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ABSTRACT 

A novel radio frequency interference (RFI) detection method is introduced for satellite-borne 

passive microwave radiometer observations. The method is based on factor analysis, in which, 

variability among observed, correlated variables are described in terms of factors. In this article, the 

method is applied to the TRMM/TMI and Aqua/AMSR-E satellite measurements over land surface 

to detect the RFI signals, respectively, in 10 GHz and 6 GHz channels. The RFI detection results are 

compared with other traditional methods, such as, spectral difference method and principal 

component analysis (PCA) method. It has been found that the newly proposed method is able to 

detect RFI signals in the C and X-band radiometer channels as effective as the conventional PCA 

method. 

 

Keywords: radio-frequency interference (RFI); TRMM Microwave Imager (TMI); Advanced 

Microwave Scanning Radiometer - Earth Observing System (AMSR-E); passive microwave 

radiometry; land surface retrieval; identification algorithm; 
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1. INTRODUCTION 

The Radio Frequency Interference (RFI) on satellite observations is known as the disturbance of 

electromagnetic radiation that interrupts the natural radiometric measurements by the satellite 

sensors. In other words, the natural thermal emission of the earth is obscured by active microwave 

sensors. The RFI poses a serious problem in satellite measurements, particularly at lower frequency 

bands, as they are mostly the un-protected bands in the microwave region (Johnson et al. 2006; 

Piepmeier et al. 2008; Misra et al. 2009; Adams et al. 2010). Currently, many microwave sensors are 

operated in unprotected bands, in order to facilitate specific geophysical retrieval. If the RFI signals 

are not adequately detected or removed from the satellite measurements, they can introduce 

significant errors in the retrieval process (Leroux et al. 2013). It is therefore necessary to reject the 

RFI signals prior to applying the retrieval algorithms on satellite measurements. 

 

In the context of passive microwave (PMW) remote sensing, the existence of RFI errors are noted 

on those satellite sensors, having lower frequency channels, for instance, the SSM/I, WindSat, TMI, 

AMSR-E, and recently launched AMSR2 measurements. Generally speaking, the RFI locations are 

persistent in time and populated in urban areas (Li et al. 2004; Chaurasia et al. 2012). Therefore, a 

pre-processed RFI map may help to detect and remove the stationary RFI scenes, to a limited 

extent. Njoku et al. (2005) have provided a global survey of RFI contamination for 6.9 and 10.7 GHz 

frequencies. Nevertheless, simple RFI map is not able to detect all RFI signals, especially the signals 

that are not stationary and originating from new RFI sources. 

 

As the RFI is becoming an increasingly serious hindrance in PMW remote sensing research and 

applications, there have recently been some progresses made to detect the RFI contamination. 

Primarily, many studies have found a good promise in detecting strong RFI contaminated scenes by 

employing simple spectral difference method (Li et al. 2004; Ellingson and Johnson 2006; Wu and 
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Weng 2011).  A variation of the spectral difference method incorporating the means and standard 

deviations of the spectral indices has also been found effective (Njoku et al. 2005). Truesdale 

(2013) has developed a probability distribution method for computing the likelihood of brightness 

temperature measurements containing RFI signals. Lacava et al. (2013) have implemented a multi-

temporal robust satellite techniques approach to identify the RFI signals. In addition, the uses of 

principal component analysis (PCA) indices have allowed even more accurately detecting the RFI 

signals (Li et al. 2006; Zou et al. 2012; Zhao et al. 2013). 

 

In this paper, we propose and introduce a novel RFI detection technique that adapts the spectral 

difference method with factor analysis (FA) implementation. At this stage, the method is applied to 

the TMI and AMSR-E datasets over land surface. The method is comprehensively compared with 

other traditional RFI detection techniques, including, spectral difference method, PCA, and 

normalized PCA. 

 

This paper is organized as follows. Section 2 provides a brief description of the datasets used. The 

factor analysis based RFI detection technique is introduced in Section 3. The execution of the factor 

analysis technique along with the results obtained from some other traditional RFI detection 

techniques are presented in Section 4. Section 5 offers a summary of the work. 

 

2. DATA 

The principal datasets used in this work are the TMI calibrated and AMSR-E resampled brightness 

temperature data. 

