110 research outputs found

    MODELLING VIRTUAL ENVIRONMENT FOR ADVANCED NAVAL SIMULATION

    Get PDF
    This thesis proposes a new virtual simulation environment designed as element of an interoperable federation of simulator to support the investigation of complex scenarios over the Extended Maritime Framework (EMF). Extended Maritime Framework is six spaces environment (Underwater, Water surface, Ground, Air, Space, and Cyberspace) where parties involved in Joint Naval Operations act. The amount of unmanned vehicles involved in the simulation arise the importance of the Communication modelling, thus the relevance of Cyberspace. The research is applied to complex cases (one applied to deep waters and one to coast and littoral protection) as examples to validate this approach; these cases involve different kind of traditional assets (e.g. satellites, helicopters, ships, submarines, underwater sensor infrastructure, etc.) interact dynamically and collaborate with new autonomous systems (i.e. AUV, Gliders, USV and UAV). The use of virtual simulation is devoted to support validation of new concepts and investigation of collaborative engineering solutions by providing a virtual representation of the current situation; this approach support the creation of dynamic interoperable immersive framework that could support training for Man in the Loop, education and tactical decision introducing the Man on the Loop concepts. The research and development of the Autonomous Underwater Vehicles requires continuous testing so a time effective approach can result a very useful tool. In this context the simulation can be useful to better understand the behaviour of Unmanned Vehicles and to avoid useless experimentations and their costs finding problems before doing them. This research project proposes the creation of a virtual environment with the aim to see and understand a Joint Naval Scenario. The study will be focusing especially on the integration of Autonomous Systems with traditional assets; the proposed simulation deals especially with collaborative operation involving different types of Autonomous Underwater Vehicles (AUV), Unmanned Surface Vehicles (USV) and UAV (Unmanned Aerial Vehicle). The author develops an interoperable virtual simulation devoted to present the overall situation for supervision considering also the sensor capabilities, communications and mission effectiveness that results dependent of the different asset interaction over a complex heterogeneous network. The aim of this research is to develop a flexible virtual simulation solution as crucial element of an HLA federation able to address the complexity of Extended Maritime Framework (EMF). Indeed this new generation of marine interoperable simulation is a strategic advantage for investigating the problems related to the operational use of autonomous systems and to finding new ways to use them respect to different scenarios. The research deal with the creation of two scenarios, one related to military operations and another one on coastal and littoral protection where the virtual simulation propose the overall situation and allows to navigate into the virtual world considering the complex physics affecting movement, perception, interaction and communication. By this approach, it becomes evident the capability to identify, by experimental analysis within the virtual world, the new solutions in terms of engineering and technological configuration of the different systems and vehicles as well as new operational models and tactics to address the specific mission environment. The case of study is a maritime scenario with a representation of heterogeneous network frameworks that involves multiple vehicles both naval and aerial including AUVs, USVs, gliders, helicopter, ships, submarines, satellite, buoys and sensors. For the sake of clarity aerial communications will be represented divided from underwater ones. A connection point for the latter will be set on the keel line of surface vessels representing communication happening via acoustic modem. To represent limits in underwater communications, underwater signals have been considerably slowed down in order to have a more realistic comparison with aerial ones. A maximum communication distance is set, beyond which no communication can take place. To ensure interoperability the HLA Standard (IEEE 1516 evolved) is adopted to federate other simulators so to allow its extensibility for other case studies. Two different scenarios are modelled in 3D visualization: Open Water and Port Protection. The first one aims to simulate interactions between traditional assets in Extended Maritime Framework (EMF) such as satellite, navy ships, submarines, NATO Research Vessels (NRVs), helicopters, with new generation unmanned assets as AUV, Gliders, UAV, USV and the mutual advantage the subjects involved in the scenario can have; in other word, the increase in persistence, interoperability and efficacy. The second scenario models the behaviour of unmanned assets, an AUV and an USV, patrolling a harbour to find possible threats. This aims to develop an algorithm to lead patrolling path toward an optimum, guaranteeing a high probability of success in the safest way reducing human involvement in the scenario. End users of the simulation face a graphical 3D representation of the scenario where assets would be represented. He can moves in the scenario through a Free Camera in Graphic User Interface (GUI) configured to entitle users to move around the scene and observe the 3D sea scenario. In this way, players are able to move freely in the synthetic environment in order to choose the best perspective of the scene. The work is intended to provide a valid tool to evaluate the defencelessness of on-shore and offshore critical infrastructures that could includes the use of new technologies to take care of security best and preserve themselves against disasters both on economical and environmental ones

