0000

0.0260 29.4432 0.0000

0.0310 30.6871 0.0000

0.0360 29.8073 0.0000

0.0410 27.2271 0.0000

0.0460 23.8184 0.0000

12 -0.0490 20.4734 0.0000

-0.0440 18.2313 0.0000

-0.0390 14.4601 0.0000

-0.0340 12.7698 0.0000

-0.0290 9.8831 0.0000

-0.0240 8.1081 0.0000

-0.0190 6.6584 0.0000

-0.0140 5.4527 0.0000
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-0.0090 4.4849 0.0000

-0.0040 3.7708 0.0002

0.0010 3.3527 0.0010

0.0060 3.3032 0.0012

0.0110 3.7230 0.0003

0.0160 4.7293 0.0000

0.0210 6.4315 0.0000

0.0260 8.9002 0.0000

0.0310 12.1120 0.0000

0.0360 15.7757 0.0000

0.0410 18.9909 0.0000

0.0460 20.3883 0.0000
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