
Dynamic Management of Multikernel Multithread 
Accelerators Using Dynamic Partial Reconfiguration 

Alfonso Rodríguez, Juan Valverde, Eduardo de la Torre and Teresa Riesgo 

Abstract—Ever demanding systems with restricted resources 
face increasingly complex applications. Additionally, changeable 
environments modify working conditions over time. Therefore, a 
dynamic resource management is required in order to provide 
adaptation capabilities. By using ARTICo3, a bus-based 
architecture with reconfigurable slots, this adaptation is 
accomplished in three different but dependent areas: 
Consumption, Confidentiality and fault tolerance, and 
Computation. The proposed resource management strategies rely 
on an architecture and a model of computation that make 
execution configuration to be application-independent, but 
context-aware, since a CUDA-like execution model is used. The 
inherent and explicit application-level parallelism of 
multithreaded CUDA kernels is used to generate hardware 
accelerators that act as thread blocks. Despite other modes of 
operation provided by the ARTICo3 architecture, like module 
redundancy or dual-rail operation to mitigate Side-Channel 
Attacks, these thread blocks are dynamically managed and their 
execution is scheduled using a multiobjective optimization 
algorithm. 

Keywords—Dynamic and Partial Reconfiguration, Dynamic 
Resource Management, FPGA, Parallel Computing. 

I. INTRODUCTION 

In the last few years, technology trends have increased 
significantly application complexity. Some of these 
applications require intensive data-processing capabilities. 
High Performance Computing (HPC) tries to find solutions for 
all these applications, and parallel computing in particular is 
showing several promising results. 

Parallel computing appears as an alternative to those 
approaches in which performance has stalled mainly due to 
technology limitations. These limitations include, but are not 
limited to, resource availability, power consumption and 
system frequency scaling. However, parallel computing has 
some important drawbacks, being design complexity the most 
relevant one. Parallel models of computation, as well as their 
programming paradigms are, by far, more difficult to 
understand and implement in actual systems, especially for 
those who come from pure software backgrounds. 

In an attempt to minimize the impact on engineers and 
developers, different alternatives have been proposed. All these 
approaches share a common starting point: a high-level 
programming language, which can be considered as basic 
knowledge in any engineering degree nowadays. NVIDIA 

CUDA (Compute Unified Device Architecture), for instance, 
provides intuitive integration within any C/C++ programming 
environment, since parallel sections, i.e. kernels, are declared 
and invoked as if they were common functions. Another 
important trend uses algorithm description in C/C++/SystemC 
to generate specific hardware modules by means of High Level 
Synthesis (HLS). In addition, some important device vendors 
have released development suites that allow designers to 
generate custom hardware peripherals without even requiring 
previous Hardware Description Language (HDL) knowledge, 
e.g. Xilinx Vivado HLS. 

CUDA-based parallel computing provides a flexible 
multiprocessor architecture in which concurrent execution is 
achieved by means of multiple software threads. Traditional 
FPGA (Field Programmable Gate Array) static hardware-
acceleration approaches, on the other hand, might show some 
important limitations, mainly due to resource availability 
bottlenecks. In addition, these systems must have self-
reconfiguration capabilities, in order to remain as flexible as 
any software alternative. Hence, different tasks can be 
performed using the same hardware resources, only changing 
their configuration. Thus, a dynamic resource management 
strategy is required in order to best optimize resource usage 
while meeting other internal or external requirements, such as 
changing operating conditions. 

In this paper, a CUDA-like Execution Model as well as 
Dynamic Partial Reconfiguration (DPR) are combined with a 
dynamic resource manager that is capable of boosting 
performance while keeping hardware implementation 
advantages. This module manages the internal resources of an 
embedded-system oriented architecture called ARTICo3, and is 
designed so that not only internal information, e.g. power 
consumption, available resources, but also external conditions, 
e.g. Side-Channel Attack (SCA) protection needs, fault-tolerant 
operation, or even parallel-processing requirements, are taken 
into account when dynamically mapping tasks into hardware 
resources. 

