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A B S T R A C T   

Several satellite microwave-based soil moisture (SM) products have become available in recent years, making 
possible to produce different datasets at continental and/or a global scale. Numerous variables, including 
geographic heterogeneity, weather and climate, and land cover, have an impact on these products’ accuracy. In 
this study, we account for all these variables by using the ecoregions as the scale of analysis and conducting a 
thorough comparison of satellite products with ground-based SM measurements. The whole Europe has been 
selected as study area, considering it as the aggregation of several ecoregions, each of them classified as an 
homogeneous zones, in terms of climate, vegetation and potentially investigable soil cover. Selected SM satellite 
data includes: i) the National Aeronautics and Space Administration (NASA) SMAP L4 V5; ii) the European Space 
Agency (ESA) SMOS-IC V2.0; iii) the H115 and H116 SM products in time-series format generated by analyzing 
data collected by the Advanced Scatterometer (ASCAT) aboard MetOp satellites; iv) the CGLS SSM 1 km obtained 
by the radar onboard ESA’s SENTINEL-1 platforms; and v) the European Space Agency’s Climate Change 
Initiative for Soil Moisture (ESA CCI SM) “COMBINED” ESA CCI SM v06.1 product, created by merging satellite- 
based passive/active microwave measurements. Such a variety, in terms of technologies and main features, of 
publicly available online SM products (in their up-to-date version), allowed for a comprehensive intercomparison 
against in situ measurements of the International Soil Moisture Network (ISMN), that spreads across all of Europe 
within the above-mentioned terrestrial ecoregion, using four different metrics, i.e., r, bias, ubRMSE and r/rANOM. 

Overall the intercomparison has underlined how SMAP L4 and ESA CCI show the best performance regardless 
of the considered metric. ASCAT has achieved best performances among non-modeled/blended products, while 
SMOS-IC has showed slightly better performance than the CGLS SSM 1 km. Using ecoregions allowed to further 
characterize the differences of each satellite products and identify the areas where all these products are more 
reliable (e.g., group (1) made by ecoregions as the Cantabrian Mixed forests or the Balkan Mixed forests; or group 
2 made by ecoregions which belong to Mediterranean area) or less performing (e.g., the Central European mixed 
forests and the Pontic steppe). Hence, these classes have been further analyzed exploiting the ERA5-Land data, in 
terms of the SM, air temperature, precipitation, evaporation and Leaf area index. The research has provided 
helpful insights into how the performance of particular SM satellite products changes based on both the char
acteristics of the product under consideration and the area under investigation (i.e., one ecoregion compared to 
another).   

1. Introduction 

Soil moisture (SM) is a key element of the surface water budget, 
controlling numerous processes occurring at different temporal and 
spatial scales within the climate system (Rodríguez-Iturbe et al., 2006; 
Manfreda et al., 2011; Baldwin et al., 2019). It is crucial for plant 

transpiration and photosynthesis, impacting the water, energy, and 
biogeochemical cycles, as well as triggering some natural hazards (such 
as droughts, floods, and landslides) due to contributions to runoff and 
infiltration dynamics (Koster et al., 2004; Seneviratne et al., 2010; 
Miralles et al., 2012; Albano et al., 2017; Chen et al., 2017). Therefore, 
monitoring SM spatiotemporal variability has currently become one of 
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the major challenges in a rapidly changing climate. SM can be measured 
by direct (i.e., gravimetric technique) or indirect methods (i.e., time- 
domain reflectometry TDR or soil capacitance measurements) at a 
point scale, while large-scale information may be collected by satellite 
sensors or models (Seneviratne et al., 2010). Each approach has its own 
pros and cons, and their integration usually provides the best perfor
mance in retrieving SM information (Lacava et al., 2013). 

Focusing on remote sensing, the capability of satellite sensors to 
acquire data useful for SM retrieval and investigation has been largely 
demonstrated in recent years (Ochsner et al., 2013), especially using 
measurements collected in the microwave region of the electromagnetic 
spectrum (Kerr, 2007; Wagner et al., 2007; Scarpino et al., 2018). Both 
passive (i.e., radiometer) and active (i.e., radar or scatterometer) sensors 
can, in fact, provide useful information about SM in the surface soil layer 
(up to 5–10 cm; hereafter referred indifferently to as SSM or SM) with 
different spatial and temporal resolutions depending on the features of 
the platform/sensor system used (Gao et al., 2006; Escorihuela et al., 
2010; Manfreda et al., 2014). Two satellite missions created specifically 
for SM recovery were launched and are currently in operation because of 
the SM’s usefulness in the spectrum of scientific applications referred 
above. The first one was the Soil Moisture and Ocean Salinity (SMOS) 
mission (Kerr et al., 2010), launched in 2009, followed in 2015 by the 
Soil Moisture Active and Passive (SMAP) mission (Entekhabi et al., 
2010a). Both these missions, notwithstanding failure of the active sys
tem of SMAP soon after its launch, can provide SM measurements with a 
sub-weekly temporal resolution and a spatial resolution of a few kilo
meters. Other satellite sensors have demonstrated their potential for SM 
retrieval at similar resolutions, such as the Advanced Scatterometer 
(ASCAT) onboard MetOP satellites (Wagner et al., 2013), as well as the 
recent radar onboard the Copernicus Sentinel-1 mission (Bauer-Mar
schallinger et al., 2019). The Advanced Microwave Scanning Radiom
eter 2 (AMSR-E2) onboard the Global Change Observation Mission 
(GCOM-1) is another instrument used for SM evaluation owing also to 
the experience developed on AMSR-E, its forerunner on Aqua satellite 
(Lacava et al., 2013). Furthermore, data from a few of the above- 
mentioned sensors/missions have been blended in the framework of 
the ESA Climate Change Initiative (CCI) program, to provide the so- 
called ESA CCI global satellite-observed SM dataset (Dorigo et al., 
2017; Gruber et al., 2019). A large number of calibration/validation 
experiments have been carried out so far to assess the accuracy of several 
SM products (Wigneron et al., 2007; Rodríguez-Fernández et al., 2017; 
Chen et al., 2017), whose quality have quickly improved in the mean
while due to the development of new approaches, parameterizations, 
and concepts. 

