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Abstract—Deep learning for Non-Destructive Evaluation (NDE) 

has received a lot of attention in recent years for its potential 

ability to provide human level data analysis. However, little 

research into quantifying the uncertainty of its predictions has 

been done. Uncertainty Quantification (UQ) is essential for 

qualifying NDE inspections and building trust in their predictions. 

Therefore, this paper aims to demonstrate how UQ can best be 

achieved for deep learning in the context of crack sizing for inline 

pipe inspection. A convolutional neural network architecture is 

used to size surface breaking defects from Plane Wave Imaging 

(PWI) images with two modern UQ methods: deep ensembles and 

Monte Carlo dropout. The network is trained using PWI images 

of surface breaking defects simulated with a hybrid finite element 

/ ray-based model.  

Successful UQ is judged by calibration and anomaly detection, 

which refer to whether in-domain model error is proportional to 

uncertainty and if out of training domain data is assigned high 

uncertainty, respectively. Calibration is tested using simulated and 

experimental images of surface breaking cracks, while anomaly 

detection is tested using experimental side drilled holes and 

simulated embedded cracks. Monte Carlo dropout demonstrates 

poor uncertainty quantification with little separation between in 

and out-of-distribution data and a weak linear fit (𝑹 = 𝟎. 𝟖𝟒) 

between experimental root mean squared error and uncertainty. 

Deep ensembles improve upon Monte Carlo dropout in both 

calibration (𝑹 = 𝟎. 𝟗𝟓) and anomaly detection. Adding spectral 

normalization and residual connections to deep ensembles slightly 

improves calibration (𝑹 = 𝟎. 𝟗𝟖) and significantly improves the 

reliability of assigning high uncertainty to out-of-distribution 

samples. 

 

Index Terms— Uncertainty estimation, out-of-distribution 

detection, deep-learning, neural networks, plane wave imaging, 

simulation, ultrasound, defect characterization 

 

I. INTRODUCTION 

ON-Destructive Evaluation (NDE) techniques aim to 

infer the health of a component through analysis of its 

response to a stimulus such as ultrasound or X-ray. In most 

NDE applications this is conventionally achieved by a skilled 

operator inspecting the response data. As this data is often high-

dimensional, and most inspections must be carried out many 

times, manual data interpretation is expensive and prone to 

human error. Because of this, there is a strong case for 
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automating data interpretation in NDE. Machine learning is 

well suited to pattern recognition tasks such as this one and has 

repeatedly been shown to produce human-level data 

interpretation performance both in NDE  [1]–[9], and related 

fields such as computer vision [10] and medical imaging [11]. 

In safety critical applications such as NDE it is essential to 

know the magnitude of expected error so reports on a 

component’s health can be given with an appropriate level of 

confidence. Calculating the level of expected error for a 

prediction is commonly called Uncertainty Quantification 

(UQ). Despite the acute need for UQ in NDE there has been 

little research into how to implement it for analysis done using 

machine learning.  

Machine learning can broadly be split into two categories: 

‘deep’ and ‘shallow’ learning. Shallow learning necessitates 

hand-selection of the features input to the machine learning 

algorithm, while deep learning takes the raw data as input. 

Shallow learning is a lower dimensional problem so requires 

less training data, and because manufacturing NDE samples is 

expensive, it has been the focus of most NDE research to-date. 

However, deep learning can make use of all available 

information in the data so given sufficient training data it can 

produce more accurate results [4], [5] and reduce the effect of 

human factors [12]. Deep learning is the focus of this paper. To 

produce the training set, data simulation is used as it has 

recently been shown to be an effective way of training 

Convolutional Neural Networks (CNNs) [13] to accurately size 

defects in experimental data [9], [14]–[17]. 

Due to the safety-critical nature of NDE, UQ is an essential 

part of inspection qualification [18] and decision making for 

any automated data analysis. This is because undersizing of 

defects can result in unexpected part failures, causing damage 

to structures and/or people. Effective UQ can signal to the 

operator when there is high uncertainty in the defect size 

prediction so the data can be referred to a human for further 

analysis and possibly the use of additional NDE measurements. 

This paper focusses on how to quantify uncertainty for deep 

learning in the context of crack sizing in ultrasonic inline pipe 

inspection. Ultrasonic inline pipe inspection uses transducers 

mounted on a PIG (Pipeline Inspection Gauge) which travels in 

the flow of product, detecting and size defects in the 

surrounding pipe wall. Automatic defect detection occurs 
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online, and in this paper is assumed to have already been 

performed, hence the task is to characterize and size a defect 

given data that contains an indication of a defect. Defect sizing 

occurs offline and is traditionally carried out by skilled human 

operators. In this paper deep learning is applied to the defect 

characterisation and sizing task with the aim of investigating 

how the uncertainty of that operation can be assessed 

Evaluating the success of UQ methods is challenging as there 

is no ‘ground-truth’ for uncertainty. This paper uses two criteria 

to analyse the success of the UQ methods. The first is for the 

UQ method to be ‘well calibrated’ [19]. For regression tasks, 

such as the one in this paper, this means that predicted 

uncertainty is equal to (or at least proportional to) the expected 

error (i.e. the difference between the crack depth predicted by 

the network and the true crack depth). This is tested using both 

a simulated and experimental test set of surface breaking 

cracks. The second metric is the predicted uncertainty for Out-

Of-Distribution (OOD) data, testing if the network ‘knows what 

it knows.’ As the network is trained on surface-breaking cracks, 

OOD data from experimental embedded Side-Drilled Holes 

(SDHs) and simulated embedded cracks are used for this 

purpose. The OOD data set (𝑁𝑂𝑂𝐷 = 76) contains examples of 

defects not included in the training data and therefore an 

effective UQ method should assign them high uncertainty 

In practice, as in this paper, UQ typically produces a single 

metric, e.g. standard deviation of the probability density 

function, 𝑃(�̂�|�̂�, 𝐷), where �̂�, �̂� are the network’s input and 

output for test data and 𝐷 is the input and output training data. 

