187 research outputs found

    Augmenting Bottom-Up Metamodels with Predicates

    Get PDF
    Metamodeling refers to modeling a model. There are two metamodeling approaches for ABMs: (1) top-down and (2) bottom-up. The top down approach enables users to decompose high-level mental models into behaviors and interactions of agents. In contrast, the bottom-up approach constructs a relatively small, simple model that approximates the structure and outcomes of a dataset gathered fromthe runs of an ABM. The bottom-up metamodel makes behavior of the ABM comprehensible and exploratory analyses feasible. Formost users the construction of a bottom-up metamodel entails: (1) creating an experimental design, (2) running the simulation for all cases specified by the design, (3) collecting the inputs and output in a dataset and (4) applying first-order regression analysis to find a model that effectively estimates the output. Unfortunately, the sums of input variables employed by first-order regression analysis give the impression that one can compensate for one component of the system by improving some other component even if such substitution is inadequate or invalid. As a result the metamodel can be misleading. We address these deficiencies with an approach that: (1) automatically generates Boolean conditions that highlight when substitutions and tradeoffs among variables are valid and (2) augments the bottom-up metamodel with the conditions to improve validity and accuracy. We evaluate our approach using several established agent-based simulations

    WebAL Comes of Age: A review of the first 21 years of Artificial Life on the Web

    Get PDF
    We present a survey of the first 21 years of web-based artificial life (WebAL) research and applications, broadly construed to include the many different ways in which artificial life and web technologies might intersect. Our survey covers the period from 1994—when the first WebAL work appeared—up to the present day, together with a brief discussion of relevant precursors. We examine recent projects, from 2010–2015, in greater detail in order to highlight the current state of the art. We follow the survey with a discussion of common themes and methodologies that can be observed in recent work and identify a number of likely directions for future work in this exciting area

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    Computational composition strategies in audiovisual laptop performance

    Get PDF
    We live in a cultural environment in which computer based musical performances have become ubiquitous. Particularly the use of laptops as instruments is a thriving practice in many genres and subcultures. The opportunity to command the most intricate level of control on the smallest of time scales in music composition and computer graphics introduces a number of complexities and dilemmas for the performer working with algorithms. Writing computer code to create audiovisuals offers abundant opportunities for discovering new ways of expression in live performance while simultaneously introducing challenges and presenting the user with difficult choices. There are a host of computational strategies that can be employed in live situations to assist the performer, including artificially intelligent performance agents who operate according to predefined algorithmic rules. This thesis describes four software systems for real time multimodal improvisation and composition in which a number of computational strategies for audiovisual laptop performances is explored and which were used in creation of a portfolio of accompanying audiovisual compositions

    Distributed Control for Collective Behaviour in Micro-unmanned Aerial Vehicles

    Get PDF
    Full version unavailable due to 3rd party copyright restrictions.The work presented herein focuses on the design of distributed autonomous controllers for collective behaviour of Micro-unmanned Aerial Vehicles (MAVs). Two alternative approaches to this topic are introduced: one based upon the Evolutionary Robotics (ER) paradigm, the other one upon flocking principles. Three computer simulators have been developed in order to carry out the required experiments, all of them having their focus on the modelling of fixed-wing aircraft flight dynamics. The employment of fixed-wing aircraft rather than the omni-directional robots typically employed in collective robotics significantly increases the complexity of the challenges that an autonomous controller has to face. This is mostly due to the strict motion constraints associated with fixed-wing platforms, that require a high degree of accuracy by the controller. Concerning the ER approach, the experimental setups elaborated have resulted in controllers that have been evolved in simulation with the following capabilities: (1) navigation across unknown environments, (2) obstacle avoidance, (3) tracking of a moving target, and (4) execution of cooperative and coordinated behaviours based on implicit communication strategies. The design methodology based upon flocking principles has involved tests on computer simulations and subsequent experimentation on real-world robotic platforms. A customised implementation of Reynolds’ flocking algorithm has been developed and successfully validated through flight tests performed with the swinglet MAV. It has been notably demonstrated how the Evolutionary Robotics approach could be successfully extended to the domain of fixed-wing aerial robotics, which has never received a great deal of attention in the past. The investigations performed have also shown that complex and real physics-based computer simulators are not a compulsory requirement when approaching the domain of aerial robotics, as long as proper autopilot systems (taking care of the ”reality gap” issue) are used on the real robots.EOARD (European Office of Aerospace Research & Development), euCognitio
    • 

    corecore