Apart from a large series of works focused on the comparison be
tween remote and in situ SM measurements at the single scale of the 
satellite pixel encompassing the ground station/s (Lacava et al., 2012), 
others have been conducted at a regional and/or global scales (Brocca 
et al., 2011; Ray et al., 2017), extending at the selected larger spatial 
scale achievements related to the ground-based measurements, regard
less of their often heterogeneous spatial distributions. Among the works 
that focus on narrow specific areas such as in Spain, Italy, France or USA 
(Brocca et al., 2011; Cui et al., 2017; El Hajj et al., 2018), many of them 
present comparisons of different SM datasets with in-situ data, showing 
not homogeneous results, depending on the data considered, as well as 
on the specific site-condition of the area analyzed. For example, ASCAT 
performed better than AMSR-E in Spain, Italy, and France (Brocca et al., 
2011), SMAP was found better than the other sensors in Spain and USA 
by Cui et al. (2017), while the work by El Hajj et al. (2018) highlighted 
the relevant impact of Radio Frequency Interference (RFI) on SMOS 
product performances. 

Other studies at continental/global scale (Colliander et al., 2017; Liu 
et al., 2019; Min et al., 2022) tried also to include in the analysis factors, 
such as climate and/or vegetation characteristics, that might change on 
the basis of the considered scale of investigation and cause the above- 
mentioned discrepancies among different regions (e.g., Al-Yaari et al., 

2014). In particular, Al-Yaari et al. (2019) conducted a global study at 
three levels considering: the five continents first, the Koppen- Geiger 
climatic zones (Rubel et al., 2017) and finally at the vegetation scale, 
referring to International Geosphere-Biosphere Programme (IGBP) land 
cover classification (Friedl et al., 2010). The study evidenced that sat
ellites have variable performance in Europe, which deserves further 
investigation. However, Min et al. (2022) provided evidence that Radio 
Frequency Interference (RFI) is a problem that might have a consider
able impact on the comparison in Europe. 

It is important to note that although soil and climate can be thought 
of as external factors, soil moisture dynamics depends on the reciprocal 
relationships between vegetation and water availability (Porporato and 
Rodriguez-Iturbe, 2002). As a result, the analysis that was done by 
taking variables like vegetation or climate into account separately did 
not allow for a thorough evaluation of SM performances. On the con
trary, taking into account the combination of climate and vegetation 
could allow to better understand which one or which combination of 
factors introduces errors in the microwave SM products, as well as 
justifying why Europe (EU) had poor (in some cases) and a diversity of 
performance in previous studies. 

In addition, the choice of the reference scale is also a critical issue 
which may impact on the performance assessment. For instance, the 
field scale appears too specific to guide on the choice of a satellite 
product, while global intercomparisons generalize the problem too 
much, making comparison not always easy. 

By contrast, the current study, starting from the results of Al-Yaari 
et al. (2019), explores the behavior of SSM products in the EU grouped 
by ecoregions to implement an intercomparison assessment in areas 
defined according to the combination of different flora, fauna, and cli
matic characteristics. Indeed, the study aims to expand the under
standing of a mid-scale analysis to evaluate the various roles played by 
the combination of elements in SM satellite retrievals in Europe. Effec
tively, ecoregions are defined as relatively large land areas characterized 
by a peculiar assemblage of natural communities and species, with 
boundaries that approximate the original extent of natural communities 
prior to major land-use change (Olson et al., 2001). The use of ecor
egions for SM assessment, here for the first time applied in Europe, has 
been already tested in USA by Baldwin et al.(2017), demonstrating its 
feasibility, because the variability of SM with respect to the ground 
measurements within each ecoregion was found lower that the one from 
neighboring ecoregions. 

The SM satellite products, analyzed in this study, are the NASA SMAP 
Level 4 V5 (SMAP L4), ESA SMOS-IC, ASCAT (H115 & H116), the CGLS 
SSM 1 km and the CCI long-term record SM (V04.2). Each of them was 
selected as the most up-to-date version of the products at the time of 
investigation and representative of different technologies (i.e., active or 
passive sensors) and approaches (i.e., modelled and/or blended) at 
different spatiotemporal resolution. Evaluation of the products was 
carried out through in situ SM measurements from the International Soil 
Moisture Network (ISMN) observed at a depth of 5 cm, generally 
assumed as satellite microwave sensing depth (Qiu et al., 2016), in the 
period from January 2015 to December 2020. Two years of measure
ments were at least available for all the considered SM products in such a 
5-year temporal interval. 

The paper is organized in the following way: the European ecor
egions investigated and their features as well as the satellites and 
ground-based datasets or methods and scores used for satellite product 
evaluation are described in Section 2. Results are presented in Section 3 
and Discussions are shown in Section 4. Finally, Section 5 summarizes 
the main Conclusions. 

2. Material and methods 

2.1. The European ecoregions 

In 1996, the WorldWide Fund (WWF) for Nature launched the 
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“Global 200 Initiative,” a campaign to promote biodiversity conserva
tion (Bulgarini et al., 2004), and making a digital map of 867 terrestrial 
ecoregions (https://ecoregions.appspot.com/). These ecoregions should 
be a priority for implementing conservation actions in relation to their 
outstanding biodiversity features in the terrestrial, freshwater, and 
marine realm (Olson et al., 2001; Olson and Dinerstein, 2002). Their 
boundaries have been determined using a combination of existing global 
maps, such as zoogeographic (Rübel, 1930), biotic provinces (Dasmann, 
1973, 1974), and vegetation types (UNESCO, 1969). 

Dinerstein et al. (2017) improved the delimitation in the original 
Terrestrial Ecoregions (Olson and Dinerstein, 1998; Ricketts et al., 1999) 
to better highlight regions of the world that are highly distinctive and 
deserve greater attention for their peculiar habitats. 

