
A Run Time Adaptive Architecture to trade-off 
Performance for Fault Tolerance applied to a DVB 

On-Board Processor 

Filip Veljkovic, Teresa Riesgo, Eduardo de la Torre Raúl Regada, Luis Berrojo 

Abstract— Reliability is one of the key issues in space 
applications. Although highly flexible and generally less 
expensive than predominantly used ASICs, SRAM-based FPGAs 
are very susceptible to radiation effects. Hence, various fault 
tolerant techniques have to be applied in order to handle faults 
and protect the design. This paper presents a reconflgurable on­
board processor capable of run-time adaptation to harsh 
environmental conditions and different functional demands. 
Run-time reconfigurability is achieved applying two different 
reconfiguration methodologies. We propose a novel self-
reconflgurable architecture able to on demand duplicate or 
triplicate part of the design in order to form DMR and TMR 
structures. Moreover, we introduce two different approaches for 
voting the correct output. The first one is a traditional voter that 
adapts to different DMR/TMR domain positions whereas the 
second implies comparing the captured flip-flop values directly 
from the configuration memory read through ICAP. The 
comparison is done periodically by an embedded processor thus 
completely excluding the voting mechanism in hardware. The 
proposed run-time reconfiguration methodology provides savings 
in terms of device utilization, reconfiguration time, power 
consumption and significant reductions in the amount of rad-
hard memory used by partial configurations. 

Keywords—-fault tolerance, ICAP, duplex, TMR, voting, 
scalability, run-time partial reconfiguration, FPGAs, DVB-OBP 

I. INTRODUCTION 

In recent years FPGAs are progressively getting involved 
in space system applications. Space engineering turns to the 
platform as it provides high performance and high flexibility at 
limited costs. In contrast to Application-Specific Integrated 
Circuits (ASICs) or antifuse-based FPGAs, used in the 
majority of space digital systems, non-recurring engineering 
(NRE) costs are significantly lower. Moreover, design and re-
spin processes of an ASIC-based system take several months of 
schedule time which can considerably increase the cost or even 
risk the entire project. On the other hand, SRAM-based 
FPGAs, with relatively short design cycle, offer themselves as 
highly convenient platforms. Modern FPGAs possess a large 
number of gates that make possible the implementation of a 
complete system in a single device. They also offer the 
possibility to be reprogrammed such allowing further changes 
and modifications of the original design. In addition, apart 
from the complete reconfiguration, SRAM-based FPGAs can 

be reconfigured partially without interrupting the operation of 
the rest of the design, even self-reconfiguring. This opens a 
whole new opportunity for space applications as a system can 
be reconfigured during the flight as many times as necessary. 
Systems may not only change their functionality during run­
time, but also be able to save unnecessary portions of the 
FPGA area thus obtaining savings in terms of device utilization 
and power consumption which is one of the key issues in space 
systems. 

Nevertheless, in space applications, there are unique 
environmental challenges that need to be accounted for. 
Despite high performance, flexibility and low design costs, 
volatile nature of SRAM-based FPGAs makes them highly 
susceptible to radiation effects. During a space flight, a charged 
particle may enter the substrate of a MOSFET transistor and 
provoke ionization. Due to low power supply and presence of 
configuration memory, it may invert the stored bit in a register 
or a memory cell. These single event effects (SEEs) can take 
on many forms. NASA divides SEEs into soft and hard errors 
[1]. Soft errors, such as single event upsets (SEUs) and single 
event transients (SETs), are non-destructive faults which affect 
both sequential and combinational logic. In contrast to hard 
errors, they can be repaired by rewriting the configuration 
memory in a process called scrubbing or refreshing the register 
with the correct data. On the other hand, many types of hard 
errors are potentially destructive and may result in high 
operating current or gate ruptures. Several fault tolerant 
techniques address these issues trying to mitigate in-flight 
radiation effects. As continuous technology evolution makes 
these occurrences more frequent even in terrestrial applications 
the research is mostly oriented to SETs and SEUs. The most 
common way to cope with these faults is to employ different 
redundancy techniques such as triple modular redundancy 
(TMR) or duplex systems [2][3]. A complete design, or only a 
part of it, is duplicated or triplicated so that it can still operate 
properly even if one redundancy domain gets struck by an 
SEU. Xilinx has introduced a TMR tool which, depending on 
the type of logic elements, triplicates the design and introduces 
different voter types to mask the faults and propagate the 
correct output [4]. Nevertheless, if more than one domain is 
affected, TMR systems are incapable of further masking of the 
fault which results in an erroneous output. Therefore, in order 
to prevent the system from accumulating faults, periodical 



scrubbing of the configuration memory is used in many 
applications. In [5] such system which combines scrubbing 
with dynamic and partial reconfiguration (DPR) is proposed. 
The paper also resolves the common problem that arises when 
scrubbing frequently uses the Internal Configuration Access 
Port (ICAP) thus limiting the ability to perform DPR. 

