13,337 research outputs found

    Self-organising agent communities for autonomic resource management

    No full text
    The autonomic computing paradigm addresses the operational challenges presented by increasingly complex software systems by proposing that they be composed of many autonomous components, each responsible for the run-time reconfiguration of its own dedicated hardware and software components. Consequently, regulation of the whole software system becomes an emergent property of local adaptation and learning carried out by these autonomous system elements. Designing appropriate local adaptation policies for the components of such systems remains a major challenge. This is particularly true where the system’s scale and dynamism compromise the efficiency of a central executive and/or prevent components from pooling information to achieve a shared, accurate evidence base for their negotiations and decisions.In this paper, we investigate how a self-regulatory system response may arise spontaneously from local interactions between autonomic system elements tasked with adaptively consuming/providing computational resources or services when the demand for such resources is continually changing. We demonstrate that system performance is not maximised when all system components are able to freely share information with one another. Rather, maximum efficiency is achieved when individual components have only limited knowledge of their peers. Under these conditions, the system self-organises into appropriate community structures. By maintaining information flow at the level of communities, the system is able to remain stable enough to efficiently satisfy service demand in resource-limited environments, and thus minimise any unnecessary reconfiguration whilst remaining sufficiently adaptive to be able to reconfigure when service demand changes

    On the Minimization of Handover Decision Instability in Wireless Local Area Networks

    Full text link
    This paper addresses handover decision instability which impacts negatively on both user perception and network performances. To this aim, a new technique called The HandOver Decision STAbility Technique (HODSTAT) is proposed for horizontal handover in Wireless Local Area Networks (WLAN) based on IEEE 802.11standard. HODSTAT is based on a hysteresis margin analysis that, combined with a utilitybased function, evaluates the need for the handover and determines if the handover is needed or avoided. Indeed, if a Mobile Terminal (MT) only transiently hands over to a better network, the gain from using this new network may be diminished by the handover overhead and short usage duration. The approach that we adopt throughout this article aims at reducing the minimum handover occurrence that leads to the interruption of network connectivity (this is due to the nature of handover in WLAN which is a break before make which causes additional delay and packet loss). To this end, MT rather performs a handover only if the connectivity of the current network is threatened or if the performance of a neighboring network is really better comparing the current one with a hysteresis margin. This hysteresis should make a tradeoff between handover occurrence and the necessity to change the current network of attachment. Our extensive simulation results show that our proposed algorithm outperforms other decision stability approaches for handover decision algorithm.Comment: 13 Pages, IJWM

    Preliminary specification and design documentation for software components to achieve catallaxy in computational systems

    Get PDF
    This Report is about the preliminary specifications and design documentation for software components to achieve Catallaxy in computational systems. -- Die Arbeit beschreibt die Spezifikation und das Design von Softwarekomponenten, um das Konzept der Katallaxie in Grid Systemen umzusetzen. Eine Einführung ordnet das Konzept der Katallaxie in bestehende Grid Taxonomien ein und stellt grundlegende Komponenten vor. Anschließend werden diese Komponenten auf ihre Anwendbarkeit in bestehenden Application Layer Netzwerken untersucht.Grid Computing

    A Software Suite for the Control and the Monitoring of Adaptive Robotic Ecologies

    Get PDF
    Adaptive robotic ecologies are networks of heterogeneous robotic devices (sensors, actuators, automated appliances) pervasively embedded in everyday environments, where they learn to cooperate towards the achievement of complex tasks. While their flexibility makes them an increasingly popular way to improve a system’s reliability, scalability, robustness and autonomy, their effective realisation demands integrated control and software solutions for the specification, integration and management of their highly heterogeneous and computational constrained components. In this extended abstract we briefly illustrate the characteristic requirements dictated by robotic ecologies, discuss our experience in developing adaptive robotic ecologies, and provide an overview of the specific solutions developed as part of the EU FP7 RUBICON Project
    corecore