    AC ship microgrids: control and power management optimization

    Get PDF
    At sea, the electrical power system of a ship can be considered as an islanded microgrid. When connected to shore power at berth, the same power system acts as a grid connected microgrid or an extension of the grid. Therefore, ship microgrids show some resemblance to terrestrial microgrids. Nevertheless, due to the presence of large dynamic loads, such as electric propulsion loads, keeping the voltage and frequency within a permissible range and ensuring the continuity of supply are more challenging in ship microgrids. Moreover, with the growing demand for emission reductions and fuel efficiency improvements, alternative energy sources and energy storage technologies are becoming popular in ship microgrids. In this context, the integration of multiple energy sources and storage systems in ship microgrids requires an efficient power management system (PMS). These challenging environments and trends demand advanced control and power management solutions that are customized for ship microgrids. This paper presents a review on recent developments of control technologies and power management strategies proposed for AC ship microgrids

    Development of emergency response systems by intelligent and integrated approaches for marine oil spill accidents

    Get PDF
    Oil products play a pervasive role in modern society as one of the dominant energy fuel sources. Marine activities related to oil extraction and transportation play a vital role in resource supply. However, marine oil spills occur due to such human activities or harsh environmental factors. The emergency accidents of spills cause negative impacts on the marine environment, human health, and economic loss. The responses to marine oil spills, especially large-scale spills, are relatively challenging and inefficient due to changing environmental conditions, limited response resources, various unknown or uncertain factors and complex resource allocation processes. The development of previous research mainly focused on single process simulation, prediction, or optimization (e.g., oil trajectory, weathering, or cleanup optimization). There is still a lack of research on comprehensive and integrated emergency responses considering multiple types of simulations, types of resource allocations, stages of accident occurrence to response, and criteria for system optimizations. Optimization algorithms are an important part of system optimization and decision-making. Their performance directly affacts the quality of emergency response systems and operations. Thus, how to improve efficiency of emergency response systems becomes urgent and essential for marine oil spill management. The power and potential of integrating intelligent-based modeling of dynamic processes and system optimization have been recognized to better support oil spill responders with more efficient response decisions and planning tools. Meanwhile, response decision-making combined with human factor analysis can help quantitatively evaluate the impacts of multiple causal factors on the overall processes and operational performance after an accident. To address the challenges and gaps, this dissertation research focused on the development and improvement of new emergency response systems and their applications for marine oil spill response in the following aspects: 1) Realization of coupling dynamic simulation and system optimization for marine oil spill responses - The developed Simulation-Based Multi-Agent Particle Swarm Optimization (SA-PSO) modeling investigated the capacity of agent-based modeling on dynamic simulation of spill fate and response, particle swarm optimization on response allocation with minimal time and multi-agent system on information sharing. 2) Investigation of multi-type resource allocation under a complex simulation condition and improvement of optimization performance - The improved emergency response system was achieved by dynamic resource transportation, oil weathering and response simulations and resource allocation optimization. The enhanced particle swarm optimization (ME-PSO) algorithm performed outstanding convergence performance and low computation cost characteristics integrating multi-agent theory (MA) and evolutionary population dynamics (EPD). 3) Analysis and evaluation of influencing factors of multiple stages of spill accidents based on human factors/errors and multi-criteria decision making - The developed human factors analysis and classification system for marine oil spill accidents (HFACS-OS) framework qualitatively evaluated the influence of various factors and errors associated with the multiple operational stages considered for oil spill preparedness and response (e.g., oil spill occurrence, spill monitoring, decision making/contingency planning, and spill response). The framework was further coupled with quantitative data analysis by Fuzzy-based Technique for Order Preference by Similarity to Idea Solution (Fuzzy-TOPSIS) to enhance decision-making during response operations under multiple criteria. 4) Development of a multi-criteria emergency response system with the enhanced optimization algorithm, multi-mode resource transportation and allocation and a more complex and realistic simulation modelling - The developed multi-criteria emergency response system (MC-ERS) system integrated dynamic process simulations and weighted multi-criteria system optimization. Total response time, response cost and environmental impacts were regarded as multiple optimization goals. An improved weighted sum optimization function was developed to unify the scaling and proportion of different goals. A comparative PSO was also developed with various algorithm-improving methods and the best-performing inertia weight function. The proposed emergency response approaches in studies were examined by oil spill case studies related to the North Atlantic Ocean and Canada circumstances to analyze the modelling performance and evaluate their practicality and applicability. The developed optimization algorithms were tested by benchmarked functions, other optimization algorithms, and an oil spill case. The developed emergency response systems and the contained simulation and optimization algorithms showed the strong capability for decision-making and emergency responses by recommending optimal resource management or evaluations of essential factors. This research was expected to provide time-efficient, and cost-saving emergency response management approaches for handling and managing marine oil spills. The research also improved our knowledge of the significance of human factors/errors to oil spill accidents and response operations and provided improved support tools for decision making. The dissertation research helped fill some important gaps in emergency response research and management practice, especially in marine oil spill response, through an innovative integration of dynamic simulation, resource optimization, human factor analysis, and artificial intelligence methods. The research outcomes can also provide methodological support and valuable references for other fields that require timely and effective decisions, system optimizations, process controls, planning and designs under complicated conditions, uncertainties, and interactions