Among several alternative approaches, redundancy 
techniques in combination with DPR emerge as the most 
reliable way of protecting the system from SEUs. Moreover, as 
the price when replicating the logic is often expressed in huge 
device occupation and high power consumption, recent 
research in the field of fault tolerance was mostly oriented 
towards run-time partial reconfiguration of faulty modules. In 
addition, as TMR designs are susceptible to single point of 
failure, reconfiguration of a faulty domain may significantly 
extend the life of a complete system. Authors of [6] proposed 
fault-tolerant architectures that use TMR with different levels 
of granularity to mitigate permanent SEUs in SRAM 
programmable cells. Redundancies are voted with a single 
voter or partitioned and voted after each stage using various 
majority voters in order to detect and mask the fault. When the 
fault is detected partitions are reconfigured in order to heal the 
circuit. TMR modules must be functionally identical, i.e. their 
input/output responses should match, although the way of 
implementing does not necessarily have to be the same. In [7] a 
TMR variation, the so-called design-for-diversity, is proposed 
where TMR modules are implemented using different 
techniques thus improving fault tolerance. It is shown that the 
diverse design improves reliability for randomly introduced 
faults. Three modern fault tolerant architectures based on DPR 
and TMR or duplex with on-line checkers as a type of 
Concurrent Error Detection technique are proposed in [8]. 
Redundancy functional units are implemented in the dynamic 
part of the design and replaced if an upset strikes one or more 
of them. Nevertheless, partial reconfiguration of the corrupted 
redundancy domain takes time and in many systems the rest of 
the design has to be offline during that period which could be 
unaffordable in some applications. Authors of [9] deal with this 
issue by implementing different TMR domains such that each 
domain can be reconfigured independently from the others 
without interrupting the circuit operation. The design is 
partitioned, each partition has its own upset flag and a minority 
voter is inserted after every majority one in order to select the 
fault free domain. Some of these fault tolerant approaches are 
already employed in various space system applications. 

In this paper we present a run-time adaptive platform which 
trades-off performance for fault tolerance in a digital video 
broadcast (DVB) on-board processor (OBP) used in a satellite 
communications application. The reconfiguration methodology 
is applied to an existing demultiplexer architecture (DEMUX) 
included in the OBP which was previously designed as an 
ASIC. Our proposal consists of two different methodologies 
for DPR in a space qualified SRAM-based FPGA and a 
complete adaptability in terms of partial configuration placing 
which allows the implementation of different redundancy 
techniques on demand. The first approach is traditional DPR 
where, depending on configuration bits, which might be 
received remotely, a part of the design in charge of some task 
is simply substituted by another in charge of another one. In 

the case of the reconfigurable D E M U X , each partial 
configuration represents a part of a sub-band (SB) hardware 
and contains stages required to create a given carrier frequency. 
The design methodology implies rewriting the part of the 
configuration memory referring to the whole reconfigurable 
area previously dedicated to a certain S B . The second approach 
uses the advantage of scalable and modular design, making 
possible the reconfiguration of a smaller part of the hardware 
thus lowering the time and power consumption of the partial 
reconfiguration process. These scalable partial configurations 
can be placed one next to each other in order to create a given 
carrier frequency in a certain S B . In both D P R approaches, 
partial configurations are compatible with all of the 4 SBs and 
can be configured in different positions of the F P G A . These 
SBs can be implemented in different zones and can be 
modified during run-time. Moreover, an S B can be duplicated 
or triplicated on demand by configuring it in two or three 
reconfiguration zones thus forming a duplex or T M R structure. 
One of the important contributions of this paper is the voting 
mechanism. Two different voting types are implemented and 
compared in terms of reliability and device utilization. The first 
one is a traditional voter which adapts to the position of the 
T M R structure and propagates the correct result to the output. 
The second voting approach is based on the readback of the 
configuration memory through I C A P and comparing the 
captured flip-flop values of each domain outputs in software. 
This approach allows for a complete exclusion of a voting 
mechanism in hardware thus avoiding a possibility that an S E U 
threatens a voter which usually has serious consequences on 
the entire design. 

One of the main design goals was to enable complete 
adaptability in terms of S B placement order and provide an 
opportunity to configure certain S B several times during run­
time in order to increase fault tolerance of the entire design. 
Moreover, the objective was also to minimize the device 
utilization area by reconfiguring the device only with necessary 
logic at a certain point of the operation and to create the least 
possible memory footprint for each partial configuration as 
each of them should represent a “golden copy” stored in a 
radiation hardened, non-volatile memory. By making the 
design reconfigurable we achieved significant simplifications 
in each S B stage module and established a system with 
adaptive fault tolerance capabilities. 

The rest of the paper is organized as follows. In section 2, 
the non-reconfigurable, ASIC-based D V B O B P is introduced 
and the motivation for making it reconfigurable is given. In 
section 3, the conventional and scalable D P R methodologies 
are described along with the architecture of the reconfigurable 
design. In section 4, the complete run-time adaptive system-on-
chip is presented and analyzed and thereafter the on-demand 
creation of fault tolerant structures together with both voting 
mechanisms is explained in detail. Obtained results are 
summarized in section 5. Finally, section 6 gives perspectives 
and conclusion of this paper. 