The methods described in this paper achieve UQ by sampling 

from the space of all possible trained networks (parameterized 

by their weights, 𝑊) and taking the standard deviation of their 

predictions as an estimate of uncertainty. In more rigorous 

terms, all UQ methods function by approximating the 

intractable posterior distribution of weights given the labelled 

training data, 𝑃(𝑊|𝐷), with which inference on the uncertainty 

associated with new test data, 𝑃(�̂�|�̂�, 𝐷), can be calculated. The 

two most common modern methods for estimating the 

uncertainty of the CNN’s predictions are investigated for this 

paper: deep ensembles (DE) [20] and Monte Carlo (MC) 

dropout [21]. The intuition for these approaches to posterior 

approximation is that if the sampled networks are sufficiently 

diverse, they should produce diverse predictions for inputs far 

from the training data, indicating high uncertainty. DE achieves 

this by training multiple networks from different initializations, 

while MC dropout produces predictions by using dropout 

(traditionally used at train time to reduce overfitting [22]) at test 

time.  

The structure of the rest of the paper is as follows. Relevant 

literature is discussed in Section II, the inspection setup, data-

sets and network architecture are described in Section III, the 

two UQ methods presented in this paper are outlined in Section 

IV, results are presented in Section V, methods for efficient use 

of computational resources are discussed in Section VI and 

conclusions are given in Section VII. 

 

II. RELEVANT LITERATURE 

UQ is a relatively new and active area of research in deep 

learning [23]. Because of this, there are few applications to 

NDE in the literature. To the authors’ knowledge the only 

examples of UQ for deep learning in NDE are the following: 

MC dropout used to estimate uncertainty for defect detection in 

a heat exchanger with eddy-current measurements [24] as well 

as for defect categorization and localization in visual inspection 

of bridges [25]. A mixture density network [26] has been used 

to estimate aleatoric uncertainty for guided wave based defect 

localization in simulated data of structural plates [27]. Deep 

ensembles have been used to increase the accuracy of deep 

learnt predictions in NDE [28]–[30], but there has been little 

investigation into leveraging their ability to quantify 

uncertainty.  

While this paper focusses primarily on DE and MC dropout, 

two other commonly used UQ methods were investigated in the 

formation of this paper: a CNN/Gaussian Process (CNN-GP) 

hybrid [31], [32], and Variational Inference (VI) [33], [34]. 

These methods take a more ‘Bayesian’ rather than ‘Frequentist’ 

approach to approximation of the posterior. CNN-GP makes 

use of the natural probabilistic inference of the Gaussian 

process combined with the expressive powers of convolutional 

layers. Following the implementation described in [32], the 

fully connected layers of a CNN were replaced with a sparse 

Gaussian process approximation based on variational inducing 

points [35] for the current application. This method was found 

to produce no correlation between uncertainty and magnitude 

of error on the experimental test set. VI approximates the 

posterior by casting it as an optimization problem: reducing the 

Kullback-Leibler divergence [36] between the true posterior 

and that produced by the network. For the application described 

in the current paper, VI was implemented using a 

reparameterization estimator [37]. However, VI proved to be 

unstable in training and converged either to a network 

predicting the mean of the training set or one with poor 

predictive accuracy (sizing defects with a root mean square 

error ≈ 0.4 times their true length). There have also been recent 

publications that question the quality of VI’s posterior 

approximation [45]–[47]. As these methods require a lot of 

hyperparameter tuning and, despite this, were found to produce 

poor UQ, they are not investigated further in this paper. 

III. INSPECTION SETUP, DATA AND NETWORK 

ARCHITECTURE 

This section describes the inspection set-up as well as the 

model used to simulate PWI data, experimental and OOD data 

sets, and the details of the CNN architecture. The reader is 

directed to [9] for more details. Note that for clarity, ‘model’ is 

used exclusively to describe physics-based forward models 

while ‘network’ is used to refer to machine learning based 

predictors. 

 

A. Inspection Setup, Imaging and Simulation 

Inline pipe inspection methods are typically used to inspect 

oil and gas pipelines. A major aim of these inspections is to 
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detect cracks in the pipe caused by manufacturing faults or in-

service stresses. While these can occur at any radial location 

this work focusses on surface breaking cracks on the outer 

surface as this is the most common location for them to occur. 

With access to a real pipeline not available for this work an 

inspection setup is devised to match in-service conditions as 

closely as possible. As shown in Fig. 1a, an Imasonic (Voray-

sur-l'Ognon, France) 5MHz, 0.3 mm pitch, 40 element phased 

array is used to induce shear plane waves in 10 mm thick 

stainless-steel plate (approximating a large diameter pipe wall). 

The array is operated using a Peak NDT (Derby, UK) 

MicroPulse 5 array controller and receives on all elements 

individually, with a sample rate of 50MHz, to form Plane Wave 

Capture (PWC) data. The array is immersed in water as an 

approximation for oil that has similar sound speed. 

