723 research outputs found

    Bi-directional coordination of plug-in electric vehicles with economic model predictive control

    Get PDF
    © 2017 by the authors. Licensee MDPI, Basel, Switzerland. The emergence of plug-in electric vehicles (PEVs) is unveiling new opportunities to de-carbonise the vehicle parcs and promote sustainability in different parts of the globe. As battery technologies and PEV efficiency continue to improve, the use of electric cars as distributed energy resources is fast becoming a reality. While the distribution network operators (DNOs) strive to ensure grid balancing and reliability, the PEV owners primarily aim at maximising their economic benefits. However, given that the PEV batteries have limited capacities and the distribution network is constrained, smart techniques are required to coordinate the charging/discharging of the PEVs. Using the economic model predictive control (EMPC) technique, this paper proposes a decentralised optimisation algorithm for PEVs during the grid-To-vehicle (G2V) and vehicle-To-grid (V2G) operations. To capture the operational dynamics of the batteries, it considers the state-of-charge (SoC) at a given time as a discrete state space and investigates PEVs performance in V2G and G2V operations. In particular, this study exploits the variability in the energy tariff across different periods of the day to schedule V2G/G2V cycles using real data from the university's PEV infrastructure. The results show that by charging/discharging the vehicles during optimal time partitions, prosumers can take advantage of the price elasticity of supply to achieve net savings of about 63%

    Data-driven Methodologies and Applications in Urban Mobility

    Get PDF
    The world is urbanizing at an unprecedented rate where urbanization goes from 39% in 1980 to 58% in 2019 (World Bank, 2019). This poses more and more transportation demand and pressure on the already at or over-capacity old transport infrastructure, especially in urban areas. Along the same timeline, more data generated as a byproduct of daily activity are being collected via the advancement of the internet of things, and computers are getting more and more powerful. These are shown by the statistics such as 90% of the world’s data is generated within the last two years and IBM’s computer is now processing at the speed of 120,000 GPS points per second. Thus, this dissertation discusses the challenges and opportunities arising from the growing demand for urban mobility, particularly in cities with outdated infrastructure, and how to capitalize on the unprecedented growth in data in solving these problems by ways of data-driven transportation-specific methodologies. The dissertation identifies three primary challenges and/or opportunities, which are (1) optimally locating dynamic wireless charging to promote the adoption of electric vehicles, (2) predicting dynamic traffic state using an enormously large dataset of taxi trips, and (3) improving the ride-hailing system with carpooling, smart dispatching, and preemptive repositioning. The dissertation presents potential solutions/methodologies that have become available only recently thanks to the extraordinary growth of data and computers with explosive power, and these methodologies are (1) bi-level optimization planning frameworks for locating dynamic wireless charging facilities, (2) Traffic Graph Convolutional Network for dynamic urban traffic state estimation, and (3) Graph Matching and Reinforcement Learning for the operation and management of mixed autonomous electric taxi fleets. These methodologies are then carefully calibrated, methodically scrutinized under various performance metrics and procedures, and validated with previous research and ground truth data, which is gathered directly from the real world. In order to bridge the gap between scientific discoveries and practical applications, the three methodologies are applied to the case study of (1) Montgomery County, MD, (2) the City of New York, and (3) the City of Chicago and from which, real-world implementation are suggested. This dissertation’s contribution via the provided methodologies, along with the continual increase in data, have the potential to significantly benefit urban mobility and work toward a sustainable transportation system

    Guest Editorial Special Section on Advances in Automation and Optimization for Sustainable Transportation and Energy Systems

    Get PDF
    This special section of the IEEE Transactions on Automation Science and Engineering (T-ASE) focuses on new models, methods, and technologies for energy efficiency and sustainability in transportation and energy systems. In this section, the focus is thus on articles considering sustainable transportation, such as electric vehicles (EVs), integrated with the smart grid requirements. As guest editors, we are very pleased to present the selected 12 papers, whose topics are specifically related to optimal planning of charging stations (CSs), sustainable transportation and mobility, EVs integration in smart grids, reliability, reduction of consumption, demand response and smart grid modeling, optimal scheduling, routing and charging of fleets of EVs, as well as smart parkin

    Towards Cyber Security for Low-Carbon Transportation: Overview, Challenges and Future Directions

    Full text link
    In recent years, low-carbon transportation has become an indispensable part as sustainable development strategies of various countries, and plays a very important responsibility in promoting low-carbon cities. However, the security of low-carbon transportation has been threatened from various ways. For example, denial of service attacks pose a great threat to the electric vehicles and vehicle-to-grid networks. To minimize these threats, several methods have been proposed to defense against them. Yet, these methods are only for certain types of scenarios or attacks. Therefore, this review addresses security aspect from holistic view, provides the overview, challenges and future directions of cyber security technologies in low-carbon transportation. Firstly, based on the concept and importance of low-carbon transportation, this review positions the low-carbon transportation services. Then, with the perspective of network architecture and communication mode, this review classifies its typical attack risks. The corresponding defense technologies and relevant security suggestions are further reviewed from perspective of data security, network management security and network application security. Finally, in view of the long term development of low-carbon transportation, future research directions have been concerned.Comment: 34 pages, 6 figures, accepted by journal Renewable and Sustainable Energy Review

    Operational research and simulation methods for autonomous ride-sourcing

    Get PDF
    Ride-sourcing platforms provide on-demand shared transport services by solving decision problems related to ride-matching and pricing. The anticipated commercialisation of autonomous vehicles could transform these platforms to fleet operators and broaden their decision-making by introducing problems such as fleet sizing and empty vehicle redistribution. These problems have been frequently represented in research using aggregated mathematical programs, and alternative practises such as agent-based models. In this context, this study is set at the intersection between operational research and simulation methods to solve the multitude of autonomous ride-sourcing problems. The study begins by providing a framework for building bespoke agent-based models for ride-sourcing fleets, derived from the principles of agent-based modelling theory, which is used to tackle the non-linear problem of minimum fleet size. The minimum fleet size problem is tackled by investigating the relationship of system parameters based on queuing theory principles and by deriving and validating a novel model for pickup wait times. Simulating the fleet function in different urban areas shows that ride-sourcing fleets operate queues with zero assignment times above the critical fleet size. The results also highlight that pickup wait times have a pivotal role in estimating the minimum fleet size in ride-sourcing operations, with agent-based modelling being a more reliable estimation method. The focus is then shifted to empty vehicle redistribution, where the omission of market structure and underlying customer acumen, compromises the effectiveness of existing models. As a solution, the vehicle redistribution problem is formulated as a non-linear convex minimum cost flow problem that accounts for the relationship of supply and demand of rides by assuming a customer discrete choice model and a market structure. An edge splitting algorithm is then introduced to solve a transformed convex minimum cost flow problem for vehicle redistribution. Results of simulated tests show that the redistribution algorithm can significantly decrease wait times and increase profits with a moderate increase in vehicle mileage. The study is concluded by considering the operational time-horizon decision problems of ride-matching and pricing at periods of peak travel demand. Combinatorial double auctions have been identified as a suitable alternative to surge pricing in research, as they maximise social welfare by relying on stated customer and driver valuations. However, a shortcoming of current models is the exclusion of trip detour effects in pricing estimates. The study formulates a shared-ride assignment and pricing algorithm using combinatorial double auctions to resolve the above problem. The model is reduced to the maximum weighted independent set problem, which is APX-hard. Therefore, a fast local search heuristic is proposed, producing solutions within 10\% of the exact approach for practical implementations.Open Acces
    • …
    corecore