I I . ASIC-BASED D V B ON-BOARD PROCESSOR 

O B P technology is still considered too expensive to be 
incorporated in the satellite payload and the research in O B P 
systems has not progressed as fast as it was initially expected. 



One of the main reasons for slow adoption is the lack of 
flexibility in ASIC technology which is unable to evolve once 
in orbit. This fact, associated with the long term duration of a 
satellite missions which generally last more than 15 years, lead 
to an obsolescence of the on-board equipment which is not able 
to cope with the changes in modulation and codification 
schemes. Reconfigurable OBPs based on a reprogrammable 
hardware happen to be an evolution path for future challenging 
flexible OBP architectures. Several papers are already 
published considering this topic. In [10] and [11] authors 
presented their reconfigurable OBPs implemented in space 
qualified Xilinx Virtex-5QV FPGAs showing significant 
advances in the field of OBPs. 

This work presents the reconfiguration methodology 
applied to an already existent DVB OBP previously 
implemented using several ASIC boards shown in Fig. 1. The 
core of the system are the multicarrier 3D (MC3D) boards 
which are intended to demultiplex, demodulate and decode 
carriers located within a transponder in order to generate a 
single multiplex of MPEG-2 packets following the DVB 
standard. Block diagram of the MC3D architecture is shown in 
Fig. 2. The reconfiguration methodology is applied to the 
DEMUX part of the system due to its modular properties. The 
basic functions of the DEMUX are demultiplexing, switching 
and TM/TC interface. It performs digital demultiplexing of the 
33MHz bandwidth channel in order to extract the possible data 
carriers (Table I) by processing 10-bit samples coming from an 
ADC working at up to 90MHz. These carriers are the inputs for 
the demodulator-decoder (DEMDEC) part of the system which 
creates the packets that are later handled to the SWITCH and 
MUX units. 

Fig. 1 Functional units of the DVB on-board processor 

TABLE I . CARRIERS PRESENT IN ALL FIVE SUB-BANDS 

Carrier Frequency 
[MHz] 

8 (16Rs) 

4 (8Rs) 

2 (4Rs) 

1 (2Rs) 

0.5 (1Rs) 

Number of possible carriers in 
all sub-bands 

4 

9 

18 

36 

72 

In the chosen frequency plan, useful spectrum is divided 
into 5 SBs, 4 of them with a bandwidth of 24Rs, and the other 
one with half that bandwidth. These values correspond to the 
bandwidth occupied by carriers of 16Rs and 8Rs respectively. 
The DEMUX has five possible output channels, corresponding 

Fig. 2 MC3D architecture 

to the number of SBs, connected to the five DEMDECs. The 
implemented DEMUX ASIC design is shown in Fig. 3. Each 
SB creates carriers that are always at a rate of 3*k*Rs (k = 16, 
8, 4, 2, 1), whereas the demultiplexer output clock is 48Rs, 
which is five times slower than the input clock of the design. 
SB carriers with a rate lower than 16Rs are delivered 
multiplexed in time to the corresponding demodulator. As 
presented in Fig. 3, the block diagram is composed of a 10-bin 
and several 4-bin polyphase structures in charge of polyphase 
filtering. Apart from filtering they also perform decimation by 
5 in the STR10 and by 4 in the STR4. The upper branch of the 
architecture corresponds to the 5th, 8Rs SB. 

Fig. 3 Block diagram of the DEMUX ASIC architecture 

As this was formerly an ASIC-based design, resources of 
each S B are present on the board although not all of them are 
necessary at all points of the operation. Hence, unnecessary 
device area is occupied such wasting space, power 
consumption and therefore cost. The following section presents 
the reconfigurable D E M U X architecture created by applying 
two different D P R methodologies. 

I I I . THE RECONFIGURABLE D E M U X 

In each S B of the non-reconfigurable D E M U X , 4, 2, 1 and 
0.5 MHz carriers are constantly created although only one 
frequency rate is propagated to the output in a given 
configuration. In order to save unnecessary resources at certain 
points of the operation, the partitioning of the architecture 



described in the previous section is shown in Fig. 4. The static 
part consists of the 5th SB and several block modules in figure 
represented as STR10 that are necessary at all points of the 
operation. Four 24Rs SB are left in the reconfigurable part of 
the design in order to benefit from the modular property of 
each branch and create only the demanded frequency carriers. 
As presented in Fig. 4, the 8 MHz carriers are created in the 
static part unlike lower frequency carriers which are created in 
STR4 blocks inside the reconfigurable part of the architecture. 
Although named the same in Fig. 3, STR4 blocks differ going 
from higher to lower frequencies in the implemented 
architecture. Moreover, the 2 MHz frequency carriers are 
created after the 3rd STR4 block and a multiplexer is used after 
the 1st one to select the proper input for the following blocks. 
This is not the case in the reconfigurable DEMUX where the 
need for configuration bits is completely avoided inside the 
SBs. Using DPR techniques branches are configured on 
demand such that at certain point of the operation contain only 
the necessary logic to create carriers of the demanded 
frequency. Two different partial reconfiguration methodologies 
are developed and presented in the following subsections. 