The rest of this work-in-progress paper is organized as 
follows. Section II reviews the current trends and state-of-the-
art research lines. Section III presents an overview of the target 
virtual architecture in which dynamic resource management is 
required. Then, the execution model of the ARTICo3 

architecture and its relationship with CUDA is analyzed in 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148675685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Section IV. The dynamic resource manager is presented in 
Section V, followed by the conclusions in Section VI. 

I I . RELATED WORK 

FPGA-based reconfigurable accelerator schemes have 
become a common practice in embedded system design. 
However, the methodology that is used in order to generate 
these hardware accelerators changes, ranging from custom 
hardware description in H D L languages to higher abstraction 
levels, e.g. Electronic System Level (ESL) design. 

In order to dynamically handle these hardware-acceleration 
modules once they have been generated, different dynamic 
resource management strategies have been proposed. These 
management policies may range from simple implementations 
that only take into account resource availability, to complex 
management schemes that take into account task priorities and 
requirements, memory usage, dependencies among tasks, etc. 

In this section, related work in the fields of Dynamic and 
Partial Reconfiguration, Parallel-Processing Hardware 
Generation and Dynamic Resource Management is presented. 

A. Dynamic and Partial Reconfiguration 

Dynamically and partially reconfigurable architectures rely 
on reconfiguration engines that allow hardware reusability 
within the same chip [1] [2]. These reconfiguration engines 
manage the process of modifying the device configuration 
memory by sending commands and configuration information 
through a reconfiguration port. In the case of FPGAs, 
configuration information is stored as configuration files called 
bitstreams. Depending on the device family, different 
reconfiguration ports are available. In order to support self-
reconfiguration, the reconfiguration ports must be accessible 
from inside the FPGA, e.g. the ICAP (Internal Configuration 
Access Port) [3] in most Xilinx modern FPGAs. However, in 
Zynq devices, there is an additional internal reconfiguration 
port: the PCAP (Processor Configuration Access Port) [4]. 

Dynamic and Partial Reconfiguration (DPR) has been a 
trending topic during the last few years [5]. Many different 
techniques such as virtual reconfiguration in Flash based 
FPGAs [6] or slot based architectures [7] have been presented. 
Several design methodologies have been widely studied to 
optimize the reconfiguration process like in [8]. 

Now, using DPR as a tool is opening a huge scope of 
solutions for many applications, as in the case of this work 
where DPR is used to provide embedded systems with 
dynamic resource allocation and reutilization. 

B. Parallel-Processing Hardware Generation 

After almost twenty years of latent activity, H L S tools are 
now a feasible alternative to generate specific hardware using 
high-level programming languages. A good example can be 
found in [9], where an H L S tool that takes a bit-accurate 
C/C++ algorithm specification is presented. However, there is 
no such thing as a standard design flow that, taking any high-
level code as the starting point, generates hardware accelerators 
for a given task. 

The FASTCUDA Project [10], which stands for Open 
Source FPGA Accelerator and Hardware-Software Codesign 
Toolset for CUDA Kernels, appears in order to establish a 
common framework in which different design methodologies 
are merged to provide both embedded hardware-software 
codesign and ESL design. The FASTCUDA toolset is capable 
of generating both hardware-specific accelerators and parallel 
software code that runs in a multiprocessor-based system from 
plain CUDA kernel descriptions, taking advantage of HLS 
properties and the explicit parallelism of CUDA. 

The most remarkable feature of the FASTCUDA toolset 
regarding hardware accelerator generation is that kernels are 
not implemented as monolithic modules, as opposed to 
traditional HLS approaches, but as thread blocks. Therefore, 
the final implementation has better performance, since 
processing is not only accelerated with hardware modules, but 
also parallelized by replicating thread blocks. In addition, these 
thread blocks can be generated with a variable number of 
threads, so that a static library of different blocks with the same 
functionality is available, being the number of threads the only 
difference among them. However, these thread blocks have to 
be defined and allocated statically at design time and thus, they 
are not interchangeable. 

