137 research outputs found

    VirtuE: a Formal Model of Virtual Enterprises for Information Markets

    Get PDF
    A vital part of a modern economy is an information market. In this market, information products are being traded in countless ways. Information is bought, modified, integrated, incorporated into other products, and then sold again. Often, the manufacturing of an information product requires the collaboration of several participants. A virtual enterprise is a community of business entities that collaborate on the manufacturing of complex products. This collaboration is often ad hoc, for a specific product only, after which the virtual enterprise may dismantle. The virtual enterprise paradigm is particularly appealing for modeling collaborations for manufacturing information products, and in this paper we present a new model, called VirtuE, for modeling such activities. VirtuE has three principal components. First, it defines a distributed infrastructure with concepts such as members, products, inventories, and production plans. Second, it defines transactions among members, to enable collaborative production of complex products. Finally, it provides means for the instrumentation of enterprises, to measure their performance and to govern their behavior.A vital part of a modern economy is an information market. In this market, information products are being traded in countless ways. Information is bought, modified, integrated, incorporated into other products, and then sold again. Often, the manufacturing of an information product requires the collaboration of several participants. A virtual enterprise is a community of business entities that collaborate on the manufacturing of complex products. This collaboration is often ad hoc, for a specific product only, after which the virtual enterprise may dismantle. The virtual enterprise paradigm is particularly appealing for modeling collaborations for manufacturing information products, and in this paper we present a new model, called VirtuE, for modeling such activities. VirtuE has three principal components. First, it defines a distributed infrastructure with concepts such as members, products, inventories, and production plans. Second, it defines transactions among members, to enable collaborative production of complex products. Finally, it provides means for the instrumentation of enterprises, to measure their performance and to govern their behavior.Non-Refereed Working Papers / of national relevance onl

    An infrastructure for delivering geospatial data to field users

    Get PDF
    Federal agencies collect and analyze data to carry out their missions. A significant portion of these activities requires geospatial data collection in the field. Models for computer-assisted survey information collection are still largely based on the client-server paradigm with symbolic data representation. Little attention has been given to digital geospatial information resources, or emerging mobile computing environments. This paper discusses an infrastructure designs for delivering geospatial data users in a mobile field computing environment. Mobile field computing environments vary widely, and generally offer extremely limited computing resources, visual display, and bandwidth relative to the usual resources required for distributed geospatial data. Key to handling heterogeneity in the field is an infrastructure design that provides flexibility in the location of computing tasks and returns information in forms appropriate for the field computing environment. A view agent based infrastructure has been developed with several components. Wrappers are used for encapsulating not only the data sources, but the mobile field environment as well, localizing the details associated with heterogeneity in data sources and field environments. Within the boundaries of the wrappers, mediators and object-oriented views implemented as mobile agents work in a relatively homogeneous environment to generate query results. Mediators receive a request from the user application via the field wrapper, and generate a sequence of mobile view agents to search for, retrieve, and process data. The internal infrastructure environment is populated with computation servers to provide a location for processing, especially for combining data from multiple locations. Each computation server has a local object-oriented data warehouse equipped with a set of data warehouse tools for working with geospatial data. Since the prospect of query reuse is likely for a field worker, we store the final and intermediate results in the data warehouse, allowing the warehouse to act as an active cache. Even when field computing capacity is ample, the warehouse is used to process data so that network traffic can be minimized

    Improving National and Homeland Security through a proposed Laboratory for Information Globalization and Harmonization Technologies (LIGHT)