Fig. 4 Partitioning of the DEMUX architecture 

A. Conventional DPR Methodology 
The reconfigurable DEMUX architecture obtained applying 

conventional DPR methodology is presented in Fig. 5. The 
figure shows the current state of the architecture when 0.5, 8, 4, 
and 2 MHz frequency carriers are demanded from the 1st, 2nd, 
3rd and 4th SB, respectively. Necessary stages for the creation 
of certain carriers are presented in partial bitstream blocks 
(PBS). Each of these blocks represents partial configuration 
which should be stored as a “golden copy” in an external 
radiation-hardened memory. The presented configuration 
implies taking 0.5 MHz frequency carriers from the 1st SB. 
Hence, the portion of the FPGA area reserved for the branch 
will be reconfigured using the logic referring the creation of 
these carriers and stored as partial bitstream 4. This is the most 
area consuming partial configuration as it consists of all four 
stages. Nevertheless, each stage is significantly simplified 
during the implementation optimization process as there is no 
need for the creation of other frequency carriers. In order to 
make the SBs completely reconfigurable, the 8 MHz carriers, 
created in the static part, are passed through the reconfigurable 
zone configuring a simple cover. Therefore, the entire FPGA 
area reserved for a certain SB is left empty thus saving the area 
and power consumption. The 4 MHz carriers are created and 

taken out to the static part of the design by configuring partial 
configuration 1 which consists of only one stage. 
Consequently, the major part of the SB area is saved. In the 
given configuration, the 2 MHz carriers are created in 3rd SB 
and taken out to the static part of the design. The partial 
configuration 2 consists of three stages where the 2nd is 
modified such that from its outputs 3rd stage creates the 
demanded carriers. Stage 3 is also optimized thus leaving the 
block without the needed logic for the following stage which is 
left out in this configuration. 

Fig. 5 Conventional DPR methodology applied to the DEMUX architecture 

Partial configurations are implemented with careful 
considerations in the implementation stage using PlanAhead 
and FPGA Editor in order to constrain logic within a specific 
range. Each configuration is implemented such that consumes 
the least possible power and area. Partial configurations are 
additionally optimized during the synthesis process. All of 
them are implemented within 2 clock regions in the right part 
of the FPGA and their representation in FPGA Editor is given 
in Fig. 6. Our reconfiguration engine, capable of bitstream 
relocation, configures the demanded logic in reconfiguration 
zones placed in the right part of the FPGA where each clock 
region has the same architecture. 

Ensuring fixed connection between the static and 
reconfigurable part(s) after the reconfiguration process is of the 
crucial importance when implementing designs with DPR. In 
addition, if there is more than one reconfigurable zone and they 
need to communicate directly one with each other, proper 
connection between them should also be ensured. In order to 
achieve it, a hard (bus) macro is created to fix each connection 
at a predetermined position. In the reconfigurable DEMUX, 8­
bit bus macros consisting of 2 slices are placed on the border 
between the static and reconfigurable parts which is usually 
called the “cut line”. As each configuration has the bus macros 
at the same FPGA location, when a region is reconfigured one 
slice is substituted with another of the same type hence 
ensuring permanent correct connection between the parts. The 
reconfigurable DEMUX uses 8 bus macros per reconfiguration 
zone (Fig. 5b). The lower 3 are used to pass the carriers from 
the reconfiguration zone to the static part whereas the higher 5 
provide the inputs for the zones. Since there are 4 zones the 
total number of bus macros is 32. 



Fig. 6 Implemented partial configurations: a) PBS 1; b) PBS 2; c) PBS 3; d) 
PBS 4 

B. Scalable DPR Methodology 

The conventional DPR methodology presented in the 
previous section requires the substitution of an entire partial 
configuration by another one with different functionality. That 
implies that larger portion of the configuration memory has to 
be rewritten at each reconfiguration thus making the process 
more time and power-consuming. In order to reconfigure as 
less area as possible, and therefore reduce the time and power 
consumption, a scalable partial reconfiguration methodology 
that takes the benefit from the modular and scalable properties 
of the original architecture is proposed. The reconfiguration 
strategy is shown in Fig. 7. 

Fig. 7 Scalable D P R methodology applied to D E M U X architecture 

The figure presents an example configuration where the 2, 
8, 4 and 0.5 MHz frequency carriers are demanded from the 
SBs. Reconfigurable branches are composed of scalable 
configurations that generate demanded carriers by connecting 
blocks one next to another. Hence, when changing for instance 
the S B configuration from 2 to 4 MHz, stage 1 is left in S B 
thus reconfiguring less F P G A area. Bus macros are placed 
between the reconfigurable zones inside the S B thus making 
possible the propagation of the data to the next scalable partial 
configuration. Although full scalability could not be achieved 
due to the on-chip area limitations, scalable solution gives 
better results in terms of the reconfiguration time and the total 
size in memory of partial bitstream files comparing to the 
conventional D P R solution. The static part is compatible with 
both D P R methodologies making the decision on whether to 
use scalable or conventional one constantly open. The partial 
configurations implemented are shown in Fig. 8. 