 

The TMI onboard the TRMM satellite is based on the design of the Special Sensor 

Microwave/Imager (SSM/I). It is a multi-channel, dual polarized, conical scanning passive 
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microwave radiometer that measures the intensity of radiation at five separate frequencies: 10.7, 

19.4, 21.3, 37, 85.5 GHz. Its swath width is 760 km on the surface. In order to maintain the 

consistency in measurements, two external calibration targets (one cold, one hot) are used. Spatial 

resolutions of the measurements vary based on the channel frequencies. Low frequency channel, 

that is 10.65 GHz channel, has a resolution of 63 x 37 km. By contrast, the higher-frequency 

channels have smaller footprint sizes (e.g. 7 x 5 km for 85.5 GHz). In depth description of the TMI 

instrument is described in Simpson et al. (1996), Islam et al. (2012), Islam et al. (2014a), and Islam 

et al. (2014b). In this article, the datasets are obtained from the Level 1B product files (1B11), 

available at NASA Goddard DAAC.  

 

On the other hand, the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) is a conically 

scanning passive microwave radiometer system that measures brightness temperatures at six 

frequencies starting from a C-band frequency at 6 GHz (6-89 GHz). The instrument has dual 

polarization capability, which leverages to separate horizontally and vertically polarized 

measurements at each frequency. The observations of cosmic background radiation and an on-

board warm target are used to facilitate the necessary calibration of the measurements. Spatial 

resolution of the individual channel measurements differs from 5.4 km at 89.0 GHz to 56 km at 6.9 

GHz. A comprehensive description of the AMSR-E instrument is given in Kawanishi et al. (2003). In 

this work, the brightness temperatures data are taken from AMSR-E Level-2A (AE_L2A) Global 

Swath Spatially-Resampled Brightness Temperatures product, obtained from NSIDC DAAC in 

Boulder, Colorado. That means footprint sizes for all twelve channels are spatially consistent. 

 

3. THE RFI DETECTION METHODS 

Traditionally, spectral difference method has been acknowledged as a good way to detect RFI pixels 

over land surface. The fundamental perception of the spectral difference method is based on the 
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physical phenomenon of surface emissivity with respect to frequencies. Naturally, higher frequency 

channels those are sensitive to land surface should have higher brightness temperature 

measurements than the lower frequency channels for the same polarizations: 

 TBHigher -TBLower > 0  (1) 

where, TBHigher and TBLower can be 6 GHz (10 GHz) and 10 GHz (18 GHz), respectively. This is mainly 

due to the fact that dielectric constant of water over land surface varies with respect to frequencies, 

and as such, the resulting surface emissivity increases with respect to frequencies.  Nevertheless, if 

a particular frequency is contaminated by RFI signals, a reversed spectral gradient is seen as: 

 TBLower -TBHigher > 0  (2) 

 

By using this simple spectral measurement difference (spectral index) in a given polarization, one 

can identify for possible RFI contamination. Previously, Yang et al. (2011) have mentioned that 5 K 

is a good threshold to detect RFI signals, based on a microwave land surface emissivity model over 

various land types at 10 GHz. 

 

Due to natural radiation measured by radiometer channels, a good correlation exists between the 

channel measurements. Nonetheless, the spectral difference method does not account for this 

natural correlation between the channels in identifying RFI signals. Therefore, the spectral 

difference method has been incorporated with principal component analysis (PCA) by several 

authors, and noted as very effective for RFI detection.  

 

Mathematically, let data matrix X to be constructed from RFI indices derived from satellite 

brightness temperature observations and centered so that each column has mean zero. Then, based 

on the singular value decomposition, 
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 TUDVX   (3) 

where, U and V are orthonormal, and D is diagonal with non-negative and decreasing values. The 

covariance matrix is then constructed from the data matrix X: 

 TTTT VVDnUDVVDUnXXnS 2111    (4) 

 

Note that PCA is based on linear combinations of X that are uncorrelated and are of high variance. 

On the other hand, factor analysis looks for linear combination of variables known as factors. 

Theoretically, the factor analysis model for k < p common factors is: 

 ufx    (5) 

where, f is uncorrelated having unite variance, u has unknown diagonal covariance matrix Ψ, and f 

and u are taken to be  uncorrelated. 

 

In fact, factor analysis can be written as a model for the covariance matrix Σ of the data: 

 S = LLT + Y  (6) 

This decomposition with p x k matrix Λ introduces a k factor model. The decomposition is scale 

independent, therefore, this can be consdiered as a model of the correlations of the data matrix. 

 

Since, PCA also seeks a linear space like Λf to explain the data, the covariance matrix is defined as: 

 S = LLT +X (7) 

where, Ξ is the error matrix, which is not diagonal. Therefore, 

 T  (8) 

where, Λ = p x k. 
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Note that the data matrix X is comprised of RFI indices, and the RFI indices vector is prepared as a 

function of spectral difference signatures. For instance, for the TMI imager, a vector of five 

component RFI indices can be written as: 
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Besides, normalized RFI indices can be used as follows: 
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(10) 

where, μ and σ are the mean and standard deviation of the five RFI indices, respectively. 