As shown in Fig. 1b, data is collected from either side of the 

defect to replicate the use of a pair of arrays from the 

circumferential ring of arrays on the PIG. Each of these arrays 

fires a vertical wave at 𝜓 = 0° and an angled wave that travels 

in the fluid at 𝜙 = ±19°, inducing a 𝜓 = ±45° shear wave in 

the steel plate. The vertical wave is used to calculate standoff 

(𝜍) and thickness (𝛤), while all sizing is done using the angled 

waves. The arrays receive on all 40 elements individually to 

collect PWC data which is then filtered using a Gaussian filter 

centered at 5 MHz with a -40 dB half width of 4.5 MHz. This 

filtered PWC data is then focused on reception with the overall 

process termed Plane Wave Imaging (PWI) [38]. When 

multiple ray paths are considered, the images are termed 

‘views’, and are described by the modality(s) of their transmit 

and receive legs (L for longitudinal, S for shear) separated by a 

hyphen to indicate reflection from a defect. The two views 

found to be most successful for sizing the surface breaking 

defects used in this paper are the SS-S and SS-L half-skip views 

(i.e. with a reflection off the back wall of the plate on the 

transmit leg only). Each array produces an SS-S and SS-L 

image for each defect, with the region of interest being the full 

10 mm depth of plate thickness and 12-22 mm from the array 

centre in the X-direction. This results in a 32x32x4 set of data 

as input to the network. Example sets of simulated and 

experimental images for a defect of 𝑃 = 19 mm, 𝐿 = 3 mm 

and 𝜃 = 8° is given in Fig. 1c,d. 

The simulation used to create the training data for this paper 

is a hybrid Finite Element (FE)/ray-based method which 

provides a good tradeoff between computational efficiency and 

accuracy. This simulation functions by calculating the 

scattering matrix for all length (𝐿) and angle (𝜃) combinations 

 
Fig. 1. a) A diagram of the inspection scenario using a plane wave at angle 𝜓 to the vertical transmitted in the sample with a standoff and thickness of 𝜍 and 

𝛤 where 𝐿, 𝜃 and 𝑃 represent the crack length, angle and position respectively, b) all half-skip shear (S) and longitudinal (L) mode ray-paths used in this 

paper where 𝑥, 𝑧 are the co-ordinates of the imaging point and 𝑥𝑜𝑢𝑡, 𝜍 the co-ordinates of the returning ray on the front wall, c) an example set of simulated 

images for a defect with 𝑃 = 19 𝑚𝑚, 𝐿 = 3 𝑚𝑚 and 𝜃 = 8° and d) a fully experimental set of images for a defect of the same parameters. Note that the 

black lines show the true extent of the defects and all images are on the same dB color scale, normalized to the maximum intensity in the experimental set. 

Figure reproduced from [9]. 
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using a local FE calculation, where the defect is modelled as a 

0.3 mm wide rectangular, perfect reflector, excited by a 

unimodal plane wave [39]. This scattering matrix can then be 

used in a ray-based model [40], [41] to calculate the PWC data 

received by the array for every 𝐿, 𝜃 and position (𝑃) 

combination before being summed with experimental, defect-

free PWC data to incorporate grain and wall reflections [42]. 

Finally, the PWC data is filtered and imaged in the same way 

as the experimental data to produce the desired PWI images.  

B. Data Sets 

This paper focusses mainly on quantifying uncertainty for 

sizing surface-breaking cracks but data from other defects is 

also tested to analyse the predicted uncertainty for OOD 

defects. All of the data used in this paper and their main sources 

of uncertainty are described in this section. 

 

1) Surface Breaking Cracks 

The simulation and experimental procedures described in the 

previous section are used to generate data sets of size 16,875 

and 1,485 respectively which are both further broken down into 

the following sets: 

Simulated, training: 85% (14,343) of simulated data used to 

iteratively update the weights and biases of the network. 

Simulated, validation: 7.5% (1,266) of simulated data used 

during research and design stages to qualitatively ensure the 

network is not overfitting to the training set. 

Simulated, testing: 7.5% (1,266) of simulated data used to 

test the calibration of UQ on previously unseen data. 

Experimental, validation: 15% (216) of experimental data 

used during research and design stages to ensure the network is 

not overfitting to the simulated data and to implement the 

training stop condition. 

Experimental, testing: 85% (1,269) of experimental data 

used to test the network’s sizing accuracy and calibration of UQ 

on previously unseen data. 

These data sets are described further in Tables I and II. The 

training/validation/testing split for simulated data is drawn 

randomly, from a uniform distribution, across all image sets 

(i.e. across all {𝐿, 𝜃, 𝑃}), but the experimental validation/testing 

split is drawn randomly in {𝐿, 𝜃} space. This is to guarantee that 

no data from the same physical defect is split across sets, 

ensuring test set performance generalizes past the 𝐿, 𝜃 

combinations used to implement the stop condition. The aim of 

these surface breaking defect test sets is to analyse the 

calibration between uncertainty and 𝐷 prediction error. 

 

2) Defects Outside of Training Set 

To test whether the UQ methods can detect data drawn from 

distributions significantly different to the training set, defect 

types not included in the training set are tested. As exampled in 

Fig. 2, this group of data includes two experimental Side Drilled 

Holes (SDHs) and two simulated embedded (rather than 

surface-breaking) cracks. This data is gathered using the same 

experimental and simulation procedures as described in Section 

III.A. These four defect classes are imaged at 14 𝑋-locations, 

equally spaced across the same range of horizontal positions as 

the surface breaking cracks (13 mm ≤ 𝑃 ≤ 21 mm). 20 

examples of experimental defect free data are also tested, 

forming a total of 𝑁𝑂𝑂𝐷 = 4 × 14 + 20 = 76 image sets.  

 

3) Sources of Uncertainty 

Sources of uncertainty can broadly be broken down into two 

categories; aleatoric and epistemic. Aleatoric or ‘data’ 

uncertainty stems from noise inherent to the data generation 

process, and cannot be reduced by adding training data. 

Epistemic uncertainty is caused by ignorance in how the data is 

generated, creating  uncertainty in the network’s parameters, 

and can be minimized by adding appropriate training data as 

long as the training data chosen matches the test data 

distribution well. It should be highlighted that if there is a 

significant domain shift between training and test domains (e.g. 

when using a numerical simulation to approximate reality) 

adding training data can never fully minimize epistemic 

uncertainty. 