Europe belongs to the Palearctic biogeographic realm and contains 
six biomes (i.e., boreal forests/taiga; Mediterranean forests, woodlands 
& scrub; temperate broadleaf & mixed forests; temperate conifer forests; 
temperate grasslands, savannas & shrublands; tundra) and 37 terrestrial 
ecoregions ranging from Mediterranean-climate woodlands and scrub to 
temperate rainforests or tundra. All together, these ecoregions span an 
area larger than the European territory, including a subset of north-west 
Asia. Hence, in this study, we refer to these areas as “continental” or 
“European” scale. Ecoregions are not equally represented both by the 
number of ISMN monitoring stations and by their spatial distribution 
over the area. Fig. 1 represents the ISMN ground-stations, aggregated 
using different symbols by local network managed by different indi
vidual organizations/institutes, above the ecoregions considered in this 

study identified by a unique code and color. For a detailed description of 
the ISMN network used, please see Section 2.1.1. 

It is evident that there are a few ecoregions represented by ground- 
based stations concentrated only in a defined sub-sector. According to 
the SM temporal stability concept (Vachaud et al., 1985; Cosh et al., 
2006; Starks et al., 2006; Brocca et al., 2009; Liu et al., 2011; Loew and 
Schlenz, 2011; Brocca et al., 2011), local SM signal can be representative 
of larger areas, considering that the temporal pattern of point SM data is 
closely related to the temporal pattern of its surrounding area (Brocca 
et al., 2011). This implies that persistent regional SM patterns can in
fluence individual zones within a region, resulting in similar SM dy
namics. Therefore, it is acceptable to use datasets that describe SM in the 
same way but are recorded at different scales. In line with this approach, 
we aggregated results from non-homogeneously or sparsely distributed 
ground stations (in terms of median values) to represent the entire 
ecoregion, following the methodology used by Baldwin et al. (2017) in 
the USA. Furthermore, it is worth noting that, as we said above, ISMN 
stations are randomly spatially distributed in Europe, with some of the 
EU ecoregions completely uncovered. Therefore, it was possible to make 
the comparison of SM satellite products and ground measurements only 
in 16 of the 37 above-cited ecoregions. The main features of the 
considered ecoregions, including their specific Koppen-Geiger climate 
classification, are described in Table A.1 of the Appendix A of supple
mentary data. 

Fig. 1. Distribution of the 16 ecoregions considered in this study, spanning an area larger than the European territory, including a subset of north-west Asia and 
location of the used ISMN stations indicated using different symbols for each local network. 
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2.2. Dataset description 

The SM data used in this study were obtained from the International 
Soil Moisture Network (ISMN) and from ESA (SMOS, METOP A & 
METOP B, Copernicus Sentinel 1, ESA CCI) and NASA (SMAP) satellite 
missions/platform. In the following their main features will be briefly 
described. 

2.2.1. The International soil moisture network 
Since 2009, the ISMN has helped with calibration and validation 

efforts of SM retrievals (Dorigo et al., 2011, 2013), gathering and 
harmonizing data from diverse organizations and improving the inte
gration of advanced quality control methods (Dorigo et al., 2013), 
provision of additional metadata, and ancillary variables (e.g., precipi
tation, soil and air temperature). The ISMN data are available at data 
host facility of TU Wien under supervision of the BfG Federal Institute of 
Hydrology (https://ismn.geo.tuwien.ac.at/). Currently, the European 
ISMN network is composed of 28 station networks that are not evenly 
distributed and some of which are not operational (Dorigo et al., 2021). 
SM data are provided at several depths depending on the site in terms of 
volumetric water content (VWC m3/m3) and are accompanied by quality 
flag indicators. 

In our study, we chose only the ISMN stations within the selected 
ecoregions having SM measurements at a depth of 5 cm from January 
2015 to December 2020. In addition, only measurements flagged as 
“good” and with the VWC between 0–0.6 m3/m3 were considered 
(Dorigo et al., 2013; Al-Yaari et al., 2019). Among the existing networks, 
nearly 200 ground stations are available representing the 16 ecoregions 
reported above (Fig. 1). Table 1 summarizes some features (Dorigo et al., 
2021) of the chosen networks (name, location, number of gauge stations 
and activity status). 

The ISMN is given by the combination of several networks which are 
managed by individual institutes or agencies. This leads to a heteroge
neous distribution of the monitoring stations which are clustered in 
specific locations. In the following more details are included for each 
ecoregion and relative ground stations local network(s) that fall within:  

• The Italian sclerophyllous and semi-deciduous forests (795) share 
the Umbria network with the Appenine deciduous montane forests 
(644), which also contain the HYDROL-NET_PERUGIA. In both cases 
stations are located in the Central part of Italy.  

• The Romanian monitoring network, RSMN, covers five ecoregions: 
the Balkan Mixed forests (646), the Pannonian mixed forests (674), 
the Pontic steppe (735), the East European forest steppe (661), and 
the Central European mixed forests (654). The ground-based moni
toring stations are located respectively on the border with Bulgaria; 
between Romania and Hungary; in the Black Sea region of Romania 
and finally on the border with Moldova for both the 661 and 654 

ecoregions. In addition, the Central European mixed forests (654) 
host the BIEBRZA_S-1 network, located in northern Poland.  

• The Celtic broadleaf forests (651) is described by the WSMN network 
which is located in the United Kingdom.  

• The European Atlantic mixed forests (664) overlap with the Baltic 
mixed forests (647) in the Hobe monitoring network and with the 
Northeast Spain and Southern France Mediterranean forests (799), 
Western European broadleaf forests (686), and Cantabrian mixed 
forests (648) in the SMOSMANIA network. Furthermore, the Euro
pean Atlantic mixed forests and Western European broadleaf forests 
(686), which encompasses the HOAL monitoring network, also share 
the TERENO network. The SMOSMANIA network extends to the 
Mediterranean coasts (799) and covers the Occitania (664) and 
Aquitaine (686 and 648) regions, while the HOBE network is 
centered in Denmark and the HOAL network is centered in Austria. 
The Aquitaine region has additional monitoring capabilities through 
the Fr_Aqui network, which is integrated into the Cantabrian mixed 
forests (648).  