 

4. RESULTS AND EXECUTION 

In this article, we will be investigating the RFI detection by five different techniques: spectral 

difference method, PCA method, normalized PCA (N-PCA) method, FA method, and normalized FA 

(N-Factor) method. Note that, for the normalized methods (N-PCA and N-Factor), the normalized 

RFI indices are used as inputs. It is also worth mentioning that scattering effects originating from 

snow and ice can also lower the brightness temperatures at higher frequency channels than lower 

frequency channels. This could result into false RFI signals. Therefore, in this work, only satellite 

measurements from summer period are investigated. Further, primary RFI signals are originated 
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from land-based sources, such as transmitters used by active commercial services. Therefore, the 

investigation is restricted to land surface only. 

 

For the sake of clarity, we show the averaged spectral difference map for 10 GHz vertical 

polarization channel (TB10V – TB19V) for a day in Figure 1, from TRMM/TMI. It can be seen that, in 

some places, the brightness temperatures at low frequency channels are considerably higher than 

the measurements at high frequency channels (positive spectral difference). Such positive spectral 

difference signatures show an indication of possible RFI contamination. The difference can be as 

high as 10 K in some areas. The RFI contamination is more pronounced in Mexico and parts of 

South America, and in Western Asia. 

 

The spectral difference signatures can further be explained through scatter plots between 10 GHz 

and 19 GHz channels, with the same polarization (Figure 2). The scatter plots are constructed from 

two different domain of interest on 1st August 2013 TMI data. The data points shown in the top 

panels are from the South America region, whereas, the data points given in the bottom panels are 

from the Western Asia region. The positive spectral differences with 5 K threshold are denoted as 

red and rest other points are denoted as black. Assuming 5 K as a threshold, a linear correlation 

exists in RFI free data points.  By contrast, more than 50 K positive differences are seen at 10 GHz 

channel than the 19 GHz channel, implying RFI signals. Therefore, certainly, the use of spectral 

difference signatures as RFI indices in the PCA and FA methods would further help to detect the RFI 

signatures. Nevertheless, it is important to be remembered that weak RFI signals are difficult to 

distinguish from spectral difference signatures, due to natural geophysical variability in the 

measurements. 
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Figure 3 presents the spatial distribution of RFI detection by five different techniques. This 

particular example is constructed from five-day TRMM/TMI data, over the Mexico. The averaged 

values for the spectral difference index for vertically polarized 10 GHz band are shown. 

Corresponding PCA, N-PCA, Factor and N-Factor indices are also included. Higher the index score, 

higher the RFI contamination will be. Apparently, the RFI distributions by different methods are 

very similar, the figure shows. More importantly, it is encouraging to see that the newly developed 

RFI detection technique by the factor analysis can detect very similar to those detected by the PCA 

method. Such performance is evident for both factor analysis and normalized factor analysis 

methods. 

 

Another example of RFI identification is shown in Figure 4 for one day averaged TMI data. The plots 

exhibit the RFI contaminated signals over Western part of the Asia on 1st April 2013. Again, the RFI 

detection by the factor analysis methods (Factor and N-Factor) is in close agreement with the PCA 

method (PCA and N-PCA). 

 

Nevertheless, selecting a threshold to remove RFI signals for different techniques is quite arbitrary. 

Generally, a threshold of 5 as PCA index, 1 as N-PCA index, and 0.5 as Factor and N-Factor index 

agree well with each other in screening the RFI signals from satellite measurements. Figure 5 

demonstrates the efficiency of the RFI removals by different detection techniques with the above 

thresholds, but for the same example, as shown in Figure 4. The thresholds used here are chosen by 

subjective examination. One can clearly see that factor analysis method is efficient enough to detect 

and screen the RFI signals. In other words, both PCA and FA methods agree reasonably well with 

each other in excluding the RFI signals. 
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Another way to examine the performance of the RFI detection is through observing the channel 

correlations. Naturally, microwave signals produced from different channels are highly correlated 

with each other. On the contrary, RFI signals are not due to natural variation of microwave 

radiation, rather they introduce from external targets. Therefore, in the presence of RFI signals in a 

given channel, the correlations of that channel to other channels will be significantly lower.  As 

such, we construct the multi-channel correlations on RFI-contaminated and RFI-free scenes in 

Figure 6.  This figure is constructed from multiple summer day observations separating into RFI-

free and RFI-contaminated pixels, as detected by the factor analysis method. Left panel displays the 

correlations in RFI-free pixels and right panel displays the correlations in RFI-contaminated pixels. 