In sizing defects from PWI images the two main sources of 

aleatoric uncertainty are noise and poor correlation between 

indication and defect size.  Noise is caused by reflections from 

grains and structural features (such as front and back walls), as 

well as “artifacts” at locations away from the defect, due to ray 

TABLE I 

Simulated Data Set Summary 

Parameter Range Step Count 

Crack Length, L (mm) 0.2 to 5 0.2 25 

Crack Position, P (mm) 13 to 21 0.3 27 

Crack Angle, 𝜃 (°) -24 to 24 2 25 

Non-Defect Scan  - - 36 

 Total = 25×27×25 = 16,875 image sets 

 TABLE II 

Experimental Data Set Summary. 
The experimental test set contains all of the L/θ combinations marked 

‘Test’ while the experimental validation set all those marked ‘Val.’ 
  

Crack Length, L (mm) 
  

1 2 3 4 5 

C
ra

ck
 A

n
g

le
, 𝜃

 (
°)

 
0 Test Test Test Test Test 

±2 Test Val Test Test Test 

±5 Val Test Test Test Test 

±8 Test Test Test Val Test 

±15 Test Test Test Test Test 

±20 Test Test Val Test Test 
 

Range Step Count 

Crack Position, P (mm) 13 to 21 0.3 27 

 Validation = 𝑁𝜃,𝐿 × 𝑁𝑃 = 8 × 27 = 216 image sets 

Test = 𝑁𝜃,𝐿 × 𝑁𝑃 = 47 × 27 = 1269 image sets 

 

 



 

 

5 

paths other than the one being imaged. Poor angular coverage 

of a defect from incident and received ray paths blurs 

indications in images but as PIGs for inline pipe inspection 

travel at ~2 m/s, capturing data every 1-10 mm, there is too 

little time to remedy this by firing more than ~3 plane waves 

per array, per location. However, aleatoric uncertainty is 

deemed to be negligible in comparison to epistemic uncertainty 

for this application. This is due to both sources of aleatoric 

uncertainty being relatively small. Firstly, the data has a large 

Signal to Noise Ratio (SNR) of ~30 dB. Secondly, while 

classical sizing methods (such as 6dB drop) suffer due to the 

weak link between indication size and defect length [9] a CNN 

can make predictions on more complex features, reducing the 

need for good angular coverage. If aleatoric uncertainty is not 

constant across different input samples (i.e. heteroscedastic) it 

can be estimated by using negative log likelihood as the loss 

function [43] but this was found to predict values of ~3% of the 

total uncertainty, supporting the hypothesis of low aleatoric 

uncertainty. For simplicity, Mean Squared Error (MSE) is used 

as the loss function in this paper, omitting aleatoric uncertainty 

from the UQ. 

Epistemic uncertainty is the main cause of errors in this 

application. This is evidenced by the gap in simulated (RMSE 

= 0.095 mm) and experimental (RMSE = 0.63 mm) test set 

sizing accuracy of a CNN trained on simulated data. This 

performance discrepancy is caused by inaccuracies in the 

simulation such as those given in Table III. Epistemic 

uncertainty could be reduced by adding experimental data to the 

training set or using a more accurate simulation. However, these 

approaches are financially or computationally expensive 

respectively.  

 

C. Network Architecture 

Following the work in [9] the CNN architecture used in this 

 
Fig. 2. a) Diagrams and b) sets of example PWI images of defects outside of the training set. The black circles and rectangles in b) show the true size and 

placement of the defects. All images are on the same dB color scale, normalized to the maximum intensity in the experimental set. 
 

2mm

8mmSim. CrackB

Sim. CrackA
2mm

6mm

8.5mm

1mm

Exp. SDHA

Exp. SDHB
7.5mm

2.5mm

a b

Exp. Defect Free

TABLE III 

Example sources of epistemic uncertainty for the application in this paper. 

Variations in inspection 
conditions 

Inaccurate simplifications Modes not modelled 

Array mispositioning Defects modelled as rectangular, perfect reflectors while test 
set defects have some roughness and rounded tips 

Ray paths with more than 
three legs 

Sound speed variation Surface roughness not modelled Surface waves 

Inconsistency in array 
element performance 

Array assumed to be in far-field of defect in model, but array is 
partially in defect near field for 𝐿 >= 4 mm  

Non-linear effects 
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paper is loosely based on architectures such as VGG-19 due to 

their widespread success in related image recognition 

applications. An off-the-shelf architecture is not optimal due to 

the differences in input size and image content between NDE 

and visual image applications. As illustrated in Fig. 3, the CNN 

is composed of repeating blocks of convolutional and down 

sampling layers, followed by fully connected layers, with 

Rectified Linear Unit (ReLU) activations used throughout. The 

convolutional layers aim to perform feature extraction [44], 

[45], while the fully connected layers predict defect depth, 𝐷 

from those features. Dropout is used after the fully connected 

layers to reduce overfitting to the training set. The 

hyperparameters for this network have been iteratively tuned 

using the validation sets. More details on this design process are 

presented in [9]. The CNN is trained using the state-of-the-art 

Adam optimizer [46] with a learning rate of 1 × 10−3, batch 

size of 64, and a stopping condition of 50 epochs without a 

reduction in experimental validation set loss. There are two 

minor architecture changes from [9] to this paper. Firstly, only 

a single network is needed to predict 𝐷. This matches the 

structure of the 𝐿 network in [9]. Secondly, dropout is increased 

to 0.3, which resulted in slightly better experimental validation 

set accuracy at the cost of needing ~50 more epochs to 

converge. 

 

IV. UNCERTAINTY QUANTIFICATION METHODS 

To achieve UQ the posterior distribution over the network’s 

weights and biases (𝑊) must be calculated or approximated. 