I V . RUN-TIME ADAPTIVE SYSTEM-ON-CHIP 

In this section, the complete reconfigurable system will be 
described. The achieved adaptability in terms of S B 
configurations and decisions on where to place a particular S B 

Fig. 8 Implemented scalable partial configurations: a) PBS_S 1; a) PBS_S 2; 
a) PBS_S 3; a) PBS_S 4; 

at a given moment of operation will be presented. In addition, 
the run-time trade-off between the performance and fault 
tolerance will be explained along with the two possible voting 
solutions. 

A. Reconfigurable System Evaluation Platform 

A block diagram of the implemented evaluation system is 
presented in Fig. 9. It consists of several peripherals that make 
possible the run-time reconfiguration of the DEMUX 
architecture. In the implemented design, all the peripherals 
together with the STR10 block of the DEMUX are placed in 
the static part and therefore are present at all points of the 
operation. The system includes CompactFlash and DDR2 
memory controllers which provide proper communication with 
the external memories. These memories will be replaced in the 
final design by the radiation hardened non-volatile memory 
where the full and partial configurations should be stored as the 
“golden copies” of the reconfigurable design. An embedded 
microprocessor is used to control the run-time adaptation to 
different operational demands and support the reconfiguration 
process. Moreover, along with GPIOs it is used for the 
evaluation and verification where the reconfigurable DEMUX 
is stimulated using predefined stimuli stored on the 
CompactFlash card. The output results are obtained through 
GPIO 2 and stored in the memory. 

Fig. 9 Block diagram of the reconfigurable system 

The reconfiguration engine is required in every 
reconfigurable system. Our OBP takes the benefits of the 
enhanced HWICAP which is based on the Xilinx HWICAP 
and proposed in [12]. Apart from the conventional run-time 
partial reconfiguration, the peripheral supports the relocation of 
partial configurations, core replication and run-time readback 
of the configuration memory. Moreover, the engine is 
additionally upgraded for the purpose of the system such as 



providing a possibility to capture the states of design flip-flops 
at a certain point of the operation. The enhanced HWICAP is 
modified in order to adapt to our FPGA platform and it is fully 
implemented in hardware which makes it able to achieve 
higher reconfiguration speeds. 

In order to control the reconfiguration process and make the 
system capable of various run-time adaptations, a custom 
peripheral containing configuration, sub-band order (SBO) and 
flag registers is included in the architecture. The configuration 
register provides the information about the current state of the 
SBs and is constantly used by the reconfiguration engine. The 
information about where to configure a particular SB is given 
in the SBO register. Contents of these registers should be 
received remotely and be available at all points of the 
operation. The flag register is a 4-bit register where each bit 
represents a reconfiguration zone. If a fault occurs, the bit 
referring to the zone is set high. Communication between the 
peripherals is done over processor local bus (PLB). 

When the configuration register bits are changed and 
therefore the demands from the SBs, required partial bitstreams 
saved on the CompactFlash card are copied to the DDR2 in 
order to obtain faster reconfiguration. The enhanced HWICAP 
rewrites a portion of the configuration memory referring to the 
certain zone with the corresponding partial configuration. The 
reconfiguration engine is able to reconfigure the required zone 
using the DDR2 interface highlighted as the “fast link” in Fig. 
9. The reconfiguration process can be done at the rate of 200 
MHz although the power consumption is higher comparing to 
the case when the processor interface is used. As the 
reconfiguration speed is not of the crucial importance for the 
application, the Enhanced HWICAP takes the benefit of the 
second option. 

Fig. 10 Implemented static part of the design 

The implemented static part of the design is presented in 
Fig. 10. Four reconfiguration zones reserved for four SBs are 
implemented in the right part of the FPGA. Each SB is 
implemented within 2 clock regions corresponding to the are 
occupation of the largest partial configuration. Five and six 
different configurations are created and stored in the memory 
for both, conventional and scalable DPR methodologies, 
respectively. At the very same border between the static and 
reconfigurable zones 32 bus macros are implemented 
(highlighted in yellow in the given figure). The reconfiguration 
zones are completely separated one from another so that no 
overlapping is possible. As can be seen, the entire right part of 
the FPGA is left with no logic and made completely 

reconfigurable thus making a significant step toward a fault 
tolerant system. 

B. The Sub-band Placement Adaptability 

The initial reconfigurable DEMUX solution implied fixed 
positions for each of the 4 reconfigurable SBs. In order to 
implement a completely adaptive system capable of taking SB 
carriers from different reconfiguration zones to every 
DEMDEC block, the SB placement should be completely 
flexible. Therefore, a hardware module able to select the zone 
for a particular SB is implemented in the static part of the 
design. It uses the remotely received configuration data stored 
in the SBO register and propagates the SB inputs to the 
corresponding zone. It also takes the created carriers from each 
configured SB providing the data properly to the output 
module. 