• The Sarmatic mixed forests (679) encompass the Ru_CFR network 
which belong to Russian area.  

• The Scandinavian and Russian taiga (717) include the FMI network 
which covers a northern part of Finland.  

• The Iberian sclerophyllous and semi-deciduous forests (793) is 
monitored by the REMEDHUS network, mostly located in the 
northern part of Spain. 

2.2.2. The SM satellites products 
The diverse satellite SM datasets selected for this study are listed in 

Table 2 that provides their main technical features. 

2.2.2.1. SMOS – IC. The SMOS mission was launched in November 
2009 by the European Space Agency as the first explorative mission able 
to provide observations of SM and sea surface salinity exploiting the 
exchange in the Earth’s water cycle between land and the atmosphere 
using MIRAS microwave L-band (1.4 GHz) measurements. Among the 
globally available products, we used the SMOS-IC v.02 at 25 km of 
spatial resolution, available in both ascending (i.e., 06:00 a.m.) and 
descending (i.e., 06:00p.m.) orbits. The SMOS-IC minimizes the use of 
auxiliary data (e.g., the Moderate Resolution Imaging Spectroradi
ometer (MODIS), Leaf Area Index (LAI)), exploiting the ISMN in situ 
observations and global maps of Parrens et al. (2016) to optimize the 
effective vegetation scattering albedo (ω) (Fernandez-Moran et al., 
2017) and the roughness parameters, respectively. 

We have filtered out the signals affected by potential RFI contami
nation by masking out the ones when root mean square error between 
SMOS L3 and simulated Brightness Temperature (TB-RMSE) were higher 
than 10 K (Al-Yaari et al., 2019; Wigneron et al., 2020) and the strong 
topography, frozen scene, and contaminated scene (urban + ice + water 
bodies) by masking out scene flags (SF) <=1 (Li et al., 2020; Wigneron 
et al., 2021; Li et al., 2021). 

2.2.2.2. SMAP L4. In 2015 the NASA SMAP satellite mission was 
launched to provide information on surface soil moisture, on the freeze/ 
thaw state of the land surface, on root zone SM until 1 m (Reichle et al., 
2014; Derksen et al., 2017), and net ecosystem exchange (NEE) of car
bon. The SMAP satellite is equipped with a radiometer working in L- 
Band at a spatial resolution ~36 km and a radar that functioned only for 
a few months in 2015 at a frequency of 1.26 GHz and a spatial resolution 
~3 km. Among the different available half-orbit SM products (e.g., 
SMAP L2, SMAP L3), we used the model assimilated product SMAP L4 v6 
(Data Set ID: SPL4SMAU) at 3-h time resolution on the global 9 km 
modeling grid. 

The SMAP L4 assimilates the 36 km brightness temperature (from 
L1C_TB), the 9 km brightness temperature downscaled by the L2_SM_AP 
algorithm and freeze/thaw observations (from L3_FT_A) using an 

Table 1 
Local networks included in the ISMN that have been adopted in the present 
study.  

Name Location n. stations Status 

WSMN UK 8 Running 
UMBRIA Italy 13 Running 
TERENO Germany 5 Running 
SMOSMANIA France 22 Running 
Ru_CFR Russia 2 Running 
RSMN Romania 20 Running 
REMEDHUS Spain 24 Running 
HYDROL-NET_PERUGIA Italy 2 Running 
HOBE Denmark 32 Inactive 
HOAL Austria 33 Running 
FR_Aqui France 5 Running 
FMI Finland 27 Running 
BIEBRZA_S-1 Poland 30 Running  
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ensemble Kalman filter (EnKF, Reichle et al., 2014). No filter was 
applied on the product. 

2.2.2.3. ASCAT. One of the instruments carried on board ESA’s MetOp 
satellites (MetOp -A launched in 2006, MetOp -B launched in 2012 and 
MetOp -C launched in 2018) is the Advanced Scatterometer (ASCAT). 
Such a sensor operates in the C-band (5.3 GHz) with vertical polarization 
(VV). The MetOp satellites are ~50 min apart from each other with 
09:30 a.m. descending and 09:30p.m. ascending orbits, respectively. 
Using a change detection method developed at the Institute of Photo
grammetry and Remote Sensing (IPF), of the Vienna University of 
Technology (TU Wien), SSM data in degree of saturation (Wagner et al., 
1999) are retrieved from the backscattering measurements. 

The study was conducted with the Metop ASCAT surface SM climate 
data records (CDRs), specifically, the H115 – Metop ASCAT SSM 
CDR2019 and its temporal extension H116, at a spatial resolution of 
12.5 km, expressed in terms of degrees of saturation, converted to 
physical units in meters using a globally and high-resolution porosity 
map with average polygon size ~100 km (Gleeson et al., 2014). During 
our analysis, SSM was excluded when its value was lower than 0 or 
greater than 100, or the processing flags (PROC_FLAG) indicated that no 
retrieval was carried out (e.g., PROC_FLAG > 1) or the surface state flag 
(SSF) indicated the following soil surface conditions: unknown, unfro
zen, frozen, temporary melting/water on the surface or permanent ice. 

2.2.2.4. SSM CGLS 1 km. The Copernicus Global Land Service (CGLS) 
has “a multi-purpose service component” providing a series of bio- 
geophysical products on the status and evolution of land surface at 
global scale, such as the SSM CGLS 1 km, namely surface soil moisture 
(in terms of saturation degree) at 1 km (1◦/112) spatial sampling. The 
SSM CGLS 1 km is derived from microwave radar data observed by the 
Sentinel-1 SAR satellite sensors (C-band) with a temporal resolution 
over Europe of 1.5–4 days starting from 2016 (the temporal resolution 
was about 3–8 days before 2016), when both Sentinel 1A and B became 
available. 