Using Bayes’ theorem this can be written as, 

𝑃(𝑊|𝐷) =
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑝𝑟𝑖𝑜𝑟

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
=

𝑃(𝐷|𝑊)𝑃(𝑊)

𝑃(𝐷)

=
𝑃(𝐷|𝑊)𝑃(𝑊)

∫ 𝑃(𝐷|𝑊)𝑃(𝑊)𝑑𝑊
 

 

(1) 

where 𝐷 is the training data inputs and outputs. With this, 

inference for a given input �̂� can be calculated by, 

𝑃(�̂�|�̂�, 𝐷) = ∫ 𝑃(�̂�|�̂�, 𝑊)𝑃(𝑊|𝐷)𝑑𝑊 (2) 

where �̂� is the predicted output. However, the posterior is 

computationally intractable due to the difficulty of evaluating 

the normalization constant, 𝑃(𝐷) = ∫ 𝑃(𝐷|𝑊)𝑃(𝑊)𝑑𝑊 due 

to the high dimensionality of both 𝐷 and 𝑊 and the fact that the 

likelihood, 𝑃(𝐷𝑖|𝑊) and the prior, 𝑃(𝑊) are ‘nonconjugate’ 

i.e., do not take the same form in relation to 𝑊 [47]. 

Approximating this distribution as closely as possible to 

produce accurate inference of the posterior is the aim of the 

methods presented in this section. 

For all methods considered in this paper the likelihood of the 

output is considered to be Gaussian,  

𝑃(�̂�|�̂�, 𝑊) = 𝒩(𝜇, 𝜎) 

(3) 

where both mean, 𝜇 and standard deviation, 𝜎 are a function of 

the network’s parameters. Because of this assumption, the UQ 

methods described in this paper can be said to be ‘well 

calibrated’ if they demonstrate a 1:1 relationship between 

predicted uncertainty and 𝜎. Other approaches such as Mixture 

Density Networks (MDNs) can be used to avoid this 

assumption, but it is commonly used in deep learning UQ 

literature, and is considered sufficient for this application. 

 

A. Deep Ensemble [20] 

Ensembling of machine learning networks has long been 

recognized as a way to improve accuracy [48], [49], but more 

recently it has also become a popular UQ method, commonly 

termed ‘Deep Ensembles’ (DE) [20]. DE functions by training 

𝑀 networks, usually of the same architecture (as is the case in 

this paper), to produce a diverse ensemble of predictors. 

Diversity in the ensemble can be encouraged by training each 

member with a subset of the full training set, sampled with 

replacement, this is commonly called bagging or bootstrapping. 

However, it has been observed that the randomness in network 

initialisation is sufficient [20], [50] so bagging is not used in 

 
Fig. 3. An illustration of the CNN architecture used throughout the paper. 
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this paper.  

The ensemble’s overall prediction is represented by a mean 

(𝜇) and standard deviation (𝜎) of the individual member’s 

predictions, 

𝜇 =
1

𝑀
∑ 𝑦𝑖

𝑀

𝑖=1

   (4) 

𝜎 = √
∑ (𝑦𝑖 − 𝜇)2𝑀

𝑖=1

𝑀
 (5) 

where 𝑦𝑖 is the output of the 𝑖𝑡ℎ member of the ensemble, 𝜎 is 

taken as the measure of uncertainty in all methods presented in 

this paper. The intuition for DE as a UQ method is that different 

members of the ensemble will tend to output similar values 

when the inputs are similar to the training data, because each 

network, even if different, is optimized for that data. But when 

inputs are less alike to the training data, the networks are more 

affected by the specificities of the sub-optimal solution reached, 

producing higher variance results. This can be thought of in a 

‘loss landscape’ perspective as members of the ensemble, due 

to their different initializations, ending up at local minima, that 

all accurately predict on the training data, but behave diversely 

on anomalous data [51]. Prediction error for a specific defect is 

calculated using 

𝐸𝑟𝑟𝑜𝑟𝑗 = 𝜇𝑗 − 𝐷𝑗  (6) 

where 𝑗 is the index of the defect and 𝐷𝑗  is true depth. Error over 

a full test can be summarised by Root Mean Squared Error 

(RMSE), 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝜇𝑗 − 𝐷𝑗)2

𝑁

𝑗=1

 

 

(7) 

where 𝑁 is the size of the test set. 

B. Deep Ensemble with Residual Connections [52] and 

Spectral Normalization [53]  

Neural networks can suffer from an effect called ‘feature-

collapse’ where distances in the input space are not correlated 

with distances in the feature space [32]. This means that inputs 

far from the training data may be mapped close to training set 

features, erroneously assigning them low uncertainty. It has 

been shown that feature collapse can be avoided by enforcing 

‘smoothness’ and ‘sensitivity’ [54]. Smoothness means that 

small input changes cannot cause large output changes, and 

sensitivity requires input changes to always change the feature 

space representation. These properties can be described 

mathematically by bi-Lipshitz continuity, 

𝐾1‖𝑥1 − 𝑥2‖2 ≤ ‖𝑓(𝑥1) − 𝑓(𝑥2)‖2 ≤ 𝐾2‖𝑥1 − 𝑥2‖2 (8) 

where 𝐾1 and 𝐾2 are the Lipschitz constants of function 𝑓 and 

‖ . ‖2 represents the L2 norm. In this paper, the feature extractor 

(convolutional layers) is encouraged to be bi-Lipshitz 

continuous by spectral normalization [53] and residual 

connections [52] which create smoothness and sensitivity 

respectively. Residual networks with spectral normalization 

have been shown to be ‘distance-aware’ (i.e. the ability to assess 

test data’s distance from training data distribution) [55] and 

capture uncertainty effectively [32], [56]. This is explored in 

this paper as a way to improve the UQ capability of deep 

ensembles for NDE.  