    Get PDF
    A recent National Research Council study found that: "Although there are many private and public databases that contain information potentially relevant to counter terrorism programs, they lack the necessary context definitions (i.e., metadata) and access tools to enable interoperation with other databases and the extraction of meaningful and timely information" [NRC02, p.304, emphasis added] That sentence succinctly describes the objectives of this project. Improved access and use of information are essential to better identify and anticipate threats, protect against and respond to threats, and enhance national and homeland security (NHS), as well as other national priority areas, such as Economic Prosperity and a Vibrant Civil Society (ECS) and Advances in Science and Engineering (ASE). This project focuses on the creation and contributions of a Laboratory for Information Globalization and Harmonization Technologies (LIGHT) with two interrelated goals: (1) Theory and Technologies: To research, design, develop, test, and implement theory and technologies for improving the reliability, quality, and responsiveness of automated mechanisms for reasoning and resolving semantic differences that hinder the rapid and effective integration (int) of systems and data (dmc) across multiple autonomous sources, and the use of that information by public and private agencies involved in national and homeland security and the other national priority areas involving complex and interdependent social systems (soc). This work builds on our research on the COntext INterchange (COIN) project, which focused on the integration of diverse distributed heterogeneous information sources using ontologies, databases, context mediation algorithms, and wrapper technologies to overcome information representational conflicts. The COIN approach makes it substantially easier and more transparent for individual receivers (e.g., applications, users) to access and exploit distributed sources. Receivers specify their desired context to reduce ambiguities in the interpretation of information coming from heterogeneous sources. This approach significantly reduces the overhead involved in the integration of multiple sources, improves data quality, increases the speed of integration, and simplifies maintenance in an environment of changing source and receiver context - which will lead to an effective and novel distributed information grid infrastructure. This research also builds on our Global System for Sustainable Development (GSSD), an Internet platform for information generation, provision, and integration of multiple domains, regions, languages, and epistemologies relevant to international relations and national security. (2) National Priority Studies: To experiment with and test the developed theory and technologies on practical problems of data integration in national priority areas. Particular focus will be on national and homeland security, including data sources about conflict and war, modes of instability and threat, international and regional demographic, economic, and military statistics, money flows, and contextualizing terrorism defense and response. Although LIGHT will leverage the results of our successful prior research projects, this will be the first research effort to simultaneously and effectively address ontological and temporal information conflicts as well as dramatically enhance information quality. Addressing problems of national priorities in such rapidly changing complex environments requires extraction of observations from disparate sources, using different interpretations, at different points in times, for different purposes, with different biases, and for a wide range of different uses and users. This research will focus on integrating information both over individual domains and across multiple domains. Another innovation is the concept and implementation of Collaborative Domain Spaces (CDS), within which applications in a common domain can share, analyze, modify, and develop information. Applications also can span multiple domains via Linked CDSs. The PIs have considerable experience with these research areas and the organization and management of such large scale international and diverse research projects. The PIs come from three different Schools at MIT: Management, Engineering, and Humanities, Arts & Social Sciences. The faculty and graduate students come from about a dozen nationalities and diverse ethnic, racial, and religious backgrounds. The currently identified external collaborators come from over 20 different organizations and many different countries, industrial as well as developing. Specific efforts are proposed to engage even more women, underrepresented minorities, and persons with disabilities. The anticipated results apply to any complex domain that relies on heterogeneous distributed data to address and resolve compelling problems. This initiative is supported by international collaborators from (a) scientific and research institutions, (b) business and industry, and (c) national and international agencies. Research products include: a System for Harmonized Information Processing (SHIP), a software platform, and diverse applications in research and education which are anticipated to significantly impact the way complex organizations, and society in general, understand and manage critical challenges in NHS, ECS, and ASE

    Improving National and Homeland Security through a proposed Laboratory for nformation Globalization and Harmonization Technologies (LIGHT)