C. Dynamic Resource Management 
Dynamic and Partial Reconfiguration permits hardware 

changes at run time. However, the required time to reconfigure 
the logic inside the FPGA device is not negligible. The larger 
the hardware accelerator is, the more time is needed to finish 
the reconfiguration process. Therefore, an efficient 
reconfiguration management strategy needs to be implemented, 
so that a lot of time can be saved. Some alternatives have been 
proposed in the literature. In [11], a dynamic reconfiguration 
manager handles a certain number of reconfigurable slots. Each 
slot is considered as a slave module that has been defined at 
design time, and has its own control FSM (Finite State 
Machine). In addition, a SystemC simulation model is 
provided, so that dynamically reconfigurable systems can be 
simulated and analyzed using their VCD (Value Change 
Dump) outputs. 

Another example that includes a more complex approach 
can be found in [12], where a layered dynamic resource 
manager for FPGA-based reconfigurable systems is presented. 
The lower layer corresponds to the reconfiguration engine, 
which has been implemented in hardware. The upper layer, on 
the contrary, is a set of software application drivers that can be 
used in the main application which is running in an embedded 
microprocessor. This layer performs all the required scheduling 
tasks using both design-time and run-time information. 

Dynamic resource management strategies are, in general, 
focused on optimizing resource utilization and achieving high-
performance parallel processing [13]. Therefore, the vast 
majority of approaches in the literature might not be useful in 
environments with changing conditions or with specific 
requirements that change over time. Since no solution is 
available yet, a completely different alternative has to be 
proposed in order to deal with those systems. In this work, a 
combined solution is proposed, including a system that takes 



advantage of the C U D A execution model and D P R features to 
accelerate parallel computations, while at the same time being 
aware of the changing conditions regarding available power 
budget, or dependability needs. It is important to highlight that 
the amount of allocated resources changes according to the 
working conditions, and independently of the application code. 

I I I . A R T I C O 3 V IRTUAL ARCHITECTURE 

In order to fully exploit dynamic resource management 
capabilities, an embedded architecture called ARTICo3 is used. 
ARTICo3 (Reconfigurable Architecture for an Intelligent 
Management of Consumption, Computation, Confidentiality, 
fault tolerance and security) is a bus-based virtual architecture 
capable of adapting the use of resources according to external 
and internal conditions. The architecture is able to calculate 
new working points in real time depending on the required 
computing performance, available power budget and levels of 
security and confidentiality. 

The working point is defined by three coordinates 
representing the combination of the three different types of 
strategies to be implemented: Consumption, Confidentiality 
and fault tolerance, and Computing. Therefore, the solution 
scope resembles a cube where the outer vertices, i.e. those that 
are not on the axes, wi l l be, in general not included. This is 
because, in most cases, the highest levels of any strategy are 
not compatible with the highest levels of the others. Hence, the 
working point wil l be placed in a solution scope that resembles 
the shape shown in Fig. 2. Notice that, since ARTICo3 is a 
general purpose virtual architecture, the Pareto optimal 
solutions (represented as a blue surface in the figure) might 
change their shape and distribution depending on the target 
hardware platform. However, these Pareto optimal points wil l 

Fig. 2 ARTICo3 solution 

always be placed inside the cube. In addition, any point that is 
non-Pareto optimal, i.e. those that fall within the volume 
generated by the intersection of the Pareto optimal surface and 
the coordinate surfaces that contain the axes, might be a valid 
solution, which means that the system could operate on that 
working point even though it is not optimal i f the available 
resources do not permit a better solution. 

