3 research outputs found

    An introduction to factor analysis for radio frequency interference detection on satellite observations

    Get PDF
    A novel radio frequency interference (RFI) detection method is introduced for satellite-borne passive microwave radiometer observations. This method is based on factor analysis, in which variability among observed and correlated variables is described in terms of factors. In the present study, this method is applied to the Tropical Rainfall Measuring Mission (TRMM)/TRMM Microwave Imager (TMI) and Aqua/Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E) satellite measurements over the land surface to detect the RFI signals, respectively, in 10 and 6 GHz channels. The RFI detection results are compared with other traditional methods, such as spectral difference method and principal component analysis (PCA) method. It has been found that the newly proposed method is able to detect RFI signals in the C- and X-band radiometer channels as effectively as the conventional PCA method

    A Multitemporal Investigation of AMSR-E C-Band Radio-Frequency Interference

    No full text
    Radio-frequency interference (RFI) is increasingly a severe problem for present and future microwave satellite missions. RFI at C- and X-bands can contaminate remotely sensed measurements, as experienced with the Advanced Microwave Scanning Radiometer (AMSR-E) and the WindSat sensor. In this work, the multitemporal Robust Satellite Techniques approach has been implemented on C-band AMSR-E data in order to identify areas systematically affected by different levels of RFI, trying to discriminate them from natural geophysical variability zones. To the scope, nine years of AMSR-E data have been investigated, allowing us also to better infer RFI impact on data acquired during ascending or descending passes, as well as in horizontal or vertical polarization. In detail, two analyses were carried out: one considering only measurements at C-band and another one taking into account a combination between C- and X-band measurements. The results of this study will be shown and discussed in this paper
    corecore