The Sentinel-1 backscatter value, terrain-geo-corrected and radio
metrically calibrated, is used to obtain soil moisture applying an adap
tion of the TU-Wien-Change-Detection (Wagner, 1998). The algorithm 
modified by Pathe et al. (2009), has been used both for low resolution 
ERS and ASCAT data and for higher resolution SAR validating it over 
Australia, Africa and large parts of South America (Algorithm Theoret
ical Basis Document CGLS SSM 1 km, Bauer-Marschallinger et al., 2019). 

A few filters were already considered within the algorithm hence, no 
further analysis was carried out. As for ASCAT, to compare SSM CGLS 1 
km with ground-based measurements, the Gleeson’s globally-high res
olution porosity map is used (Gleeson et al., 2014) with the aim to move 
to volumetric soil moisture content. 

2.2.2.5. ESA CCI. The combined ESA CCI-SM product blends 
scatterometer-based (ERS- ½, Metop A/B ASCAT) and radiometer-based 
SM information (SMMR, SSM/I, TMI, AMSR-E, WindSat, AMSR-E2, and 
SMOS), utilizing a weighted normal technique with the loads being 
relative to signal to noise ratio (SNR) assessed by the triple collocation 
investigation of every item (Dorigo et al., 2017; Gruber et al., 2019). A 
CDF matching procedure is used before integrating all datasets to scale 
the SM into the Noah land surface model by the Global Land Data 
Assimilation System (GLDAS) (Rodell et al., 2004). 

The day-by-day information provided concerns VWC (m3/m3) at a 
spatial resolution of 0.25◦ × 0.25◦, distributed in NETCDF format. We 
refer to the ESA CCI v6 product, ending in 2020. 

Data related to pixel locations covered by snow or with temperatures 
below 0 ◦C or covered by dense vegetation have been filtered out. 

2.3. Methods 

Our analysis compares satellite SM products with ground-based data 
from the ISMN, using all available observations in the 2015–2020 period 
(in instantaneous overpass times), when all data were available to avoid 
gaps. 

Furthermore, we evaluated our results by using SM time series 
extracted from the original grids (e.g., 9 km for SMAP L4, 25 km for 
SMOS-IC) for those pixels that correspond to each station separately 
(based on its latitude and longitude). It is possible that some stations in a 
dense network correspond to the same passive (SMAP, and SMOS), 
blended (CCI) pixel and several active (ASCAT) pixels. SM satellite re
trievals were matched with instantaneous in situ measurements within a 
time window of 1 h and the pairs are aggregated in a “daily” time step. 
The metrics between satellite data and the in-situ observations were 
then computed separately for each station. Finally, the median of each 
metric for all stations within an ecoregion was calculated. 

It is notable to mention that the different re-mapping grids of satellite 
data (e.g., WARP, SMOS, Quarter-Degree-Grid) as well as the scale 
discrepancies between in situ and satellite data, might have impacted 
the uncertainty of our results, in addition to the aggregation at ecoregion 
scale (as the largest homogeneous area potentially investigated) 
accordingly with the concept of temporal stability already discussed in 
Section 2.1. However, this issue is out of the scope of the present work 
and, therefore, it isn’t further investigated here. 

Three main scores, widely used within the SM community (Ente
khabi et al., 2010b; Al-Yaari et al., 2019; Peng et al., 2021; Zheng et al., 
2022), were considered to evaluate remotely sensed SM products ac
curacy: Pearson correlation coefficient (r), bias, and unbiased root mean 
square error (ubRMSE). r is unconcerned with any bias in the mean or 
magnitude of the variations; while the ubRMSE is a measure of accuracy 
after removing of sensitivity to distortions in both mean and amplitude 
of fluctuations, exploiting bias. This latter metric incorporates the 
RSME, which removes only the amplitude of fluctuation (Entekhabi 

Table 2 
SM satellite retrieval technical features.  

Mission/Platform Sensor Type Version Temporal Resolution (Acquisition time, when 
available) 

Time 
period1 

Spatial 
coverage 

Spatial 
sampling 

SMOS MIRAS Passive SMOS-IC 12 h 
(6:00 a.m. 
6:00p.m.) 

2010- 
present 

Global 25 km 

SMAP SAR & 
RADIOMETER 

Passive SMAP L4 V5 3 h- 2015- 
present 

Global 9 km 

METOP A & METOP 
B 

ASCAT Active H115 & H116 12 h 
(9:30 a.m. 
9:30p.m.) 

2007- 
present 

Global 12.5 km 

Copernicus Sentinel 
1 

SAR Active SSM − 1 km 
V1 

1.5–4 days 2015- 
present 

Europe 1 km 

ESA CCI  Combined ESA CCI 
v06.1 

Daily 1978–2020 Global 0.25◦

1 A common timeframe (2015–2020) was chosen in this study. 
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et al., 2010). Please, see Al-Yaari et al., 2019; Peng et al., 2021; Zheng 
et al., 2022 for the formulation. 

The performance of the analysis carried out considering an historical 
series may be positively affected by the seasonal cycle (Scipal et al., 
2008). Therefore, we have also considered to evaluate SM anomalies, 
computed, for example, as proposed by **Rodríguez-Fernández et al. 
(2016) on the basis of a 35-day moving window (w) (Brocca et al., 2011) 
in order to better assess the accuracy of the SM products. 

SM(t) ANOM =
SM(t) − SM(t − 17 : t + 17)

sigmaSM(t − 17 : t + 17)
(1)  

where the anomalies (SM(t) ANOM) could be generically referred to the 
satellite (SAT) or the in situ (ISMN) SM time-series, and computed as 

deviation of a measured acquired at time (t) from the SM mean SM(t)
evaluated on a temporal interval ranging from previous 17 day before (t) 
and next 17 days after (t). Such a deviation is weighted by the SM 
standard deviation (sigmaSM) computed on the same period. Such a 
formulation allows for a rough reduction of seasonality effects, and 
hence to analyze short-term variations. To completely remove the sea
sonality, we should consider a long-term analysis that will be proposed 
in a companion study. 