The Resource Manager unit is the one in charge of 
changing this working point in real time to organize the 
available resources taking into account both time and space 
availability. It is important to highlight that the design of the 
Resource Manager is highly dependent on the platform where 
the architecture is used, as well as on the number of strategies 
included in each one of the three axes. Strategies to boost 
computation performance include parallel execution of 

Fig. 1 ARTICo3 virtual architecture block diagram 



hardware accelerators, optimized burst transactions to move 
data between memory units or task execution overlapping. 
Strategies to enhance dependability (confidentiality, fault 
tolerance and security), on the other hand, include Double or 
Triple Modular Redundancy (DMR and TMR), the use of 
encryption and hash modules or dual-rail mitigation techniques 
against Side-Channel Attacks, i.e. logic replication with exactly 
the opposite behavior of the original module in order to mask 
data-dependent leakages. 

The ARTICo3 architecture is divided into two different 
regions inside the FPGA: static and dynamic. The static region 
hosts all hardware units that are not changed in real time. On 
the contrary, the dynamic region is divided into different slots 
where hardware accelerators can be dynamically loaded from 
an external library or using partial remote hardware 
configuration. 

The distribution of the dynamic reconfigurable resources in 
the dynamic region as well as the way data are delivered to the 
accelerators is defined by every new working point in order to 
find the best available solution in a multiobjective way. As it 
wi l l be explained in the following sections, in order to establish 
an analogy with the CUDA execution model, during the rest of 
the document, a kernel is referred to as a combination of one or 
more hardware accelerators, while each copy of them, which 
processes data in parallel wil l be called a block. At the same 
time, inside each block, one or more threads can be found. 
Threads within a block may share data, while blocks among 
themselves cannot. Whenever a block is replicated to provide 
the system with hardware redundancy, blocks wil l be called 
replicas. 

The main components of the ARTICo3 architecture (Fig. 1) 
are the following: 

• Data Shuffler: This is a data dispatcher module. It can 
dispatch data in different ways depending on the 
operation mode. In particular, for replicas, coalesced 
data access is provided by this shuffler. 

• Resource Manager: this is the module in charge of 
organizing hardware resources to find the best 
solution possible. In most cases, the best solution does 
not only pursue one objective. 

• Kernel Wrapper for IP designers: this is the wrapper 
where the processing kernels must be included to be 
used within the architecture. 

Depending on the requirements of the tasks, the Data 
Shuffler module can work in six different operation modes: 

• Mode 0 (replica single): a single piece of data is 
delivered in parallel to two or three identical copies of 
the same thread block, i.e. two or three replicas, and 
the result is voted. 

• Mode 1 (replica single + Side-Channel Attack 
protection): same operation as the previous mode but 
the voting process takes into account the negative 
nature of the dual-rail-enabled replica. 

• Mode 2 (replica burst): same operation as Mode 0 but 
data are delivered using burst transactions. 

• Mode 3 (replica burst + Side-Channel Attack 
protection): same operation as Mode 1 but data are 
delivered using burst transactions. 

• Mode 4 (block burst): data are transferred using burst 
transactions to different thread blocks. Parallel 
processing capabilities are achieved since different 
data are processed in each block. 

• Mode 5 (reduction mode: block burst + arithmetic 
operation): same operation as Mode 4 but whenever 
data are collected, an arithmetic operation is 
performed on the whole burst transaction. 

When higher computing performance is required, the 
architecture is able to load different blocks of a kernel with 
different threads to work in parallel. Data are then delivered 
using burst transactions, which are then handled by the shuffler 
module so blocks can start working in cascade, overlapping 
their processing capabilities. Results are sent back to memory 
in different ways depending on the operation mode in which 
the shuffler unit is working (modes 4 and 5). In mode 4, the 
shuffler module wil l just organize data to be sent with a burst 
transaction to memory. In mode 5, on the other hand, the 
shuffler unit can perform a given operation (addition, 
maximum/minimum detection, etc.) in such a way that results 
are partially reduced. 

