157 research outputs found

    Eddy current defect response analysis using sum of Gaussian methods

    Get PDF
    This dissertation is a study of methods to automatedly detect and produce approximations of eddy current differential coil defect signatures in terms of a summed collection of Gaussian functions (SoG). Datasets consisting of varying material, defect size, inspection frequency, and coil diameter were investigated. Dimensionally reduced representations of the defect responses were obtained utilizing common existing reduction methods and novel enhancements to them utilizing SoG Representations. Efficacy of the SoG enhanced representations were studied utilizing common Machine Learning (ML) interpretable classifier designs with the SoG representations indicating significant improvement of common analysis metrics

    Uncertainty Quantification for Deep Learning in Ultrasonic Crack Characterization

    Get PDF
    Deep learning for nondestructive evaluation (NDE) has received a lot of attention in recent years for its potential ability to provide human level data analysis. However, little research into quantifying the uncertainty of its predictions has been done. Uncertainty quantification (UQ) is essential for qualifying NDE inspections and building trust in their predictions. Therefore, this article aims to demonstrate how UQ can best be achieved for deep learning in the context of crack sizing for inline pipe inspection. A convolutional neural network architecture is used to size surface breaking defects from plane wave imaging (PWI) images with two modern UQ methods: deep ensembles and Monte Carlo dropout. The network is trained using PWI images of surface breaking defects simulated with a hybrid finite element / ray-based model. Successful UQ is judged by calibration and anomaly detection, which refer to whether in-domain model error is proportional to uncertainty and if out of training domain data is assigned high uncertainty. Calibration is tested using simulated and experimental images of surface breaking cracks, while anomaly detection is tested using experimental side-drilled holes and simulated embedded cracks. Monte Carlo dropout demonstrates poor uncertainty quantification with little separation between in and out-of-distribution data and a weak linear fit ( R=0.84 ) between experimental root-mean-square-error and uncertainty. Deep ensembles improve upon Monte Carlo dropout in both calibration ( R=0.95 ) and anomaly detection. Adding spectral normalization and residual connections to deep ensembles slightly improves calibration ( R=0.98 ) and significantly improves the reliability of assigning high uncertainty to out-of-distribution samples

    Ultrasonic flaw classification and sizing

    Get PDF
    Flaw classification (determination of the flaw type) and flaw sizing (prediction of the flaw shape, orientation and sizing parameters) are very important issues in ultrasonic nondestructive evaluation of materials. In this work, new techniques for both classification and sizing are described;In the area of flaw classification, a methodology is developed which can solve classification problems in weldments using probabilistic neural networks. In the area of flaw sizing, four new approaches are presented including (1) the determination of distance-gain-size (DGS) curves and frequency response curves for flat-bottom holes based on a theoretical ultrasonic scattering model, (2) a time-of-flight equivalent (TOFE) sizing method for relatively large (\u3e1 mm) flaws in materials, (3) an amplitude-based equivalent (ABE) sizing method and (4) a first moment (FM) sizing method. Both the third and fourth methods are shown to be new viable techniques for sizing relatively small (\u3c1 mm) flaws in materials
    • …
    corecore