1,478 research outputs found

    A NOVEL SIMPLE AND HIGHLY SECURE METHOD FOR DATA ENCRYPTION-DECRYPTION

    Get PDF
    In the course of the past 30 years, data has become pivotal to all aspects of human life. Data generated, captured, and replicated are increasing in size and expanding applications. The proliferation of fast wireless networks has encouraged data storage within the cloud. So, protecting data from attackers has become urgent to maintain its security and confidentiality, need for security and privacy technologies, systems, and processes to address it. This research paper proposes a simple and highly secure encryption decryption (SHSED) algorithm that can be used for cloud computing-based applications. It achieves the Shannon’s concept of diffusion and confusion by the involvement of logical operations, such as XORing, addition, and subtraction in addition to byte shifting. It is also characterized by the flexibility in the secret key length and the number of rounds. Experimental results have demonstrated powerful security level and a clear improvement in the encryption execution time measurements and security strength as compared with cryptosystems widely used in cloud computing

    A Literature Survey on the Cryptographic Encryption Algorithms for Secured Data Communication

    Get PDF
    Security has become a buzzword over the current years. As per Wikipedia, 55.1% of global population has internet access (June 2018). Hence, it is obvious that huge volume of data is exchanged among the users over the internet. As a result, everybody is worried about data security while transmission of any confidential data. In this proposed paper, several cryptographic algorithms are discussed based on concepts of encryption and decryption. Cryptography algorithms provide the mechanisms necessary to implement accountability, accuracy and confidentiality in secured communication. This is further preceded with the widespread adoption of secure protocols such as secure Internet Protocol and virtual private networks. Efficient cryptographic processing, therefore, will become increasingly vital to good system improvement results. Cryptographic algorithms provide many key building block for network security related services. Cyber attacks (intrusion) were up 44% globally during Q1 2018, and the speed of attacks continues to increase exponentially. 75% of organizations have experienced a breach, but only 25–35% believes they are equipped to deal with these intrusions effectively

    A Review on Encryption and Decryption of Image using Canonical Transforms & Scrambling Technique

    Get PDF
    Data security is a prime objective of various researchers & organizations. Because we have to send the data from one end to another end so it is very much important for the sender that the information will reach to the authorized receiver & with minimum loss in the original data. Data security is required in various fields like banking, defence, medical etc. So our objective here is that how to secure the data. So for this purpose we have to use encryption schemes. Encryption is basically used to secure the data or information which we have to transmit or to store. Various methods for the encryption are provided by various researchers. Some of the methods are based on the random keys & some are based on the scrambling scheme. Chaotic map, logistic map, Fourier transform & Fractional Fourier transform etc. are widely used for the encryption process. Now day’s image encryption method is very popular for the encryption scheme. The information is encrypted in the form of image. The encryption is done in a format so no one can read that image. Only the person who are authenticated or have authentication keys can only read that data or information. So this work is based on the same fundamental concept. Here we use Linear Canonical Transform for the encryption process

    A Blockchain-Based Mutual Authentication Method to Secure the Electric Vehicles’ TPMS

    Get PDF
    Despite the widespread use of Radio Frequency Identification (RFID) and wireless connectivity such as Near Field Communication (NFC) in electric vehicles, their security and privacy implications in Ad-Hoc networks have not been well explored. This paper provides a data protection assessment of radio frequency electronic system in the Tire Pressure Monitoring System (TPMS). It is demonstrated that eavesdropping is completely feasible from a passing car, at an approximate distance up to 50 meters. Furthermore, our reverse analysis shows that the static n -bit signatures and messaging can be eavesdropped from a relatively far distance, raising privacy concerns as a vehicles' movements can be tracked by using the unique IDs of tire pressure sensors. Unfortunately, current protocols do not use authentication, and automobile technologies hardly follow routine message confirmation so sensor messages may be spoofed remotely. To improve the security of TPMS, we suggest a novel ultra-lightweight mutual authentication for the TPMS registry process in the automotive network. Our experimental results confirm the effectiveness and security of the proposed method in TPMS.©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed
    • …
    corecore