350 research outputs found

    Evolutionary algorithm-based multi-objective task scheduling optimization model in cloud environments

    Full text link
    © 2015, Springer Science+Business Media New York. Optimizing task scheduling in a distributed heterogeneous computing environment, which is a nonlinear multi-objective NP-hard problem, plays a critical role in decreasing service response time and cost, and boosting Quality of Service (QoS). This paper, considers four conflicting objectives, namely minimizing task transfer time, task execution cost, power consumption, and task queue length, to develop a comprehensive multi-objective optimization model for task scheduling. This model reduces costs from both the customer and provider perspectives by considering execution and power cost. We evaluate our model by applying two multi-objective evolutionary algorithms, namely Multi-Objective Particle Swarm Optimization (MOPSO) and Multi-Objective Genetic Algorithm (MOGA). To implement the proposed model, we extend the Cloudsim toolkit by using MOPSO and MOGA as its task scheduling algorithms which determine the optimal task arrangement among VMs. The simulation results show that the proposed multi-objective model finds optimal trade-off solutions amongst the four conflicting objectives, which significantly reduces the job response time and makespan. This model not only increases QoS but also decreases the cost to providers. From our experimentation results, we find that MOPSO is a faster and more accurate evolutionary algorithm than MOGA for solving such problems

    Learning-based ship design optimization approach

    Get PDF
    With the development of computer applications in ship design, optimization, as a powerful approach, has been widely used in the design and analysis process. However, the running time, which often varies from several weeks to months in the current computing environment, has been a bottleneck problem for optimization applications, particularly in the structural design of ships. To speed up the optimization process and adjust the complex design environment, ship designers usually rely on their personal experience to assist the design work. However, traditional experience, which largely depends on the designer’s personal skills, often makes the design quality very sensitive to the experience and decreases the robustness of the final design. This paper proposes a new machine-learning-based ship design optimization approach, which uses machine learning as an effective tool to give direction to optimization and improves the adaptability of optimization to the dynamic design environment. The natural human learning process is introduced into the optimization procedure to improve the efficiency of the algorithm. Q-learning, as an approach of reinforcement learning, is utilized to realize the learning function in the optimization process. The multi-objective particle swarm optimization method, multiagent system, and CAE software are used to build an integrated optimization system. A bulk carrier structural design optimization was performed as a case study to evaluate the suitability of this method for real-world application

    An evolutionary algorithm with double-level archives for multiobjective optimization

    Get PDF
    Existing multiobjective evolutionary algorithms (MOEAs) tackle a multiobjective problem either as a whole or as several decomposed single-objective sub-problems. Though the problem decomposition approach generally converges faster through optimizing all the sub-problems simultaneously, there are two issues not fully addressed, i.e., distribution of solutions often depends on a priori problem decomposition, and the lack of population diversity among sub-problems. In this paper, a MOEA with double-level archives is developed. The algorithm takes advantages of both the multiobjective-problemlevel and the sub-problem-level approaches by introducing two types of archives, i.e., the global archive and the sub-archive. In each generation, self-reproduction with the global archive and cross-reproduction between the global archive and sub-archives both breed new individuals. The global archive and sub-archives communicate through cross-reproduction, and are updated using the reproduced individuals. Such a framework thus retains fast convergence, and at the same time handles solution distribution along Pareto front (PF) with scalability. To test the performance of the proposed algorithm, experiments are conducted on both the widely used benchmarks and a set of truly disconnected problems. The results verify that, compared with state-of-the-art MOEAs, the proposed algorithm offers competitive advantages in distance to the PF, solution coverage, and search speed

    Application of a new multi-agent Hybrid Co-evolution based Particle Swarm Optimisation methodology in ship design

    Get PDF
    In this paper, a multiple objective 'Hybrid Co-evolution based Particle Swarm Optimisation' methodology (HCPSO) is proposed. This methodology is able to handle multiple objective optimisation problems in the area of ship design, where the simultaneous optimisation of several conflicting objectives is considered. The proposed method is a hybrid technique that merges the features of co-evolution and Nash equilibrium with a ε-disturbance technique to eliminate the stagnation. The method also offers a way to identify an efficient set of Pareto (conflicting) designs and to select a preferred solution amongst these designs. The combination of co-evolution approach and Nash-optima contributes to HCPSO by utilising faster search and evolution characteristics. The design search is performed within a multi-agent design framework to facilitate distributed synchronous cooperation. The most widely used test functions from the formal literature of multiple objectives optimisation are utilised to test the HCPSO. In addition, a real case study, the internal subdivision problem of a ROPAX vessel, is provided to exemplify the applicability of the developed method

    An Improved Multiobjective Particle Swarm Optimization Algorithm Using Minimum Distance of Point to Line

    Get PDF

    MOPSO-based multi-objective TSO planning considering uncertainties

    Get PDF

    Solution of Combined Economic Emission Dispatch Problem with Valve-Point Effect Using Hybrid NSGA II-MOPSO

    Get PDF
    This chapter formulates a multi-objective optimization problem to simultaneously minimize the objectives of fuel cost and emissions from the power plants to meet the power demand subject to linear and nonlinear system constraints. These conflicting objectives are formulated as a combined economic emission dispatch (CEED) problem. Various meta-heuristic optimization algorithms have been developed and successfully implemented to solve this complex, highly nonlinear, non-convex problem. To overcome the shortcomings of the evolutionary multi-objective algorithms like slow convergence to Pareto-optimal front, premature convergence, local trapping, it is very natural to think of integrating various algorithms to overcome the shortcomings. This chapter proposes a hybrid evolutionary multi-objective optimization framework using Non-Dominated Sorting Genetic Algorithm II and Multi-Objective Particle Swarm Optimization to solve the CEED problem. The hybrid method along with the proposed constraint handling mechanism is able to balance the exploration and exploitation tasks. This hybrid method is tested on IEEE 30 bus system with quadratic cost function considering transmission loss and valve point effect. The Pareto front obtained using hybrid approach demonstrates that the approach converges to the true Pareto front, finds the diverse set of solutions along the Pareto front and confirms its potential to solve the CEED problem
    • …
    corecore