    Advances in Intelligent Robotics and Collaborative Automation

    Get PDF
    This book provides an overview of a series of advanced research lines in robotics as well as of design and development methodologies for intelligent robots and their intelligent components. It represents a selection of extended versions of the best papers presented at the Seventh IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications IDAACS 2013 that were related to these topics. Its contents integrate state of the art computational intelligence based techniques for automatic robot control to novel distributed sensing and data integration methodologies that can be applied to intelligent robotics and automation systems. The objective of the text was to provide an overview of some of the problems in the field of robotic systems and intelligent automation and the approaches and techniques that relevant research groups within this area are employing to try to solve them.The contributions of the different authors have been grouped into four main sections:• Robots• Control and Intelligence• Sensing• Collaborative automationThe chapters have been structured to provide an easy to follow introduction to the topics that are addressed, including the most relevant references, so that anyone interested in this field can get started in the area

    Commencement August 9, 2014.

    Get PDF
    The PDF for the August 9, 2014, Texas Tech University commencement exercises is 36 pages long

    A Cross-Disciplinary Approach to the Maritime Security Risk of Piracy and Lessons Learned From Agent-Based Modeling

    Get PDF
    This dissertation takes a cross-disciplinary approach to understanding pirate activity. Maritime piracy presents a dynamic ever-evolving problem. In today’s globalized world, contemporary maritime piracy presents a transnational threat. It is a complex socio-economic and political problem which the modern world considers to be criminal activity. Like all complex problems it must be deconstructed to fully comprehend it. All criminal activity, maritime piracy included, has certain elements of supply and demand. For the activity to occur there must be a certain level, or supply, of targets. At the same time, we can posit that there must be a lack of other opportunities for the pirates, who calculate that the risk of engaging in piracy is worthwhile. This risk calculation is a function of the potential rewards minus the sum of the risks. An increase in pirate attacks creates a demand for better maritime security. An increase in maritime security causes an increase in risk to pirates. Improved pirate capabilities may decrease this risk. The result is a constantly evolving complex problem. This study proposes a parsimonious agent-based model, focused on the socio-economic and political variables that encourage piracy, with utility across many specific regional domains. By simplifying the details of certain aspects of the model, the focus is placed on the issues at the heart of the problem. This allows for new insights into the dynamic relationship between these factors

    Advances in Intelligent Robotics and Collaborative Automation

    Get PDF
    This book provides an overview of a series of advanced research lines in robotics as well as of design and development methodologies for intelligent robots and their intelligent components. It represents a selection of extended versions of the best papers presented at the Seventh IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications IDAACS 2013 that were related to these topics. Its contents integrate state of the art computational intelligence based techniques for automatic robot control to novel distributed sensing and data integration methodologies that can be applied to intelligent robotics and automation systems. The objective of the text was to provide an overview of some of the problems in the field of robotic systems and intelligent automation and the approaches and techniques that relevant research groups within this area are employing to try to solve them.The contributions of the different authors have been grouped into four main sections:• Robots• Control and Intelligence• Sensing• Collaborative automationThe chapters have been structured to provide an easy to follow introduction to the topics that are addressed, including the most relevant references, so that anyone interested in this field can get started in the area

    Compilation of thesis abstracts, September 2009

    Get PDF
    NPS Class of September 2009This quarter’s Compilation of Abstracts summarizes cutting-edge, security-related research conducted by NPS students and presented as theses, dissertations, and capstone reports. Each expands knowledge in its field.http://archive.org/details/compilationofsis109452751

    A Literature Review, Container Shipping Supply Chain: Planning Problems and Research Opportunities

    Get PDF
    This paper provides an overview of the container shipping supply chain (CSSC) by taking a logistics perspective, covering all major value-adding segments in CSSC including freight logistics, container logistics, vessel logistics, port/terminal logistics, and inland transport logistics. The main planning problems and research opportunities in each logistics segment are reviewed and discussed to promote further research. Moreover, the two most important challenges in CSSC, digitalization and decarbonization, are explained and discussed in detail. We raise awareness of the extreme fragmentation of CSSC that causes inefficient operations. A pathway to digitalize container shipping is proposed that requires the applications of digital technologies in various business processes across five logistics segments, and change in behaviors and relationships of stakeholders in the supply chain. We recognize that shipping decarbonization is likely to take diverse pathways with different fuel/energy systems for ships and ports. This gives rise to more research and application opportunities in the highly uncertain and complex CSSC environment.</jats:p
    • …
    corecore