SM anomalies are first exploited to detect outliers, finding, and dis
carding the outer fences of the satellite SM anomalies dataset with the 
quartiles method (Walfish, 2006). Then, consistently with previous SM 
assessment, the metric such as the Pearson correlation coefficient 
(rANOM) are evaluated on a single station and then aggregated at the 
ecoregions scale using as a reference value the median. 

3. Results 

Considering that past studies highlighted that European heteroge
neity in climate and habitat affected remotely sensed SM products ac
curacy, the results obtained in the present study can show how the 
combination of these factors affects satellite products’ performance 
when considering every single European ecoregion as a homogeneous 
area. 

In detail, the performances of each satellite SM product with respect 
to in situ measurements are shown in Fig. 2 in terms of median values of 
r, bias and ubRMSE using as refence period 2015–2020. 

The overall analysis demonstrated that the performances of each 
satellite product are strongly influenced by ecoregions’ spatial hetero
geneity, climatic conditions and land cover. All satellite products show 
weak performances for all metrics on i) the Pontic steppe ecoregion 
(735) and ii) the Central European mixed forest (654). It is worth 
mentioning that the ecoregions 735 and 654 are contiguous. 

In the following, we present the results of intercomparison between 
different remote sensing products detailed for each metric. In terms of r, 
SMAP L4 showed the best performance in the most part (i.e., eleven) of 
ecoregions, ESA CCI in four and ASCAT performed better than the other 
satellite products on the Pontic steppe ecoregion (735), providing a 
correlation value of 0.36. On the other hand, CGLS SSM 1 km showed the 
lowest correlations with ground data in the most part (i.e., ten) of 
ecoregions, SMOS-IC on five ecoregions and ESA CCI on the ecoregion 
654 (where, as we said above, all SM products have weak perfor
mances). In particular, CGLS SSM 1 km did not show any correlation in 
Sarmatic mixed forests (679) and Scandinavian and Russian taiga (717) 
ecoregions, obtaining an r close to 0. The SMOS-IC had variable corre
lations, with a value greater than 0.5 only on four of the 16 ecoregions 
considered in this study. Moreover, it is necessary to clarify that ESA CCI 
did not provide SM measurements for the considered period on the 
Celtic broadleaf forests ecoregion (651), where generally all SM satellite 
retrievals had unsatisfactory correlation except SMAP L4 (r = 0.62); and 
that we obtained meaningful correlation (r > 0.5) for all satellite 
products in the Balkan (646) and Baltic (647) mixed forests. 

SMAP L4 exhibited the lowest values of bias (in absolute terms 
ranging 0.03–0.05) on eight ecoregions, except for Balkan mixed forests 
(646), East European Forest steppe (661), Pannonian mixed forests 
(674), and Pontic steppe (735) where its performance fairly decreases 
until reach the worst performance in 735 respects to all other satellite 
products. However, SMAP L4 confirmed its good performance also on 
Celtic broadleaf forests (651), i.e., the bias value was around 0.03, 
where other remote sensing products showed higher bias values. On 
three ecoregions (i.e., 646, 686 and 795) ESA CCI showed a 

Fig. 2. Satellite products performances for each ecoregion: top panel r, middle bias and low ubRMSE.  
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complementary behavior to SMAP L4, obtaining the lowest value of bias. 
ASCAT achieved an overestimation on all ecoregions and had a better 
bias (i.e., close to 0) than the others on the Pontic steppe ecoregion (735) 
but it obtained the worst bias (− 0.26) in Celtic broadleaf forests (651). 
SMOS-IC achieved the best performance in terms of bias only in four 
ecoregions (648, 661, 674, 793), while CGLS SSM 1 km had the worst 
values in most part of ecoregions, with a maximum value of – 0.37 on 
Central European mixed forest (654). More in general, a negative bias 
for all products was found for Sarmatic mixed forests (679) and Western 
European broadleaf forests (686). Instead, all remotely sensed products 
have a bias close to 0 in Cantabrian mixed forests (648). 

In terms of ubRMSE, ESA CCI showed the best performance in most 
part of ecoregions as reported in Table 4; the SMAP L4 maintained a 
ubRMSE always comparable to ESA CCI, achieving the lowest ubRMSE 
in the 651 and 679 ecoregions. SMOS-IC achieved the worst bias in the 
most part (eleven on 16) of the ecoregions, while ASCAT and the CGLS 
had variable performances according to the ecoregions. 

Furthermore, we also evaluated the correlation between SM anom
alies (rANOM) computed using a moving window of 35 days, both 
calculated on situ and satellite data, to assess whether seasonality could 
have affected results in the different ecoregions. SMAP L4 achieved a 
meaningful correlation on anomalies (rANOM > 0.5) in five ecoregions 
(644, 646, 648, 654, 674). ESA CCI had a positive correlation on three of 
ecoregions (647,648,795), ASCAT on one (664), and the others had non- 
meaningful correlation. The SMOS-IC and the CGLS SSM 1 km had a 
nonpositive correlation. 

Focusing specifically on comparing r and rANOM (hereafter referred to 
as r/rANOM), Table 3 displays rANOM for each sensor in each ecoregion, in 
comparison with those achieved on the original time-series data (r). It’s 
worth noting that the r values in Table 3 may differ slightly from those in 
Fig. 2, as they were recalculated after removing outliers with the 
quartiles’ method (as described in methodology section). Previous 
studies (Scipal et al., 2008; Brocca et al., 2011) have shown that, when 

high seasonality is present, r tends to be greater than rANOM. As expected, 
removing the seasonal effect typically resulted in a decrease in corre
lation, with rANOM being lower than r (as shown in the white rows of 
Table 3). On the other hand, an increase in the correlation between 
rANOM and r is indicative of high signal variability or poor sensor quality 
in detecting SM-related signals (as shown in the dark gray rows of 
Table 3), considering the adopted screening out of anomaly-outliers. In 
Table 3 we have also reported the values of r and rANOM for each satellite 
aggregated at the EU continental scale, aggregating correlations by 
median. Examining this median value of the r and rANOM by satellite, the 
effect due to the procedure of screening out anomaly-outliers, was lost 
on the aggregation at European scale (see last line of Table 3). It con
firms that the ecoregion scale is optimal for obtaining valuable infor
mation about the performance of satellites that would otherwise be lost. 
Probably, this is due both to the scale, neither too large nor too small but 
also to the combination of the factors from which the ecoregion origi
nates (e.g., climate or vegetation). 