    Get PDF
    A recent National Research Council study found that: "Although there are many private and public databases that contain information potentially relevant to counter terrorism programs, they lack the necessary context definitions (i.e., metadata) and access tools to enable interoperation with other databases and the extraction of meaningful and timely information" [NRC02, p.304, emphasis added] That sentence succinctly describes the objectives of this project. Improved access and use of information are essential to better identify and anticipate threats, protect against and respond to threats, and enhance national and homeland security (NHS), as well as other national priority areas, such as Economic Prosperity and a Vibrant Civil Society (ECS) and Advances in Science and Engineering (ASE). This project focuses on the creation and contributions of a Laboratory for Information Globalization and Harmonization Technologies (LIGHT) with two interrelated goals: (1) Theory and Technologies: To research, design, develop, test, and implement theory and technologies for improving the reliability, quality, and responsiveness of automated mechanisms for reasoning and resolving semantic differences that hinder the rapid and effective integration (int) of systems and data (dmc) across multiple autonomous sources, and the use of that information by public and private agencies involved in national and homeland security and the other national priority areas involving complex and interdependent social systems (soc). This work builds on our research on the COntext INterchange (COIN) project, which focused on the integration of diverse distributed heterogeneous information sources using ontologies, databases, context mediation algorithms, and wrapper technologies to overcome information representational conflicts. The COIN approach makes it substantially easier and more transparent for individual receivers (e.g., applications, users) to access and exploit distributed sources. Receivers specify their desired context to reduce ambiguities in the interpretation of information coming from heterogeneous sources. This approach significantly reduces the overhead involved in the integration of multiple sources, improves data quality, increases the speed of integration, and simplifies maintenance in an environment of changing source and receiver context - which will lead to an effective and novel distributed information grid infrastructure. This research also builds on our Global System for Sustainable Development (GSSD), an Internet platform for information generation, provision, and integration of multiple domains, regions, languages, and epistemologies relevant to international relations and national security. (2) National Priority Studies: To experiment with and test the developed theory and technologies on practical problems of data integration in national priority areas. Particular focus will be on national and homeland security, including data sources about conflict and war, modes of instability and threat, international and regional demographic, economic, and military statistics, money flows, and contextualizing terrorism defense and response. Although LIGHT will leverage the results of our successful prior research projects, this will be the first research effort to simultaneously and effectively address ontological and temporal information conflicts as well as dramatically enhance information quality. Addressing problems of national priorities in such rapidly changing complex environments requires extraction of observations from disparate sources, using different interpretations, at different points in times, for different purposes, with different biases, and for a wide range of different uses and users. This research will focus on integrating information both over individual domains and across multiple domains. Another innovation is the concept and implementation of Collaborative Domain Spaces (CDS), within which applications in a common domain can share, analyze, modify, and develop information. Applications also can span multiple domains via Linked CDSs. The PIs have considerable experience with these research areas and the organization and management of such large scale international and diverse research projects. The PIs come from three different Schools at MIT: Management, Engineering, and Humanities, Arts & Social Sciences. The faculty and graduate students come from about a dozen nationalities and diverse ethnic, racial, and religious backgrounds. The currently identified external collaborators come from over 20 different organizations and many different countries, industrial as well as developing. Specific efforts are proposed to engage even more women, underrepresented minorities, and persons with disabilities. The anticipated results apply to any complex domain that relies on heterogeneous distributed data to address and resolve compelling problems. This initiative is supported by international collaborators from (a) scientific and research institutions, (b) business and industry, and (c) national and international agencies. Research products include: a System for Harmonized Information Processing (SHIP), a software platform, and diverse applications in research and education which are anticipated to significantly impact the way complex organizations, and society in general, understand and manage critical challenges in NHS, ECS, and ASE

    VirtuE: Virtual Enterprises for Information Markets\u27

    Get PDF
    An essential part of a modern economy is an information market. In this market, information products are being traded in countless ways. Information is bought, modified, integrated, incorporated into other products and then sold again. Usually, the manufacturing of an information product requires the collaboration of several participants. A virtual enterprise is a community of business entities that collaborate on the manufacturing of new products. This collaboration is often ad hoc, for a specific product only, after which the virtual enterprise may dismantle. The virtual enterprise paradigm is particularly appealing for modeling collaborations for manufacturing information products, and in this paper we present a new model, called VirtuE, for modeling such activities

    Multimodal integration of disparate information sources with attribution

    Get PDF
    Cover title.Includes bibliographical references (p. [9]-[10]).Thomas Y. Lee & Stephane Bressan

    31th International Conference on Information Modelling and Knowledge Bases

    Get PDF
    Information modelling is becoming more and more important topic for researchers, designers, and users of information systems.The amount and complexity of information itself, the number of abstractionlevels of information, and the size of databases and knowledge bases arecontinuously growing. Conceptual modelling is one of the sub-areas ofinformation modelling. The aim of this conference is to bring together experts from different areas of computer science and other disciplines, who have a common interest in understanding and solving problems on information modelling and knowledge bases, as well as applying the results of research to practice. We also aim to recognize and study new areas on modelling and knowledge bases to which more attention should be paid. Therefore philosophy and logic, cognitive science, knowledge management, linguistics and management science are relevant areas, too. In the conference, there will be three categories of presentations, i.e. full papers, short papers and position papers

    Data-Driven Implementation To Filter Fraudulent Medicaid Applications

    Get PDF
    There has been much work to improve IT systems for managing and maintaining health records. The U.S government is trying to integrate different types of health care data for providers and patients. Health care fraud detection research has focused on claims by providers, physicians, hospitals, and other medical service providers to detect fraudulent billing, abuse, and waste. Data-mining techniques have been used to detect patterns in health care fraud and reduce the amount of waste and abuse in the health care system. However, less attention has been paid to implementing a system to detect fraudulent applications, specifically for Medicaid. In this study, a data-driven system using layered architecture to filter fraudulent applications for Medicaid was proposed. The Medicaid Eligibility Application System utilizes a set of public and private databases that contain individual asset records. These asset records are used to determine the Medicaid eligibility of applicants using a scoring model integrated with a threshold algorithm. The findings indicated that by using the proposed data-driven approach, the state Medicaid agency could filter fraudulent Medicaid applications and save over $4 million in Medicaid expenditures
    corecore