8,244 research outputs found

    EVEREST IST - 2002 - 00185 : D23 : final report

    Get PDF
    Deliverable pĂşblic del projecte europeu EVERESTThis deliverable constitutes the final report of the project IST-2002-001858 EVEREST. After its successful completion, the project presents this document that firstly summarizes the context, goal and the approach objective of the project. Then it presents a concise summary of the major goals and results, as well as highlights the most valuable lessons derived form the project work. A list of deliverables and publications is included in the annex.Postprint (published version

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    A software-defined architecture for next-generation cellular networks

    Get PDF
    In the recent years, mobile cellular networks are undergoing fundamental changes and many established concepts are being revisited. New emerging paradigms, such as Software-Defined Networking (SDN), Mobile Cloud Computing (MCC), Network Function Virtualization (NFV), Internet of Things (IoT),and Mobile Social Networking (MSN), bring challenges in the design of cellular networks architectures. Current Long-Term Evolution (LTE) networks are not able to accommodate these new trends in a scalable and efficient way. In this paper, first we discuss the limitations of the current LTE architecture. Second, driven by the new communication needs and by the advances in aforementioned areas, we propose a new architecture for next generation cellular networks. Some of its characteristics include support for distributed content routing, Heterogeneous Networks(HetNets) and multiple Radio Access Technologies (RATs). Finally, we present simulation results which show that significant backhaul traffic savings can be achieved by implementing caching and routing functions at the network edge

    Energy-Efficient Resource Allocation Optimization for Multimedia Heterogeneous Cloud Radio Access Networks

    Full text link
    The heterogeneous cloud radio access network (H-CRAN) is a promising paradigm which incorporates the cloud computing into heterogeneous networks (HetNets), thereby taking full advantage of cloud radio access networks (C-RANs) and HetNets. Characterizing the cooperative beamforming with fronthaul capacity and queue stability constraints is critical for multimedia applications to improving energy efficiency (EE) in H-CRANs. An energy-efficient optimization objective function with individual fronthaul capacity and inter-tier interference constraints is presented in this paper for queue-aware multimedia H-CRANs. To solve this non-convex objective function, a stochastic optimization problem is reformulated by introducing the general Lyapunov optimization framework. Under the Lyapunov framework, this optimization problem is equivalent to an optimal network-wide cooperative beamformer design algorithm with instantaneous power, average power and inter-tier interference constraints, which can be regarded as the weighted sum EE maximization problem and solved by a generalized weighted minimum mean square error approach. The mathematical analysis and simulation results demonstrate that a tradeoff between EE and queuing delay can be achieved, and this tradeoff strictly depends on the fronthaul constraint
    • …
    corecore