A block diagram of the described process is implemented 
in Fig. 11. In an example configuration where the SB order in 
zones from 1 to 4 states 2nd, 3rd, 1st and 4th, respectively, the 
selector module properly propagates the input data created in 
the STR10 block (SB1…SB4) to the corresponding 
reconfiguration zone. It then takes the output carriers from 
zones 1, 2, 3 and 4 and forwards them to the SB2_out, 
SB3_out, SB1_out and SB4_out inputs of the interface module, 
respectively. The selector module allows all possible order 
combinations and enables run-time placement adaptability. The 
32 bus macros that ensure proper connection after the 
reconfiguration process are presented on the border between 
the static and reconfigurable zones. 

Fig. 11 Adaptive sub-band placing for an example SBO configuration 

C. The Run-Time trade-off: Performance vs. Fault Tolerance 

In the previous sub-section, the run-time adaptability in the 
SB placement which allows for implementing reconfigurable 
branches in different reconfiguration zones was presented. 
Another property of the selector block is the ability to forward 
particular SB inputs to several reconfiguration zones. Hence, 
SB logic can be duplicated or triplicated thus forming the well-
known duplex or TMR structures used in various fault tolerant 
systems. Moreover, as the selector uses the remotely received 
configuration from the SBO register, these structures can be 
implemented with great flexibility during run-time. In other 
words, structures can be configured in any possible zone 
position thus making the system tolerant not only to soft errors 
but also to certain types of hard errors as a particular logic can 
be implemented in other, undamaged part of the FPGA. 

In the DVB OBP presented in section II, the DEMUX 
constantly provides carriers to each of the five DEMDEC 
blocks. However, in many cases MPEG-2 packets are created 



using only some of them. When a particular SB is duplicated or 
triplicated in hardware, some other SBs have to be left from the 
configuration. The selector module enables the proposed trade­
off thus providing additional protection to the system. 
Nevertheless, as structures based on hardware redundancy 
require selection of the undamaged domain outputs, an 
adaptive voting mechanism able to recognize the structure 
position had to be implemented. 

D. Adaptive Voting Methodologies 

The first voting method implies configuration of an 
adaptive majority voter capable of adjusting to the structure 
position in order to take the created carriers from different 
redundancy domains and forward the correct ones to the output 
interface. An example of voting the carriers created in the 
reconfigurable TMR domains is presented in Fig. 12. The 3rd 

SB is configured in zones 1, 2 and 4. Zone 3 is configured with 
the 2nd SB logic. The voter adapts to the position of the 
redundancy domains and forwards the output of the 
undamaged circuit replica. In addition, it can detect the faulty 
domain and set high the flag register bit referring to the 
affected reconfiguration zone. When a fault is detected, the 
information given in the flag register triggers the enhanced 
HWICAP to execute the reconfiguration of a faulty domain. 
The selector is in charge of taking the carriers from 
reconfiguration zone 3 to the SB2_out input of the interface. 

Fig. 12 Reconfigurable TMR domains and adaptive carrier voting 

In conventional TMR, majority voters are used to mask 
errors that occur in any single circuit replica. Nevertheless, the 
voter logic can also be affected by an SEU thus completely 
corrupting the TMR structure. Therefore, voters are also 
triplicated in order to provide better protection. However, in 
complex applications where various domain outputs have to be 
compared, this methodology additionally increases the area 
overhead of the system. In order to avoid this problem another 
voting methodology is proposed which completely excludes 
the voting mechanism from hardware and performs voting 
directly through ICAP. The proposed methodology takes the 
benefit of the modified enhanced HWICAP which is capable of 
capturing the present state of the configuration memory and 
performing the readback of the captured condition. In order to 
vote the output from the undamaged domain and detect the 
faulty one, the outputs of each reconfiguration zone are 
registered and carefully constrained in PlanAhead. Four output 
registers corresponding to four reconfiguration zones are 
contained in areas with the width of one CLB column. The 
enhanced HWICAP periodically sends the GCAPTURE 
command to the ICAP thus capturing the current flip-flop state 

of the design. Depending on the position of the configured fault 
tolerant structure, different portions of the configuration 
memory are read through the I C A P and stored in D D R 2 
memory. At each readback 36 frames are stored corresponding 
to a C L B column representation in the Virtex-5 configuration 
memory. Xilinx does not reveal detailed information about the 
frame composition. However, the logic allocation file, which 
can be generated in I S E along with the programming file, 
indicates the bitstream position of latches, flip-flops, BRAMs, 
L U T programming and IOBs. Using this information we are 
able to locate the relevant flip flop bits in the performed 
readback. Moreover, it is observed that these bits belong to the 
30th and 31st frame which is the case for all C L B flip flops of 
the F P G A . In order to vote the correct result, embedded 
processor performs a periodical comparison of the bits 
referring to the domain outputs. It scans only two frames in 
captured configurations in order to read the bits and perform 
the comparisons thus making the voting process faster. If a 
fault is detected, the processor flips a spare bit in the S B O 
register to select the correct result for the interface module. In 
addition, the number of the affected reconfiguration zone is 
provided to the enhanced H W I C A P which performs partial 
reconfiguration of the area thus eliminating the upset. In order 
to detect even transient faults, the present value of the zone 
output is combined with the previous one. These feedback 
registers keep the track of the output changes and are 
implemented in the same C L B column to take the benefit of the 
same readback. A transient fault is detected, if in a captured 
state, domain outputs match, whereas the feedback register 
value of one replica differs from others. 

