19,473 research outputs found

    Blindfold learning of an accurate neural metric

    Full text link
    The brain has no direct access to physical stimuli, but only to the spiking activity evoked in sensory organs. It is unclear how the brain can structure its representation of the world based on differences between those noisy, correlated responses alone. Here we show how to build a distance map of responses from the structure of the population activity of retinal ganglion cells, allowing for the accurate discrimination of distinct visual stimuli from the retinal response. We introduce the Temporal Restricted Boltzmann Machine to learn the spatiotemporal structure of the population activity, and use this model to define a distance between spike trains. We show that this metric outperforms existing neural distances at discriminating pairs of stimuli that are barely distinguishable. The proposed method provides a generic and biologically plausible way to learn to associate similar stimuli based on their spiking responses, without any other knowledge of these stimuli

    Discriminative conditional restricted Boltzmann machine for discrete choice and latent variable modelling

    Full text link
    Conventional methods of estimating latent behaviour generally use attitudinal questions which are subjective and these survey questions may not always be available. We hypothesize that an alternative approach can be used for latent variable estimation through an undirected graphical models. For instance, non-parametric artificial neural networks. In this study, we explore the use of generative non-parametric modelling methods to estimate latent variables from prior choice distribution without the conventional use of measurement indicators. A restricted Boltzmann machine is used to represent latent behaviour factors by analyzing the relationship information between the observed choices and explanatory variables. The algorithm is adapted for latent behaviour analysis in discrete choice scenario and we use a graphical approach to evaluate and understand the semantic meaning from estimated parameter vector values. We illustrate our methodology on a financial instrument choice dataset and perform statistical analysis on parameter sensitivity and stability. Our findings show that through non-parametric statistical tests, we can extract useful latent information on the behaviour of latent constructs through machine learning methods and present strong and significant influence on the choice process. Furthermore, our modelling framework shows robustness in input variability through sampling and validation

    Denoising Autoencoders for fast Combinatorial Black Box Optimization

    Full text link
    Estimation of Distribution Algorithms (EDAs) require flexible probability models that can be efficiently learned and sampled. Autoencoders (AE) are generative stochastic networks with these desired properties. We integrate a special type of AE, the Denoising Autoencoder (DAE), into an EDA and evaluate the performance of DAE-EDA on several combinatorial optimization problems with a single objective. We asses the number of fitness evaluations as well as the required CPU times. We compare the results to the performance to the Bayesian Optimization Algorithm (BOA) and RBM-EDA, another EDA which is based on a generative neural network which has proven competitive with BOA. For the considered problem instances, DAE-EDA is considerably faster than BOA and RBM-EDA, sometimes by orders of magnitude. The number of fitness evaluations is higher than for BOA, but competitive with RBM-EDA. These results show that DAEs can be useful tools for problems with low but non-negligible fitness evaluation costs.Comment: corrected typos and small inconsistencie

    Deterministic networks for probabilistic computing

    Get PDF
    Neural-network models of high-level brain functions such as memory recall and reasoning often rely on the presence of stochasticity. The majority of these models assumes that each neuron in the functional network is equipped with its own private source of randomness, often in the form of uncorrelated external noise. However, both in vivo and in silico, the number of noise sources is limited due to space and bandwidth constraints. Hence, neurons in large networks usually need to share noise sources. Here, we show that the resulting shared-noise correlations can significantly impair the performance of stochastic network models. We demonstrate that this problem can be overcome by using deterministic recurrent neural networks as sources of uncorrelated noise, exploiting the decorrelating effect of inhibitory feedback. Consequently, even a single recurrent network of a few hundred neurons can serve as a natural noise source for large ensembles of functional networks, each comprising thousands of units. We successfully apply the proposed framework to a diverse set of binary-unit networks with different dimensionalities and entropies, as well as to a network reproducing handwritten digits with distinct predefined frequencies. Finally, we show that the same design transfers to functional networks of spiking neurons.Comment: 22 pages, 11 figure
    corecore