Configuration aspects such as the number of blocks of the 
same kernel to be loaded, kernels execution order, or the 
number of threads per block, need to be defined by the 
resource manager, which wil l then implement different 
policies. Some parameters, such as kernel termination times 
(assuming the termination time for a thread is known), can be 
also taken into account, allowing the resource manager to 
assign task or kernel priorities. 

On the contrary, there wil l be occasions where not only 
high performance computing is required but also fault 
tolerance or protection against Side-Channel Attacks. To 
comply with fault tolerance requirements, different replicas of 
the same accelerator can be loaded to have hardware 
redundancy. In modes 0 and 2, data are delivered strictly in 
parallel to the different replicas and results are voted in the 
shuffler module, where in case of finding any problem, an error 
code is reported. Side-Channel Attack protection can be also 
performed with the ARTICo3 architecture by loading an 
accelerator and its negative copy. In modes 1 and 3, data are 
also delivered in parallel so the negative copy can mask the 
noise effect of the original one. Results are also compared in 
the shuffler module and sent back to memory. 

I V . EXECUTION M O D E L 

CUDA-based G P G P U parallel computing targets 
potentially parallelizable computations, which are often 
referred to as kernels. Each kernel is subdivided in a certain 
number of fixed-size blocks of concurrent-execution elements, 
the so-called threads. In the C U D A execution model [14], 
application-level parallelism is mapped transparently into 
G P G P U hardware resources, providing not only high 
application performance but also inherent thread-level 
scalability. 



A. The CUDA Execution Model 

Any CUDA device presents a common architectural 
hardware element called streaming multiprocessor (SM). The 
replication of this block is what makes the aforementioned 
mapping process work, since each thread block is executed on 
a single SM. SMs cannot share data and therefore, thread 
blocks are independent, thus complying with parallel algorithm 
division requirements. SMs are built using an SIMD (Single 
Instruction Multiple Data) approach. The total amount of 
SIMD cores per SM is determined by the internal architecture 
of the GPGPU device. For instance, a Fermi SM features 32 
CUDA processors [15], whereas a Kepler SMX features 192 
CUDA cores [16]. 

Thread scheduling in CUDA follows a hierarchical 
approach. Thread blocks are managed by the global scheduler, 
which is in charge of allocating one or more blocks to each 
SM. Scalability is favored, since the global scheduler only 
needs to know whether an SM is busy or not. Therefore, each 
SM is responsible for scheduling its internal resources and 
allocating threads to those resources. The basic unit scheduled 
within an SM is the so-called warp, which is a block of 32 
SIMD threads that run in parallel. More than one warp 
scheduler is present in each SM, allowing concurrent warp 
execution. 

CUDA GPGPUs cannot be considered, as a whole, as 
SIMD machines, for it is highly likely that different SMs run 
different instructions at the same time. This is the reason why 
CUDA-enabled GPGPUs are classified as SIMT (Single 
Instruction Multiple Thread). Therefore, thread termination 
times may be unequal, allowing data-dependent branches 
within the thread code. 

In traditional GPGPU applications, kernels are invoked 
from the host CPU. Parallel streams are then executed in the 
device, returning to the host code when finished. 

B. The ARTICo3 Execution Model 

In an attempt to establish an analogy between ARTICo3 and 
CUDA devices, potential parallelizable computations wil l be 
called kernels, which can use a number of blocks for execution 
of all required threads in an application-independent number of 
blocks, but in a block-dependent number of threads per block. 
The architecture concept is to migrate the CUDA execution 
model to ARTICo3, trying to keep as many advantages as 
possible, e.g. transparent parallelism mapping and resource 
allocation or even thread-level scalability, while changing 
completely the underlying hardware. 