It can be seen that channel correlations in RFI-contaminated pixels are smaller than the RFI-free 

pixels. 

 

It is worth mentioning that only one narrow band is allocated in the 10.6-10.7 GHz range to passive 

sensing. That is why, some RFI signals have been noted in the TMI’s lowest frequency channel at 

10.65 GHz (X-band). On the other hand, in the 6.7-7.1 GHz, no bandwidth is allocated to passive 

sensing. Therefore, more RFI contamination is expected in the AMSR-E 6.9 GHz channel (C-band). 

Figure 7 demonstrates the RFI signals at 6.9 GHz for vertical polarization as found by the five 

methods, but applied to one AMSR-E orbital pass data onboard Aqua satellite. Significant RFI 

signals are seen in this orbital pass. Similar to the results shown for TMI data, it is evident that the 

factor analysis method successfully detects the RFI signals in 6 GHz channel. One can confirm that 

the factor analysis method is equally effective as of the well-known PCA method. This is true for 

both normalized and un-normalized RFI indices. 

 

It is important to outline that, in general, 6 GHz channel is avoided in certain geophysical retrieval 

algorithm (e.g. soil moisture) due to significant RFI contamination in this band. As such, with the 
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help of the RFI detection techniques, and by employing certain index thresholds, one can reject the 

possible RFI contaminated signals, prior to use the 6 GHz channel in their retrieval algorithms. This 

will eventually improve the geophysical retrieval, as a whole, at least on those areas, where RFI 

contamination is minimal. 

 

5. CONCLUSIONS 

The microwave information over land at low frequency channels is mainly used to obtain important 

surface properties such as soil moisture, skin temperature, and vegetation information (Gupta et al. 

2013; Srivastava et al. 2013a; Srivastava et al. 2013b; Srivastava et al. 2013c). This information is 

extremely important for not only satellite data assimilation studies, but also for geophysical 

retrievals and product monitoring purpose. Furthermore, many applications are directly impacted 

by the geophysical products, thus satellite measurements, including the applications in hydrology, 

ecology, climate change, and in weather forecasting. Given the importance, it is crucial to detect and 

remove unwanted RFI signals from the satellite measurements. 

 

In this communication, we present a novel RFI detection algorithm with factor analysis 

implementation. The method takes the advantage of channel correlations as well as the spectral 

differences between lower and higher frequency channels. The method is applied to X-band 

channels of TRMM/TMI and C-band channels of Aqua/AMSR-E satellite observations. The method is 

compared with some other traditional methods available in the literature, including, spectral 

difference method and PCA method. Similar to the traditional methods, the factor analysis method 

yield indices, and as such, the users can decide a subjective threshold to discard the RFI signals in 

the satellitetmi measurements. Based on the analysis, it is reasonable to conclude that the proposed 

factor analysis based RFI detection technique is an effective method at detecting the RFI signals in 6 

GHz and 10 GHz channels. At the same time, due to lack of independent validation datasets, the RFI 
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detection models are difficult to validate. As such, the RFI detection uncertainties associated with 

the PCA based method itself should also to be kept in mind, while interpreting the results. 
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Figure 1: An example illustrating the differences in brightness temperatures between vertically 
polarized 10.65 and 19.35 GHz channels (TB10V – TB19V). The map is constructed from one day 
ascending and descending TRMM/TMI orbital samples on 1st August 2013. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.  
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Figure 2: Scatter plots between 19 GHz and 10 GHz in vertical polarization (left) and horizontal 
polarization (right) channels from TRMM/TMI. Top panels are constructed from an example 
domain over South America and bottom panels are constructed from an example domain over X on 
1st August 2013. Data points with TB10V – TB19V≥5 K are indicated in red and TB10V – TB19V<5 K 
are indicated in black. 
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Figure 3: Spatial distribution of the RFI detection indices at 10 GHz for vertical polarization by five 
different RFI detection methods over South America. Data are averaged from five day TMI orbital 
samples. 
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Figure 4: Spatial distribution of the RFI detection indices at 10 GHz for vertical polarization by five 
different RFI detection methods over Western Asia. Data are averaged from one day TMI orbital 
samples (1st April 2013). 
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Figure 5: Same as Figure 4, but after excluding the RFI signals with applying index thresholds. 
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Figure 6: Correlation matrix of the TMI channels from RFI free (left) and RFI contaminated (right) 
scenes. 
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Figure 7: Spatial distribution of the RFI detection indices at 6 GHz for vertical polarization by five 
different RFI detection methods over Western Asia. Data are averaged from one day AMSR-E orbital 
samples. 
 
 
 
 
 


