12,845 research outputs found

    A Randomized Kernel-Based Secret Image Sharing Scheme

    Full text link
    This paper proposes a (k,nk,n)-threshold secret image sharing scheme that offers flexibility in terms of meeting contrasting demands such as information security and storage efficiency with the help of a randomized kernel (binary matrix) operation. A secret image is split into nn shares such that any kk or more shares (knk\leq n) can be used to reconstruct the image. Each share has a size less than or at most equal to the size of the secret image. Security and share sizes are solely determined by the kernel of the scheme. The kernel operation is optimized in terms of the security and computational requirements. The storage overhead of the kernel can further be made independent of its size by efficiently storing it as a sparse matrix. Moreover, the scheme is free from any kind of single point of failure (SPOF).Comment: Accepted in IEEE International Workshop on Information Forensics and Security (WIFS) 201

    Multi-party Quantum Computation

    Get PDF
    We investigate definitions of and protocols for multi-party quantum computing in the scenario where the secret data are quantum systems. We work in the quantum information-theoretic model, where no assumptions are made on the computational power of the adversary. For the slightly weaker task of verifiable quantum secret sharing, we give a protocol which tolerates any t < n/4 cheating parties (out of n). This is shown to be optimal. We use this new tool to establish that any multi-party quantum computation can be securely performed as long as the number of dishonest players is less than n/6.Comment: Masters Thesis. Based on Joint work with Claude Crepeau and Daniel Gottesman. Full version is in preparatio

    Message Randomization and Strong Security in Quantum Stabilizer-Based Secret Sharing for Classical Secrets

    Get PDF
    We improve the flexibility in designing access structures of quantum stabilizer-based secret sharing schemes for classical secrets, by introducing message randomization in their encoding procedures. We generalize the Gilbert-Varshamov bound for deterministic encoding to randomized encoding of classical secrets. We also provide an explicit example of a ramp secret sharing scheme with which multiple symbols in its classical secret are revealed to an intermediate set, and justify the necessity of incorporating strong security criterion of conventional secret sharing. Finally, we propose an explicit construction of strongly secure ramp secret sharing scheme by quantum stabilizers, which can support twice as large classical secrets as the McEliece-Sarwate strongly secure ramp secret sharing scheme of the same share size and the access structure.Comment: Publisher's Open Access PDF. arXiv admin note: text overlap with arXiv:1811.0521

    Eutactic quantum codes

    Full text link
    We consider sets of quantum observables corresponding to eutactic stars. Eutactic stars are systems of vectors which are the lower dimensional ``shadow'' image, the orthogonal view, of higher dimensional orthonormal bases. Although these vector systems are not comeasurable, they represent redundant coordinate bases with remarkable properties. One application is quantum secret sharing.Comment: 6 page

    Experimental investigation of high-dimensional quantum key distribution protocols with twisted photons

    Get PDF
    Quantum key distribution is on the verge of real world applications, where perfectly secure information can be distributed among multiple parties. Several quantum cryptographic protocols have been theoretically proposed and independently realized in different experimental conditions. Here, we develop an experimental platform based on high-dimensional orbital angular momentum states of single photons that enables implementation of multiple quantum key distribution protocols with a single experimental apparatus. Our versatile approach allows us to experimentally survey different classes of quantum key distribution techniques, such as the 1984 Bennett \& Brassard (BB84), tomographic protocols including the six-state and the Singapore protocol, and to investigate, for the first time, a recently introduced differential phase shift (Chau15) protocol using twisted photons. This enables us to experimentally compare the performance of these techniques and discuss their benefits and deficiencies in terms of noise tolerance in different dimensions.Comment: 13 pages, 4 figures, 1 tabl

    Secure Quantum Network Code without Classical Communication

    Full text link
    We consider the secure quantum communication over a network with the presence of a malicious adversary who can eavesdrop and contaminate the states. The network consists of noiseless quantum channels with the unit capacity and the nodes which applies noiseless quantum operations. As the main result, when the maximum number m1 of the attacked channels over the entire network uses is less than a half of the network transmission rate m0 (i.e., m1 < m0 / 2), our code implements secret and correctable quantum communication of the rate m0 - 2m1 by using the network asymptotic number of times. Our code is universal in the sense that the code is constructed without the knowledge of the specific node operations and the network topology, but instead, every node operation is constrained to the application of an invertible matrix to the basis states. Moreover, our code requires no classical communication. Our code can be thought of as a generalization of the quantum secret sharing
    corecore