V . RESULTS AND DISCUSSIONS 

The proposed architecture is implemented on a Xilinx 
Virtex-5 XC5VFX130T F P G A . Implementation of the full and 
partial configurations is done in I S E Design Suite 14.2. To 
achieve the desired flexibility, each configuration is carefully 
constrained using PlanAhead. Three GPIOs are implemented in 
order to evaluate the architectures. Five different stimuli files, 
stored on the CompactFlash card, are applied for 5 possible S B 
configurations. Files containing the outputs after each 
reconfiguration and stimulation are saved on the card and 
compared to the corresponding files obtained in the evaluation 
of the original design. The comparisons showed no difference 
thus proving the reliability of proposed D P R methodologies. 
The non-reconfigurable and reconfigurable systems are 
analyzed in terms of device utilization and the amount of 
memory used by the configurations. The analysis is done also 
for the D E M U X architecture alone and presented in Table II. 
Implemented static part of the reconfigurable D E M U X 
architectures use approximately 3/4 less resources than the 
non-reconfigurable one. Hence, the reduction of almost 75% is 
obtained in terms of the logic that is always present in the 
device. When comparing the entire systems, savings drop to 
approximately 60% due to the presence of the enhanced 
H W I C A P in the reconfigurable system. 

Reductions in the size of the memory footprints are of great 
importance as they represent the “golden copies” stored in a 
rad-hard non-volatile memory. A full configuration of the 
Virtex-5 XC5VFX130T F P G A has the size of 5.86 M B . The 
compressed bitstream of the non-reconfigurable and reconfigu-



Table I I . THE CHIP UTILIZATION AND SIZE OF THE MEMORY FOOTPRINTS 

* 

Occupied 
Slices 

DEMUX 
Architecture 

11892 
(55%) 

Static part -
DEMUX 

Architecture 

3079 
(15%) 

Non-
Reconfigurable 

System 

15465 
(75%) 

Reconfigurable 
System 

5510 
(26%) 

TABLE I I I . 
THE CHIP UTILIZATION, THE MAXIMUM RECONFIGURATION TIME AND 

THE SIZE IN MEMORY OF THE CONVENTIONAL PARTIAL CONFIGURATIONS 

* 
Occupied 

Slices 
Reconf. 

Time [us] 
Size [KB] 

PBS1 
280 
(1 %) 

103.3 

132 

PBS2 
661 
(3 %) 

191.9 

211 

PBS3 
1125 
(5 %) 

280.44 

295 

PBS4 
1305 
(6 %) 

280.44 

295 

Cover 
16 

(1%) 

29.52 

24 
Total 
957 

TABLE I V . 
THE CHIP UTILIZATION, THE MAXIMUM RECONFIGURATION TIME AND 
THE SIZE IN MEMORY OF THE SCALABLE PARTIAL CONFIGURATIONS 

* 

Occupied 
Slices 

Reconf. 
Time [us] 
Size [KB] 

PBS 
S1 
340 

(1 %) 

88.2 

88 

PBS 
S2 

484 
(<2%) 

103.3 

132 

PBS 
S3 
944 

(<4%) 

191.9 

207 

PBS 
S4 

1104 
(<5%) 

236.16 

242 

Cover 

16 
(1%) 

29.52 

24 
Total 
693 

rable system occupy 3.91 M B and 2.23 M B , respectively. The 
device utilization for each partial configuration of the 
conventional and scalable methodology and the corresponding 
size in memory are presented in Table III and Table IV , 
respectively. It can be seen that the important reduction in the 
memory is achieved when the scalable partial configurations 
are used instead of the traditional ones. In addition, the 
reconfiguration time for each configuration is given in the table 
also favoring the scalable D P R methodology. The static part of 
the reconfigurable system utilizes less than 30% of the F P G A 

resources. The rest of the chip is either completely 
reconfigurable or left empty which increases the possibility to 
mitigate upsets. The self-reconfigurable system is able to adapt 
to harsh environmental conditions during run-time by 
duplicating or triplicating a critical part and voting the outputs. 
Faults are injected by changing certain bits in the partial 
configurations. Upsets that affected the design outputs were 
detected and corrected in 100% of the cases by the adaptive 
system thus recovering the proper functionality. In the case of 
the voting through I C A P methodology, systems may produce 
erroneous outputs during several clock cycles before the 
subsequent memory capture. Therefore, the frequency of the 
captures should accommodate to the environmental conditions, 
requirements and sensitivity of the design. 