Residual connections create a connection between the input, 

and layers deeper into a neural network. They were originally 

proposed to ease the optimization of very deep networks [53] 

but in doing so they also make the network’s activations more 

sensitive to the input, motivating their use in UQ. As shown in 

Fig. 3, residual connections take information and shortcut the 

next few layers by summation with their output. This shortcut 

should be as close to an identity mapping as possible. As the 

number of filters changes and max pooling reduces image size 

by 2 in both width and height, a 1x1 convolutional layer with a 

stride of 2 and no activation function is used for the residual 

connections in this paper.  

Spectral normalization is equivalent to regularizing the 

largest singular value of a layer’s weight matrix. It has been 

popularized recently as a way to improve generalization of 

Generative Adverserial Networks (GANs) [53]. Following [55] 

and the implementation in [57] the spectral norm, Π, is 

estimated at every training iteration, for every layer, using the 

power iteration method. Weights are normalized by 

multiplication with a scaling constant divided by the spectral 

norm, 
𝑐𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙

Π
. This approach has two hyperparameters, the 

number of power iterations and the scaling constant (𝑐𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 >

0). As in [55], one power iteration was found sufficient so is 

used here and 𝑐𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙  was set by a grid search for the smallest 

value that does not reduce the validation set accuracy of 

network, this was found to be 𝑐𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 =  1.2. In this paper this 

method will be referred to as DE-ResSpec from this point 

onwards. 

C. Monte Carlo Dropout [21] 

Dropout was originally proposed as a technique for reducing 

overfitting by setting the output of individual neurons to 0 

during training, with probability 𝑝, at each iteration [22]. It has 

later been shown that implementing dropout at both training and 

test time, before every weight layer, is a close approximation of 

a deep Gaussian Process [21] and has been termed ‘Monte 

Carlo (MC) dropout’. The intuition for MC dropout as an UQ 

method is that each initialisation of dropout at test time is acting 

as a member of an ensemble. As such, 𝜇 and 𝜎 are calculated 

using (4) and (5) with 𝑀 equal to the number of dropout 

initialisations run at test time, 𝑀𝑑𝑟𝑜𝑝𝑜𝑢𝑡. This is set to 200 in 

this work as 𝜇 and 𝜎 were found to change negligibly for 

𝑀𝑑𝑟𝑜𝑝𝑜𝑢𝑡 larger than this. Dropout probability, 𝑝, is set to 0.3 

as larger values significantly increased time to convergence, 

without improving UQ. 

Due to its simplicity, MC dropout has been used in a lot of 

UQ literature [23] but has also received criticism by [51] in 

which it is shown to produce significantly less diverse 

predictors in comparison to DE. This is exampled in [58] where 

a simple single-hidden layer ReLU network with MC dropout 



 

 

8 

fails to produce high uncertainty between clusters of 2D data. 

However, the same work also shows that deeper (>= 2 hidden 

layers) neural networks with MC dropout should theoretically 

approximate the posterior accurately. 

 

V. RESULTS 

This section presents results relating to the quality of UQ 

from the methods presented in the previous section.  

A. Number of networks in ensemble 

When originally proposed in [20] it is suggested that five 

networks are sufficient for effective UQ using DE. However, 

because neither training nor test time computational resources 

are limited in this application a larger ensemble can be used. To 

determine the optimal size of the ensemble, the effect of 

iteratively adding a network to the ensemble was measured in 

terms of the mean absolute change in uncertainty, 

∆𝑚=
1

𝑁
∑|𝑢𝑚,𝑖 − 𝑢𝑚+1,𝑖|

𝑁

𝑖=1

 

 

(9) 

where 𝑢𝑚,𝑖 is the uncertainty for the 𝑖th sample of the 

experimental validation set predicted by an ensemble of 𝑚 

networks and 𝑁 the size of the data set (216 for experimental 

validation). As shown in Fig. 4a, ∆𝑚 decreases as 𝑚 increases, 

indicating a diminishing effect of increasing ensemble size on 

UQ. 60 networks are used for DE in this paper as ∆60≈
1 × 10−3 𝑚𝑚. This is deemed to be low enough to assume that 

the ensemble predictions have mostly converged and adding 

more networks will only minorly change the results.  

It should also be noted that while prediction accuracy is not 

the focus of this paper, ensembling does provide a slight 

reduction in defect sizing error. This can be seen in Fig. 4b 

where the experimental test set RMSE of an ensemble with 𝑚 >

 
Fig. 4. a) Mean absolute change in uncertainty of the experimental validation set and b) RMSE of the experimental test set for both the whole ensemble and 
the newest member for increasing ensemble size. 

 
Fig. 5. Deep ensemble (DE) uncertainty predictions for both in and out of distribution test sets. Experimental test set RMSE = 0.592 mm. 
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10  (solid black line) is ~0.035 mm lower than the mean RMSE  

of the 200 networks when used independently (dotted red line). 

 

B. Calibration 

The uncertainty quantification (Eq. 5) and prediction error 

(Eq. 6) of the methods described in Section IV are illustrated in 

Figs. 5-7. The predictions for uncertainty and crack depth (𝐷) 

for DE and DE ResSpec (Figs. 5,6) are formed from 60 

independently trained networks. For MC dropout (Fig. 7) 

inference uses the output of one network with 200 forward 

passes, assigning a new random seed to the dropout realizations 

each time. The main scatter plots in these figures show 

predicted uncertainty vs. sizing error for each defect in the 

experimental test set.  Effective UQ for in distribution data in 

this plot appears as a zero-mean distribution of error that widens 

 
Fig. 6. Deep ensemble with residual connections and spectral normalization (DE ResSpec) uncertainty predictions for both in and out of distribution test 
sets. Experimental test set RMSE = 0.5831 mm. 

