6 research outputs found

    Analysis of design alternatives on using dynamic and partial reconfiguration in a space application

    Get PDF
    Some of the biggest concerns in space systems are power consumption and reliability due to the limited power generated by the system's energy harvesters and the fact that once deployed, it is almost impossible to perform maintenance or repairs. Another consideration is that during deployment, the high exposure to electromagnetic radiation can cause single event damage effects including SEUs, SEFIs, SETs and others. In order to mitigate these problems inherent to the space environment, a system with dynamic and partial reconfiguration capabilities is proposed. This approach provide s the flexibility to reconfigure parts of the FPGA while still in operation, thus making the system more flexible, fault tolerant and less power-consuming. In this paper, several partial reconfiguration approaches are proposed and compared in terms of device occupation, power consumption, reconfiguration speed and size of memory footprints

    A run time adaptive architecture to trade-off performance for fault tolerance applied to a DVB on-board processor

    Get PDF
    Reliability is one of the key issues in space applications. Although highly flexible and generally less expensive than predominantly used ASICs, SRAM-based FPGAs are very susceptible to radiation effects. Hence, various fault tolerant techniques have to be applied in order to handle faults and protect the design. This paper presents a reconfigurable on-board processor capable of run-time adaptation to harsh environmental conditions and different functional demands. Run-time reconfigurability is achieved applying two different reconfiguration methodologies. We propose a novel self-reconfigurable architecture able to on demand duplicate or triplicate part of the design in order to form DMR and TMR structures. Moreover, we introduce two different approaches for voting the correct output. The first one is a traditional voter that adapts to different DMR/TMR domain positions whereas the second implies comparing the captured flip-flop values directly from the configuration memory read through ICAP. The comparison is done periodically by an embedded processor thus completely excluding the voting mechanism in hardware. The proposed run-time reconfiguration methodology provides savings in terms of device utilization, reconfiguration time, power consumption and significant reductions in the amount of rad-hard memory used by partial configurations

    A novel FPGA-based evolvable hardware system based on multiple processing arrays

    Get PDF
    In this paper, an architecture based on a scalable and flexible set of Evolvable Processing arrays is presented. FPGA-native Dynamic Partial Reconfiguration (DPR) is used for evolution, which is done intrinsically, letting the system to adapt autonomously to variable run-time conditions, including the presence of transient and permanent faults. The architecture supports different modes of operation, namely: independent, parallel, cascaded or bypass mode. These modes of operation can be used during evolution time or during normal operation. The evolvability of the architecture is combined with fault-tolerance techniques, to enhance the platform with self-healing features, making it suitable for applications which require both high adaptability and reliability. Experimental results show that such a system may benefit from accelerated evolution times, increased performance and improved dependability, mainly by increasing fault tolerance for transient and permanent faults, as well as providing some fault identification possibilities. The evolvable HW array shown is tailored for window-based image processing applications

    Adaptive reconfigurable voting for enhanced reliability in medium-grained fault tolerant architectures

    Get PDF
    The impact of SRAM-based FPGAs is constantly growing in aerospace industry despite the fact that their volatile configuration memory is highly susceptible to radiation effects. Therefore, strong fault-handling mechanisms have to be developed in order to protect the design and make it capable of fighting against both soft and permanent errors. In this paper, a fully reconfigurable medium-grained triple modular redundancy (TMR) architecture which forms part of a runtime adaptive on-board processor (OBP) is presented. Fault mitigation is extended to the voting mechanism by applying our reconfiguration methodology not only to domain replicas but also to the voter itself. The proposed approach takes advantage of adaptive configuration placement and modular property of the OBP, thus allowing on-line creation of different medium-grained TMRs and selection of their granularity level. Consequently, we are able to narrow down the fault-affected area thus making the error recovery process faster and less power consuming. The conventional hardware based voting is supported by the ICAP-based one in order to additionally strengthen the reconfigurable intermediate voting. In addition, the implementation methodology ensures using only one memory footprint for all voters and their voting adaptations thus saving storing resources in expensive rad-hard memories

    Cost and energy efficient reconfigurable embedded platform using Spartan-6 FPGAs

    Get PDF
    Modern FPGAs with run-time reconfiguration allow the implementation of complex systems offering both the flexibility of software-based solutions combined with the performance of hardware. This combination of characteristics, together with the development of new specific methodologies, make feasible to reach new points of the system design space, and make embedded systems built on these platforms acquire more and more importance. However, the practical exploitation of this technique in fields that traditionally have relied on resource restricted embedded systems, is mainly limited by strict power consumption requirements, the cost and the high dependence of DPR techniques with the specific features of the device technology underneath. In this work, we tackle the previously reported problems, designing a reconfigurable platform based on the low-cost and low-power consuming Spartan-6 FPGA family. The full process to develop the platform will be detailed in the paper from scratch. In addition, the implementation of the reconfiguration mechanism, including two profiles, is reported. The first profile is a low-area and low-speed reconfiguration engine based mainly on software functions running on the embedded processor, while the other one is a hardware version of the same engine, implemented in the FPGA logic. This reconfiguration hardware block has been originally designed to the Virtex-5 family, and its porting process will be also described in this work, facing the interoperability problem among different families

    Dynamic management of multikernel multithread accelerators using dynamic partial reconfiguration

    Get PDF
    Ever demanding systems with restricted resources face increasingly complex applications. Additionally, changeable environments modify working conditions over time. Therefore, a dynamic resource management is required in order to provide adaptation capabilities. By using ARTICo3, a bus-based architecture with reconfigurable slots, this adaptation is accomplished in three different but dependent areas: Consumption, Confidentiality and fault tolerance, and Computation. The proposed resource management strategies rely on an architecture and a model of computation that make execution configuration to be application-independent, but context-aware, since a CUDA-like execution model is used. The inherent and explicit application-level parallelism of multithreaded CUDA kernels is used to generate hardware accelerators that act as thread blocks. Despite other modes of operation provided by the ARTICo3 architecture, like module redundancy or dual-rail operation to mitigate Side-Channel Attacks, these thread blocks are dynamically managed and their execution is scheduled using a multiobjective optimization algorithm
    corecore