4. Discussion 

Satellite-based SM measurements accuracy may be affected by 
several levels of uncertainty depending on the characteristic of the 
considered product, as well as of the investigated area. In this work, we 
tried to better assess this aspect by comparing different SM products 
with ground measurements in the European ecoregions considered as 
areas with homogenous patterns related to climate, vegetation, soil 
cover and their interactions. 

Table 4 shows the remote sensing product that obtains best perfor
mance when comparing with in-situ measurements for each ecoregion 
using the different metric investigated. The overall results (please see 
last column) show a slightly higher performance of SMAP L4 and ESA 
CCI, probably due respectively to the use of ancillary data such as 
meteorological forcing and parameterization schemes (Tavakol et al., 

Table 3 
Performance obtained on each ecoregion in terms of r and rANOM. The increasing in the correlation between rANOM and r is colored in dark gray.  
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2019) within advanced models or due to the combination of different 
satellite data. The overall lowest performance of SMOS-IC and of the 
high spatial resolution product CGLS SSM (1 km) could be influenced by 
the strong RFI in Europe (Oliva et al., 2012; Mohammed et al., 2016) as 
reported in the literature by Bircher et al. (2012), El Hajj et al. (2018) 
and Ma et al. (2019), as well as surface effects (i.e., surface roughness, 
land-cover heterogeneity within the pixel) usually smoothed when 
observing at larger scale. 

As showed in Fig. 2 and Table 3 (and in their summary in Table 4), in 
terms of Pearson’s correlation coefficient, it was highlighted the 
complementarity SMAP L4 and ESA CCI in agreement with those found 
by Ma et al. (2019) at the global scale. However, we found in line with 
Cui et al. (2017) that SMOS-IC had good and comparable correlation 
over the REMEDHUS network used to describe the 793 ecoregion and in 
Denmark within the 647 ecoregion. 

In terms of ubRMSE, in line with the concept of complementarity, 
ESA CCI was superior to the SMAP L4. Consistent with Al-Yaari et al. 
(2019) who obtained lower performances of most remotely sensed SM 
products in “cold climate” areas (e.g., Koppen-Geiger D), we observed in 
Fig. 2 for ecoregion 679 an ubRMSE greater than 0.1 for all satellite 
products, as expected due to the effects of snow, frozen conditions and 
landscape. However, we should mention that the concurrence of dis
turbing factors, such as dense vegetation or mountains, could further 
alter the analysis performance in some of the ecoregions. 

Concerning to bias, SMAP L4 and ESA CCI tend to overestimate the in 
situ ISMN SM, SMOS-IC and CGLS is prone to underestimate in situ SM. 
It is worth noting that the use, in our study, of Gleeson’s porosity map to 
rescaled CGLS and ASCAT measurement units for a consistent compar
ison with other satellite products, as highlighted by Fascetti et al. 
(2016), can influence the results. 

What particularly stands out from the r/rANOM comparison, as 
showed in Table 3, was the confirmation of the best results in addition to 
other performance metrics for all the remote sensing products in the case 
of the Baltic mixed forests (647) or Balkan mixed forests (646) but also 
Iberian sclerophyllous and semi-deciduous forests (793). 

On the other hand, all SM satellite products showed the high signal 
variability due to the screening of anomaly outliers (rANOM greater than 
r) in the central European mixed forest ecoregion (654). Moreover, 
SMAP L4, which has proved to be the most accurate SM product in our 

analysis, showed a similar effect in performance also for the Pontic 
steppe (735) ecoregion, as well as it has been shown in the case of ESA 
CCI. This indicates that Central European mixed forest ecoregion (654) 
and Pontic steppe (735) ecoregions are critical areas to obtain accurate 
SM assessment via the selected satellite products. 

Focusing on all results metrics of SMAP L4, it achieved correlation 
around 0.7, the best values of ubRMSE and the highest performance in 
terms of r/rANOM on the ecoregion group (cluster 1 in Fig. 3) constituted 
by 644, 646, 647 and 648. Similarly, the ecoregions of Mediterranean 
area (cluster 2 in Fig. 3: 793,795 and 799) showed all a quite high 
performance with r around 0.66, ubRMSE around 0.07 and r > rANOM. 
Meanwhile, as said above, on the group (cluster 3 in Fig. 3) of 654 and 
735, SMAP L4 reached low performances. Due to similar performances 
and as geographically contiguous areas, 679 and 717 could be consid
ered as another group (cluster 4 in Fig. 3). In the rest part of ecoregions, 
it demonstrated also significative performances (r > 0.5 and r > rANOM) 
but without a particular common pattern (cluster 5 in Fig. 3). 

Hence, we used the ERA5-Land data, a reanalysis dataset providing 
at ~9 km grid spacing and covering the period from 1950 to 2–3 months 
before the present, to find similarity inside each cluster or dissimilarity 
from one cluster to other that can support performances’ results. The 
core of ERA5-Land, i.e., a reproduction of the land component of the 
ERA5 climate reanalysis, forced by the ERA5 weather fields, is the Tiled 
ECMWF Scheme for Surface Exchanges over Land that incorporates land 
surface hydrology (H-TESSEL). It uses the CY45R1 version of the IFS 
(https://confluence.ecmwf.int/display/CKB/ERA5-Land%3A+data+do 
cumentation). In particular, we have downloaded the data for each 
month of the period 2015–2020 for air temperature (2m_temperature: 
temperature of air at 2 m above the surface of land, sea or in-land wa
ters), precipitation (total_precipitation: sum of large-scale precipitation 
and convective precipitation), evaporation (total_evaporation: accu
mulated amount of water that has evaporated from the Earth’s surface) 
and Leaf Area Index of high and low vegetation (leaf_
area_index_high_vegetation, leaf_area_index_low_vegetation). Thus, we 
have computed for each variable the annual mean, maximum and 
minimum. 