In ARTICo3, CUDA streaming multiprocessors and its 
SIMT approach are substituted by hardware accelerators in 

Fig. 3 ARTICo3 execution model 

dynamically reconfigurable slots. SMs use their instruction 
dispatch units to perform different operations using the same 
hardware elements. However, hardware accelerators are often 
application-specific modules. Therefore, in order to maintain 
the flexibility that SMs provide, Dynamic and Partial 
Reconfiguration is the most feasible alternative to implement 
dynamic resource management strategies. 

The CUDA execution model, migrated to a reconfigurable 
architecture is shown in Fig. 3. For the sake of generality, it is 
assumed that the architecture has multitasking capabilities, i.e. 
more than one process can be executed concurrently from one 
or more processors. Each process, or task, has its own 
sequential execution flow. Whenever a task requires parallel 
processing capabilities to enhance performance, the application 
makes a request to the resource manager, which can be 
included in an application-transparent manner by including this 
call in the kernel invocation function or, with some application-
dependence, in a speculative way which permits to advance 
accelerator programming before the kernel invocation arrives. 
The resource manager handles the request and allocates 
hardware resources to be used as parallel blocks of a same 
kernel. Fig. 4 shows a possible resource allocation schedule that 
corresponds to the kernel invocations in Fig. 3. At the very 
beginning, the reconfigurable slots are empty, since no 
previous kernel invocations have happened. In step 1, the 
application #1 (blue) requests hardware resources to execute 
kernel #1 (purple), and the resource manager reconfigures all 
available slots in order to speed-up the task. Then, the 
application #2 (orange) requests a higher-priority kernel to be 
executed, which is kernel #2 (green). The resource manager 
dynamically reconfigures the slots so that the new kernel has 
more blocks than the previous one. The execution of kernel #2 

Fig. 4 Dynamic Partial Reconfiguration in ARTICo3 



blocks is done as the DPR process is gradually getting more 
slots allocated for this kernel. Since the resource manager is 
context-aware, the number of slots allocated for kernel #1 is 
increased when kernel #2 is almost finished, thus reaching a 
balanced situation. Eventually, when kernel #2 finishes, the 
available slots are replaced by new blocks of kernel #1, in 
order to finish its execution as soon as possible. 

V . D Y N A M I C RESOURCE MANAGER 

The dynamic resource manager module reconfigures the 
hardware slots taking into account both internal and external 
conditions, so that the changeable working point requirements 
are met. The resource manager is also module-aware, which 
means that slot distributions are known at any time (this 
information is provided by the shuffler unit). 

In order to dynamically adapt the hardware resources to 
meet the given requirements, the resource manager in 
ARTICo3 monitors several system metrics at runtime so as to 
guide the management process. Examples of internal system 
metrics include the number of available slots, the number of 
thread blocks per kernel currently available, execution times 
per thread block, reconfiguration times, or battery level (in 
those platforms powered by batteries). Nevertheless, external 
system metrics have strong dependencies on the target 
platform. For instance, in a Cyber Physical System (CPS) 
intelligent node (which is the platform ARTICo3 was originally 
conceived to target), the resource manager takes into account 
the information that is received through the communication 
interfaces, as well as the information collected by several 
sensors. 

Therefore, the dynamic resource manager in ARTICo3 

differs from other task scheduling strategies, e.g. a regular O S 
task scheduler, in two main aspects: on the one hand, the 
intrinsic nature of the tasks (hardware-based vs. software-
based); on the other hand, the deeper self-awareness of the 
resource manager. 

In traditional dynamic resource management schemes, the 
working point is normally located on the Computing vertex 
(remember that the solution scope triangle vertices are 
Consumption, Confidentiality and fault tolerance, and 
Computing). If the kernel library as well as their 
characteristics, e.g. execution time per thread block, are known 
at design time, and the system does not have multitasking 
capabilities, an offline optimization algorithm can be used to 
obtain the optimal schedule and resource allocation to fulfil l 
high performance requirements. On the contrary, if 
multitasking is supported by the system, the optimization 
strategy cannot be performed offline. The optimal solution has 
to be found at run time using an optimization algorithm. 