V I . CONCLUSIONS 

In this paper we have presented a self-reconfigurable D V B 
O B P that adapts to the remotely received demands during run­
time. Two different D P R methodologies are proposed and 
implemented. We have obtained compact and low memory 
consuming partial configurations for both reconfiguration 

approaches. Implementation results have been given for the 
Virtex-5 XC5VFX130T FPGA which is compatible with the 
space qualified, Virtex-5QV, recently introduced by Xilinx. 
With a single memory footprint an entire half of the FPGA can 
be reconfigured which significantly affects the size of the rad-
hard memory. The proposed architecture is able to duplicate a 
part of its logic during run-time in order to create fault tolerant 
structures at the price of some performance capabilities. This 
property makes the system adaptive to different environmental 
conditions. We have developed two different methods to detect 
the faults and vote the correct output coming from the 
structures that may be implemented in several different FPGA 
positions. Detected faults trigger the reconfiguration process 
performed by an advanced ICAP controller thus eliminating 
the present upset and avoiding fault accumulation in the 
redundant domains. In addition, an ICAP-based voting is 
proposed which makes possible a complete exclusion of a 
voting mechanism in hardware thus preventing eventual upsets 
of the most critical part of TMR structures. 

[1] 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

[9] 

[10] 

[11] 

[12] 

REFERENCES 

http://radhome.gsfc.nasa.gov/radhome/papers/seespec.htm 

de Lima Kastensmidt, F .G. ; Neuberger, G. ; Hentschke, R.F. ; Carro, L. ; 
Reis, R. , "Designing fault-tolerant techniques for SRAM-based 
FPGAs," Design & Test of Computers, I E E E , vol.21, no.6, pp.552,562, 
Nov.-Dec.2004 doi: 10.1109/MDT.2004.85 
Pratt, B. ; Caffrey, M . ; Graham, P. ; Morgan, K. ; Wirthlin, M . , 
"Improving F P G A Design Robustness with Partial T M R , " Reliability 
Physics Symposium Proceedings, 2006. 44th Annual., I E E E 
International , vol., no., pp.226,232, 26-30 March 2006 

Carmichael, "Triple module redundancy design techniques for Virtex 
FPGAs," Xilinx Corporation, Tech. Rep., November 1, 2001, 
xAPP197(v1.0). 

Heiner, J.; Sellers, B . ; Wirthlin, M . ; Kalb, J. , " F P G A partial 
reconfiguration via configuration scrubbing," Field Programmable Logic 
and Applications, 2009. F P L 2009. International Conference on , vol., 
no.,pp.99,104,FPL2009 

C. Bolchini, A. Miele, M. D. Santambrogio, “ T M R and Partial dynamic 
Reconguration to mitigate S E U faults in FPGAs”, 22nd I E E E 
International Symposium on Defect and Fault Tolerance in V L S I 
Systems, D F T , 2007. 

Ashraf, R .A. ; Mouri, O . ; Jadaa, R . ; DeMara, R.F. , "Design-for-Diversity 
for Improved Fault-Tolerance of T M R Systems on 
FPGAs,"Reconfigurable Computing and FPGAs (ReConFig), 2011 
International Conference on, vol., no., pp.99,104, December 2011 

Straka, M . ; Kastil, J . ; Kotasek, Z. , "Modern fault tolerant architectures 
based on partial dynamic reconfiguration in FPGAs,"Design and 
Diagnostics of Electronic Circuits and Systems (DDECS) , 2010 I E E E 
13th International Symposium on, vol., no., pp.173,176, April 2010 

Sterpone, L. ; Ullah, A. , "On the optimal reconfiguration times for T M R 
circuits on S R A M based FPGAs," Adaptive Hardware and Systems 
(AHS), 2013 N A S A / E S A Conference on , vol., no., pp.9,14, 24-27 June 
2013 doi: 10.1109/AHS.2013.6604220 
Hofmann, A. ; Wansch, R . ; Glein, R . ; Kollmannthaler, B. , "An F P G A 
based on-board processor platform for space application," Adaptive 
Hardware and Systems (AHS), 2012 N A S A / E S A Conference on , vol., 
no.,pp.17, 22, 25-28 June 2012; doi: 10.1109/AHS.2012.6268653 

Rittner, F.; Glein, R. , "Implementation of an initial-configuration based 
on self-reconfiguration for an on-board processor," Adaptive Hardware 
and Systems (AHS), 2013 N A S A / E S A Conference on , vol., no., 
pp.55,62, 24-27 June 2013 doi:10.1109/AHS.2013.6604226 

Otero, A. ; Morales-Cas, A . ; Portilla, J . ; de la Torre, E . ; Riesgo, T. , " A 
Modular Peripheral to Support Self-Reconfiguration in SoCs,"Digital 
System Design: Architectures, Methods and Tools (DSD), 2010 13th 
Euromicro Conference on, vol., no., pp.88,95, 1-3 Sept. 2010 

http://radhome.gsfc.nasa.gov/radhome/papers/seespec.htm