 
Fig. 7. Monte Carlo (MC) dropout uncertainty predictions for both in and out of distribution test sets. Experimental test set RMSE over 30 initialisations = 

0.673±0.05 mm. 
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as uncertainty increases. Also shown in main scatter plot, as 

horizontal dotted and dashed lines, are the calculated 

uncertainties for OOD datasets. These do not have associated 

error as there is no equivalent ‘true’ value. Error bars for this 

data show the 25th and 75th percentiles of uncertainty across the 

full range of 𝑋-positions for each defect type. Ideally, these data 

should be assigned higher uncertainty values than most in-

distribution data. Blue bars in the histograms plotted above and 

to left show the uncertainty and sizing error distributions for 

experimental and simulated test datasets based on bins of width 

of 0.05 mm (above) and 0.01 mm (left). For visual clarity, the 

red simulated test data histograms are not shown in the main 

scatter plot. Solid horizontal lines indicate the 90th percentile of 

the test sets’ UQ. Graphs plotted to the right show aggregated 

uncertainty vs standard deviation of error (STDE). These are 

calculated by splitting the uncertainty predictions into equally 

spaced bins of height 0.015 mm and calculating the STDE in 

each bin containing more than one defect. The black dotted line 

is uncertainty = STDE which is the ideal result for in-

distribution data as points on this line indicate predicted 

uncertainty is close to 𝜎 (as defined in (3)). Table IV gives 

correlation coefficient, 𝑅 for the linear fits to the data in the 

right-most graphs as well as the mean difference between STDE 

and predicted uncertainty. While, for the methods described in 

this paper, the relationship between STDE and uncertainty is 

expected to be monotonic, there is no guarantee it will be 1:1, 

or even linear. Therefore, the following sections describe the 

observed trends in calibration of uncertainty to error for the 

experimental and simulated test sets. 

 

1) Simulated 

Below the 90th percentile of sim test, DE (Fig. 5) and DE-

ResSpec (Fig. 6) have a strong linear relationship between 

uncertainty and STDE. This is quantified by the high 

correlation coefficient of linear fits, (𝑅𝐷𝐸,𝑆𝑖𝑚 = 0.99, 

𝑅𝐷𝐸−𝑅𝑆,𝑆𝑖𝑚 = 0.98). The lines fit to this data have a slope of ~1 

for both methods with low mean differences between 

uncertainty and STDE of 0.032 mm for DE and 0.015 mm for 

DE-ResSpec. In the upper tail of the uncertainty distribution 

(upper 10th percentile of sim test) both methods show increased 

scatter in STDE. This is likely due to the low amount of data in 

the STDE bins. MC dropout (Fig. 7) produces a linear fit for the 

simulated test set (𝑅𝑀𝐶,𝑆𝑖𝑚 = 0.84) but its slope is 2.3, severely 

underestimating error for larger uncertainty values.  

 

2) Experimental 

In the upper tail of the uncertainty distribution (upper 10th 

percentile of exp. test) both DE and DE-ResSpec underestimate 

error significantly. While this is likely contributed to by 

insufficient ensemble diversity it is mainly due to inaccuracies 

in the simulation of the 𝐿 = 5 mm defects. This is because the 

simulation used to create the training set assumes that the 

receiving transducer array elements are in the far-field of the 

defect. This is not the case for the 𝐿 = 5 mm defects, noticeably 

effecting their PWI images [9]. As shown in Figs. 5-7, the 

experimental defects of length 𝐿 = 5 mm are significantly 

undersized because of this domain shift. However, with DE and 

DE-ResSpec they are also assigned higher uncertainty. DE-

ResSpec achieves this most effectively, assigning a mean 

uncertainty to 𝐿 = 5 mm defects higher than 92% of the rest of 

the experimental test set. Even without knowing the true size of 

the defects this would highlight to the operator that they are 

somehow seen as anomalous by the networks. However, these 

uncertainty values are still low in comparison to their absolute 

error. This is because the difference in simulated and 

experimental 𝐿 = 5 mm defects creates a systematic 

undersizing in all members of the ensemble. As this change in 

the predictions has a non-zero mean across the ensemble the 

increased uncertainty is not full captured in the ensemble’s 

overall variance (Eq. 5). This is an example of domain shift 

negatively affecting the quality of UQ, a known issue [59]. 

Experimental test set uncertainty below the 90th percentile 

increases monotonically with STDE for both DE and DE-

ResSpec (𝑅𝐷𝐸,𝐸𝑥𝑝 = 0.95, 𝑅𝐷𝐸−𝑅𝑆,𝐸𝑥𝑝 = 0.98) whereas MC 

dropout shows more significant scatter (𝑅𝑀𝐶,𝐸𝑥𝑝 = 0.84). All 

three of these trends have a slope <1, indicating that UQ is 

significantly underestimating error. The consequence of this for 

implementation of these methods is that if uncertainty 

predictions are to be used as an estimate of expected sizing error 

on a new experimental sample, an experimental validation set 

is needed to calculate the slope. This method is commonly 

called ‘temperature scaling’ [60]. However, even without 

temperature scaling, the strong linear fit means that higher 

uncertainty is a strong indicator of higher error for the DE based 

approaches.  

 

3) Anomaly Detection 

Effective UQ should detect test cases drawn from 

distributions significantly far away from that of the training set. 

As the network has little to no prior information about  these 

cases, it should assign them high uncertainty. As described in 

Section III.B.2 this is primarily tested here using defect types 

not included in the training set. All three methods assign higher 

TABLE IV 
Metrics regarding linear fit of STDE to uncertainty below 90th percentile of uncertainty predictions for simulated and experimental test sets 

 
Simulated Test Set Experimental Test Set 

 
𝑅 Mean(U-STDE) (mm) 𝑅  Mean(U-STDE) (mm) 

DE 0.98 0.032 0.95 -0.24 

DE-ResSpec 0.99 0.015 0.98 -0.15 

MC Dropout 0.84 0.11 0.84 -0.21 
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uncertainty to the OOD defects than the bulk of the 

experimental test set but for MC dropout it is also almost all 

below the 90th percentile of simulated data, demonstrating poor 

anomaly detection. DE-ResSpec demonstrates the best anomaly 

detection; assigning uncertainty above 90% of the non 𝐿 =
5 mm experimental test set to 60% of the OOD cases. 