Assuming that the resource manager has no information 
about any thread block, i.e. hardware accelerator in a 
reconfigurable slot, whenever a new task is to be carried out, 
task dependencies have to be determined. The system wil l also 
have to reconfigure at least one thread block of the new kernel 
so that the execution time per element can be obtained. Once 
the resource manager is aware of the execution times of each 
necessary block, the optimization process starts and, also 
taking into account the time spent during the partial 

Fig. 5 Thread block reconfiguration and execution overlapping to reduce 
reconfiguration overhead 

reconfiguration processes, the optimal kernel scheduling can be 
generated. 

However, the aforementioned strategies are not enough in 
the ARTICo3 architecture, since high performance capabilities 
are not the only requirement. Therefore, it is necessary to 
change from a static resource management, in which the 
number of thread blocks per kernel in the optimal solution is 
fixed, to a dynamic resource management. The ever changing 
working conditions, which are task-related, i.e. different tasks 
might have different positions within the solution scope 
triangle, make it impossible to implement static optimization 
algorithms, since the maximum number of available 
reconfiguration slots might vary over time. Therefore, a 
multiobjective optimization algorithm is absolutely necessary 
in order to best establish the tradeoff between the three 
conditions. The use of Dynamic and Partial Reconfiguration is 
essential in order to develop good resource allocation and 
scheduling strategies. 

The reconfiguration overhead in ARTICo3 is expected to be 
significantly high, since changes are very likely to appear from 
one evaluation of the working point to the next one, making it 
absolutely necessary to change the hardware accelerators 
several times. However, the ARTICo3 architecture can mask 
this reconfiguration overhead by overlapping reconfiguration 
and execution, as it is shown in Fig. 5. Parallelizing the 
reconfiguration process as well as the kernel execution is 
particularly useful in those hardware platforms where the 
reconfiguration engine is the bottleneck, mainly due to its low 
reconfiguration speeds. 

The final goal is to build a resource manager capable of 
changing the traditional CUDA kernel invocation, which has a 
static allocation of both number of blocks and number of 
threads per block, into a new invocation process where the 
aforementioned parameters are dynamically allocated as well. 
The number of thread blocks per kernel is modified by means 
of Dynamic and Partial Reconfiguration strategies, whereas the 
number of threads per thread block is changed using the 
prebuilt module library, generated with the HLS toolset. 



V I . CONCLUSIONS 

The increasing application complexity enables High 
Performance Computing as a crucial set of techniques to 
provide very efficient solutions. Furthermore, systems are no 
longer working under static conditions and hence, dynamic 
adaptation is required. Therefore, Dynamic and Partial 
Reconfiguration can be used to dynamically manage the 
resources in order to find the optimal solution. 

Dynamic Partial Reconfiguration is expected to play an 
important role in merging FPGA-based hardware acceleration 
schemes with traditional GPGPU-based parallel computing 
paradigms. Following a CUDA-like execution model within a 
custom-made virtual architecture, an efficient use of resources 
can be achieved while searching throughout the whole solution 
scope defined by the triangle Consumption, Confidentiality and 
fault tolerance, and Computing. 

ACKNOWLEDGMENT 

This work was supported by the Spanish Ministry of 
Economy and Competitiveness under the project D R E A M S 
(Dynamically Reconfigurable Embedded Platforms for 
Networked Context-Aware Multimedia Systems) with number 
TEC2011-28666-C04-02. 