The first cluster of ecoregions (644–646–647–648), where SMAP L4 
showed the highest performance for most part of the metrics, was 
characterized by heavy rain, intermediate vegetation level and 

Table 4 
Summary results of all performance (R, bias, ubRMSE, comparison between R and RANOM). Each color indicates a satellite product: light blue SMAP L4; green ESA CCI; 
purple SMOS-IC; orange ASCAT; and dark yellow CGLS.  
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moderate evaporation (the air temperature did not give additional in
formation). The ecoregions 793,795 and 799, were all in the Mediter
ranean and were characterized by low precipitation and evaporation 
and high temperature. 

The remaining part of ecoregions presents a diversity of results in 
term of metrics without a common pattern in the ERA5-Land data. An 
exception is the cluster 4 (679–717), in which only SMAP L4 obtained 
fair good results and the ERA5-Land indicates the coldest climates 
among all ecoregions (3–6 degrees average) and lowest evaporation. In 
addition, in those areas, there are few stations to characterize large areas 
where soils are cold and sparsely vegetated. 

The Central European mixed forest (654) and Pontic steppe (735) 
ecoregions (cluster 3) were areas in which we cannot obtain accurate SM 
assessment via the selected satellite products, and apparently, they seem 
to do not have any common characteristics in term of vegetation and 
climate. However, if we look at the comparison in term of SM using 
SMAP L4 satellite product with both in situ and ERA5-Land SM (vol
umetric_soil_water_layer_1: volume of water in soil layer 1 for a depth 
that goes from 0 to 7 cm), as showed in Fig. 4, we highlighted that SMAP 
L4 and ERA5-Land SM were good correlated in these ecoregions (graph 
in the middle). But similar to SMAP L4 vs ISMN correlation (on the left of 
Fig. 4), the ERA5-Land vs ISMN correlation (on the right of Fig. 4) was 
very low. This can suggest a possible inconsistency or a high uncertainty 
in the in-situ data. Moreover, there could be additional climatic and 
physical factors, e.g., subsurface scatterers, which may be the causes of 
uncorrelation. Wagner et al. (2022) recently demonstrated how in more 

temperate climatic regions, strong subsurface scatterers (e.g., karstic 
rock) may become detectable during dry spells, especially when they are 
near the soil surface, adding uncertainty in the retrieved soil moisture 
value. Our results, indeed, indicate for sure problems in some areas that 
affected the continental scale analysis performed (please see last row of 
Table 3). In fact, the inclusion of these areas can affect the overall per
formance of SM products, hence producing the variegate results that 
several past studies have found in Europe. 

It was nothing as for some of the ecoregions was more complicated to 
extract a clear picture of their behavior since an ecoregion is for its 
nature a combination of climate, soil, vegetation and results of remote 
sensing inter-comparison does not show a marked trend or a singular 
direction. However, our work provides useful insights about SM prod
ucts performance not achievable when regional, continental or global 
scale are considered and should support future studies in ranking 
various SM products for various application in different location of 
Europe. 

5. Conclusion 

In the present work, we assessed an intercomparison between five 
SM satellite retrievals using the ISMN SM data as reference dataset, on 
European Ecoregions, homogeneous zone based on vegetation as cli
matic characteristics. Satellite SM products come from active (H115 & 
H116, CGLS SSM 1 km), passive (SMAP L4, SMOS-IC) or combined 
sensors (ESA CCI). Modelled (SMAP L4), blended (ESA CCI) and not 

Fig. 3. Ecoregions grouped by clusters derived from performances (especially r using the top performer SMAP L4).  

A. Mazzariello et al.                                                                                                                                                                                                                            



Journal of Hydrology 626 (2023) 130311

10

modelled/blended data (SMOS – IC; ASCAT; CGLS 1 km) have been 
tested transforming all data in unit of volumetric water content (VWC) 
using a porosity map. 

Results demonstrate that SMAP L4 shows the best performances 
regardless of the considered metrics, ESA CCI is the product ranking just 
below it and can be considered as complementary with SMAP L4, 
depending on the type of performance considered. ASCAT provided the 
best results among non-modelled/blended SM satellite products, 
achieving a meaningful correlation on seven ecoregions. For those 
ecoregions where ESA CCI has the highest level of accuracy, ASCAT 
shows good performance, highlighting its fundamental role in the 
blended ESA CCI product. CGLS SSM 1 km had the lowest performance 
and was the nosiest SM satellite retrieval exploited. The use of SM 
anomalies computed on a 35-day moving window gave results consis
tent the one already discussed, indicating SMAP L4 as the most accurate 
product. 

There were a few ecoregions clusters characterized by common 
feature in terms of climate or vegetations such as the areas where all 
these products are most reliable (made by ecoregions as the Cantabrian 
Mixed forests or the Balkan Mixed forests) or high performing regardless 
satellite, e.g., ecoregions which belong to Mediterranean area. In addi
tion, the comparison, in terms of SM, between SMAP L4, ISMN with 
ERA5-Land allowed us to justify the worst performances of all the sat
ellite products in the Central European Mixed forests (654) and the 
Pontic steppe (735) showing a poor correlation between ISMN and 
ERA5-Land and a good correlation between SMAP L4 and ERA5-Land 
that could indicative of some issues in the ground-based network 
whose stations are shared between 654 and 735. Nevertheless, our work 
provided information about the assessment of SM satellite retrievals 
which could be lost if analysis at regional, continental or global scale are 
considered and should support future studies on Europe. For example, 
the future work could deeper investigate the lack of correlation between 
all SM satellites and ISMN shallow SM ground measurements removing 
completely the seasonality or by analyzing the phenological cycle, with 
the aim to led to a more complete characterization of the hydrological 

features of the ecoregions. 
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