Exp. SDH A is assigned the lowest uncertainty by DE-ResSpec. 

This makes intuitive sense, as of all the OOD defects, it is the 

smallest and nearest the back wall, and therefore produces PWI 

images that most closely resemble a surface breaking crack. 

This is exampled in Fig. 2b in comparison to Fig. 1d. 

 

4) Choosing an Uncertainty Threshold 

In implementing these UQ methods for industry, test cases 

with uncertainty above a certain threshold can be dealt with 

separately. This may mean inspection by a human operator, 

further data acquisition, use of traditional sizing methods or a 

combination of these approaches. To do this, a value for the 

uncertainty threshold must be decided upon. Ideally, this would 

be done through the use of an experimental validation set that 

represents the true inspection conditions well. However, in the 

absence of such data, using the simulated validation set could 

be an effective approach. The left and top panels of Fig. 6 show 

that this works well for DE-ResSpec as both the simulated and 

experimental ‘in distribution’ test cases are assigned similar 

uncertainty distributions, meaning that almost all high sizing 

error (>1 mm) and OOD cases are above the 90th percentile of 

the simulated validation set. In contrast, in Fig. 5, DE 

demonstrates limited overlap between the UQ distributions for 

simulated and experimental test sets. This means that using a 

cutoff defined by only simulated data will find almost all 

experimental data anomalous with DE. It is hypothesized that 

the regularization of the spectral norm is responsible for DE-

ResSpec demonstrating better simulated and experimental 

overlap than DE. MC-Dropout has good overlap but doesn’t 

distinguish either of these sets from OOD data. 

 

VI. MAKING EFFICIENT USE OF RESOURCES 

In the application considered in this paper the computational 

resources at both training and test time are not a barrier for 

implementation of DE. Both the training and testing of are 

trivially parallelizable but even with multiple GPUs, some 

applications require more computational efficiency. This 

section discusses ways that training and inference time for DE 

can be reduced. 

 

A. Training Resources 

As the architecture used here has a relatively low number of 

parameters (842,000) each epoch takes ~3.5s using a NVIDIA 

GeForce GTX 1070 Ti, so training a full ensemble of 60 

networks can be completed in ~6hrs. If a more complex 

network was used (e.g. VGG 19 with 138 million) training an 

ensemble could take multiple weeks, making the development 

cycle very slow. Alongside its simplicity, MC dropout has also 

gained popularity as an UQ method because it only requires the 

training of one network so is a good candidate for reducing 

training time. Another approach is ‘snapshot ensembles’ [61] in 

which the members of an ensemble can be captured from one 

initialisation, using a cyclic learning rate. For this application 

snapshot ensembles were found to provide significantly worse 

UQ than DE. It is hypothesized that this is because the local 

optima found by snapshot ensembles are not as diverse as that 

found by re-initializing the network’s parameters. 

 

B. Test Resources 

Inference with the 60-network ensemble used in this paper 

takes ~8𝑚𝑠 per image set which for most applications is quick 

enough to be considered ‘realtime.’ However, if realtime 

inference was required on lightweight hardware and/or using a 

more complex network the test time resources would need to be 

managed more efficiently. This could be achieved by pruning 

the weights of the individual networks [62], using a smaller 

number of networks in the ensemble by optimizing which 

members are used [63] or distilling the ensemble down to a 

single ‘multi-headed’  network with one set of common 

convolutional layers and multiple sets of fully connected layers 

[64]. 

VII. CONCLUSIONS  

This paper has investigated the performance of UQ using DE, 

DE-ResSpec and MC Dropout for modern deep learning in 

application to inline pipe inspection when using a simulated 

training set and experimental test data. The success of these 

methods is judged by their calibration and anomaly detection 

performance. MC Dropout demonstrates only slightly raised 

uncertainty values for OOD samples and poorly calibrated 

uncertainty estimates. DE-ResSpec produced the best 

calibration on simulated test data, created the largest gap 

between in-distribution and out-of-distribution data and is the 

most reliable method in terms of assigning high uncertainty to 

high error test cases. However, while both DE and DE-ResSpec 

show a strong linear fit between experimental data error and 

uncertainty, the gradient of this fit is << 1, meaning that 

uncertainty significantly underestimates error. The implication 

of this for industrial applications is that an experimental 

validation set for scaling is needed if uncertainty values are used 

to infer expected prediction error. However, as the monotonic 

relationship between uncertainty and error is strong, even 

without an experimental validation set, predicted uncertainty 

can be used to compare relative error between test cases and 

detect anomalies. It is therefore the opinion of the authors that 

DE-ResSpec is currently the most appropriate method for UQ 

when using deep learning for NDE. 

One of the biggest unknowns in the field of data science for 

NDE is how data-driven NDE inspections are to be qualified. 

Within the current industrial framework, physics-based data 

analysis is qualified on a small pool of test samples and 

generalization assured by the interpretability of the method. 

However, in the future, the high levels of accuracy 

demonstrated by ‘black-box’ methods may well create a drive 

to qualify them by rigorous testing on a large range of test 
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samples. For this to be realized, UQ methods such as the ones 

presented in this paper, are going to be essential. As presented 

in this paper, DE and DE-ResSpec are suitable for application 

to approximating uncertainty of deep learning for NDE. 

Improvements could be made by research into producing better 

calibrated UQ on experimental test data, despite the domain 

shift from the simulated training set. Domain adaptation 

methods or techniques for increasing the diversity within the 

ensemble are promising candidates for this problem.  

APPENDIX 

Supporting code and data are available at the University of 

Bristol data repository, data.bris, at 

https://doi.org/10.5523/bris.xpeoi1k840fj2mrvfuaejo2t1. 
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