REFERENCES 

[1] Otero, A . ; Morales-Cas, A . ; Portilla, J.; de la Torre, E.; Riesgo, T., " A 
Modular Peripheral to Support Self-Reconfiguration in SoCs," Digital 
System Design: Architectures, Methods and Tools (DSD), 2010 13th 
Euromicro Conference on , vol., no., pp.88,95, 1-3 Sept. 2010 

[2] Dondo, J.; Barba, J.; Rincón, F.; Moya, F.; López, J.C.; “Dynamic 
objects: Supporting fast and easy run-time reconfiguration in FPGAs,” 
Journal of Systems Architecture-Embedded Systems Design, vol.59, 
no.1, pp.1-15, 2013 

[3] “7-Series Configuration User Guide UG470 (v1.7),” Xilinx, 2013 

[4] “Zynq All Programmable SoC Technical Reference Manual UG585 
(v1.7),” Xilinx, 2014 

[5] Becker, J.; Hubner, M.; Hettich, G.; Constapel, R.; Eisenmann, J.; Luka, 
J., "Dynamic and Partial FPGA Exploitation," Proceedings of the IEEE , 
vol.95, no.2, pp.438,452, Feb. 2007 

[6] Philipp, F.; Glesner, M., "Mechanisms and Architecture for the Dynamic 
Reconfiguration of an Advanced Wireless Sensor Node," Field 
Programmable Logic and Applications (FPL), 2011 International 
Conference on , vol., no., pp.396,398, 5-7 Sept. 2011 

[7] Koch, D.; Beckhoff, C.; Teich, J., "ReCoBus-Builder — A novel tool 
and technique to build statically and dynamically reconfigurable systems 
for FPGAS," Field Programmable Logic and Applications, 2008. FPL 
2008. International Conference on , vol., no., pp.119,124, 8-10 Sept. 
2008 

[8] Wei He; Otero, A.; de la Torre, E.; Riesgo, T., "Automatic generation of 
identical routing pairs for FPGA implemented DPL logic," 
Reconfigurable Computing and FPGAs (ReConFig), 2012 International 
Conference on , vol., no., pp.1,6, 5-7 Dec. 2012 

[9] Coussy, P.; Heller, D.; Chavet, C., "High-Level Synthesis: On the path 
to ESL design," ASIC (ASICON), 2011 IEEE 9th International 
Conference on , vol., no., pp.1098,1101, 25-28 Oct. 2011 

[10] Mavroidis, I.; Mavroidis, I.; Papaefstathiou, I.; Lavagno, L.; Lazarescu, 
M.; de la Torre, E.; Schafer, F., "FASTCUDA: Open Source FPGA 
Accelerator & Hardware-Software Codesign Toolset for CUDA 
Kernels," Digital System Design (DSD), 2012 15th Euromicro 
Conference on , vol., no., pp.343,348, 5-8 Sept. 2012 

[11] Kuehnle, M.; Brito, A.; Roth, C.; Dagas, K.; Becker, J., "The Study of a 
Dynamic Reconfiguration Manager for Systems-on-Chip," VLSI 
(ISVLSI), 2011 IEEE Computer Society Annual Symposium on , vol., 
no., pp.13,18, 4-6 July 2011 

[12] Cervero, T.; Dondo, J.; Gomez, A.; Pena, X.; Lopez, S.; Rincon, F.; 
Sarmiento, R.; Lopez, J.C., "A Resource Manager for Dynamically 
Reconfigurable FPGA-Based Embedded Systems," Digital System 
Design (DSD), 2013 Euromicro Conference on , vol., no., pp.633,640, 
4-6 Sept. 2013 

[13] Jara-Berrocal, A.; Gordon-Ross, A., "Hardware module reuse and 
runtime assembly for dynamic management of reconfigurable 
resources," Field-Programmable Technology (FPT), 2011 International 
Conference on , vol., no., pp.1,6, 12-14 Dec. 2011 

[14] R. Farber, “The CUDA Execution Model,” in CUDA Application 
Design and Development, 1st ed. San Francisco, CA, USA: Morgan 
Kaufmann Publishers Inc., 2012, ch. 4, pp. 85–108 

[15] “Fermi Architecture White Paper (v1.1),” NVIDIA, 2009 

[16] “Kepler GK110 Architecture White Paper (v1.0),” NVIDIA, 2012 


