11 research outputs found

    Discrete Factorization Machines for Fast Feature-based Recommendation

    Full text link
    User and item features of side information are crucial for accurate recommendation. However, the large number of feature dimensions, e.g., usually larger than 10^7, results in expensive storage and computational cost. This prohibits fast recommendation especially on mobile applications where the computational resource is very limited. In this paper, we develop a generic feature-based recommendation model, called Discrete Factorization Machine (DFM), for fast and accurate recommendation. DFM binarizes the real-valued model parameters (e.g., float32) of every feature embedding into binary codes (e.g., boolean), and thus supports efficient storage and fast user-item score computation. To avoid the severe quantization loss of the binarization, we propose a convergent updating rule that resolves the challenging discrete optimization of DFM. Through extensive experiments on two real-world datasets, we show that 1) DFM consistently outperforms state-of-the-art binarized recommendation models, and 2) DFM shows very competitive performance compared to its real-valued version (FM), demonstrating the minimized quantization loss. This work is accepted by IJCAI 2018.Comment: Appeared in IJCAI 201

    Outer Product-based Neural Collaborative Filtering

    Full text link
    In this work, we contribute a new multi-layer neural network architecture named ONCF to perform collaborative filtering. The idea is to use an outer product to explicitly model the pairwise correlations between the dimensions of the embedding space. In contrast to existing neural recommender models that combine user embedding and item embedding via a simple concatenation or element-wise product, our proposal of using outer product above the embedding layer results in a two-dimensional interaction map that is more expressive and semantically plausible. Above the interaction map obtained by outer product, we propose to employ a convolutional neural network to learn high-order correlations among embedding dimensions. Extensive experiments on two public implicit feedback data demonstrate the effectiveness of our proposed ONCF framework, in particular, the positive effect of using outer product to model the correlations between embedding dimensions in the low level of multi-layer neural recommender model. The experiment codes are available at: https://github.com/duxy-me/ConvNCFComment: IJCAI 201

    DeepCF: A Unified Framework of Representation Learning and Matching Function Learning in Recommender System

    Full text link
    In general, recommendation can be viewed as a matching problem, i.e., match proper items for proper users. However, due to the huge semantic gap between users and items, it's almost impossible to directly match users and items in their initial representation spaces. To solve this problem, many methods have been studied, which can be generally categorized into two types, i.e., representation learning-based CF methods and matching function learning-based CF methods. Representation learning-based CF methods try to map users and items into a common representation space. In this case, the higher similarity between a user and an item in that space implies they match better. Matching function learning-based CF methods try to directly learn the complex matching function that maps user-item pairs to matching scores. Although both methods are well developed, they suffer from two fundamental flaws, i.e., the limited expressiveness of dot product and the weakness in capturing low-rank relations respectively. To this end, we propose a general framework named DeepCF, short for Deep Collaborative Filtering, to combine the strengths of the two types of methods and overcome such flaws. Extensive experiments on four publicly available datasets demonstrate the effectiveness of the proposed DeepCF framework

    Deep Item-based Collaborative Filtering for Top-N Recommendation

    Full text link
    Item-based Collaborative Filtering(short for ICF) has been widely adopted in recommender systems in industry, owing to its strength in user interest modeling and ease in online personalization. By constructing a user's profile with the items that the user has consumed, ICF recommends items that are similar to the user's profile. With the prevalence of machine learning in recent years, significant processes have been made for ICF by learning item similarity (or representation) from data. Nevertheless, we argue that most existing works have only considered linear and shallow relationship between items, which are insufficient to capture the complicated decision-making process of users. In this work, we propose a more expressive ICF solution by accounting for the nonlinear and higher-order relationship among items. Going beyond modeling only the second-order interaction (e.g. similarity) between two items, we additionally consider the interaction among all interacted item pairs by using nonlinear neural networks. Through this way, we can effectively model the higher-order relationship among items, capturing more complicated effects in user decision-making. For example, it can differentiate which historical itemsets in a user's profile are more important in affecting the user to make a purchase decision on an item. We treat this solution as a deep variant of ICF, thus term it as DeepICF. To justify our proposal, we perform empirical studies on two public datasets from MovieLens and Pinterest. Extensive experiments verify the highly positive effect of higher-order item interaction modeling with nonlinear neural networks. Moreover, we demonstrate that by more fine-grained second-order interaction modeling with attention network, the performance of our DeepICF method can be further improved.Comment: 25 pages, submitted to TOI

    Adversarial Personalized Ranking for Recommendation

    Full text link
    Item recommendation is a personalized ranking task. To this end, many recommender systems optimize models with pairwise ranking objectives, such as the Bayesian Personalized Ranking (BPR). Using matrix Factorization (MF) --- the most widely used model in recommendation --- as a demonstration, we show that optimizing it with BPR leads to a recommender model that is not robust. In particular, we find that the resultant model is highly vulnerable to adversarial perturbations on its model parameters, which implies the possibly large error in generalization. To enhance the robustness of a recommender model and thus improve its generalization performance, we propose a new optimization framework, namely Adversarial Personalized Ranking (APR). In short, our APR enhances the pairwise ranking method BPR by performing adversarial training. It can be interpreted as playing a minimax game, where the minimization of the BPR objective function meanwhile defends an adversary, which adds adversarial perturbations on model parameters to maximize the BPR objective function. To illustrate how it works, we implement APR on MF by adding adversarial perturbations on the embedding vectors of users and items. Extensive experiments on three public real-world datasets demonstrate the effectiveness of APR --- by optimizing MF with APR, it outperforms BPR with a relative improvement of 11.2% on average and achieves state-of-the-art performance for item recommendation. Our implementation is available at: https://github.com/hexiangnan/adversarial_personalized_ranking.Comment: SIGIR 201

    A Review of Movie Recommendation System : Limitations, Survey and Challenges

    Get PDF
    Recommendation System is a major area which is very popular and useful for people to take proper decision. It is a method that helps user to find out the information which is beneficial for the user from variety of data available. When it comes to Movie Recommendation System, recommendation is done based on similarity between users (Collaborative Filtering) or by considering particular user's activity (Content Based Filtering) which he wants to engage with. So to overcome the limitations of collaborative and content based filtering generally, combination of collaborative and content based filtering is used so that a better recommendation system can be developed. Also various similarity measures are used to find out similarity between users for recommendation. In this paper, we have reviewed different similarity measures. Various companies like face book which recommends friends, LinkedIn which recommends job, Pandora recommends music, Netflix recommends movies, Amazon recommends products etc. use recommendation system to increase their profit and also benefit their customers. This paper mainly concentrates on the brief review of the different techniques and its methods for movie recommendation, so that research in recommendation system can be explored
    corecore