20,239 research outputs found

    A Framework for workload allocation in distributed transaction processing systems

    Get PDF
    Ever-increasing demands for high transaction rates, limitations of high-end processors, high availability, and modular growth considerations are all driving forces toward distributed architectures for transaction processing. However, a prerequisite to taking advantage of the capacity of a distributed transaction processing system is an effective strategy for workload allocation. The distribution of the workload should not only achieve load balancing, but also support an efficient transaction processing with a minimum of intersystem communication. To this end, adaptive schemes for transaction routing have to be employed that are highly responsive to workload fluctuations and configuration changes. Adaptive allocation schemes are also important for simplifying system administration, which is a major problem in distributed transaction processing systems. In this article we develop a taxonomic framework for workload allocation, in particular, transaction routing, in distributed transaction processing systems. This framework considers the influence of the underlying system architecture (e.g., shared nothing, shared disk) and transaction execution model as well as the major dependencies between workload, program, and data allocation. The main part of the framework covers structural (or architectural) and implementational alternatives for transaction routing to help identify key factors and basic tradeoffs in the design of appropriate allocation schemes. Finally, we show how existing schemes fit our taxonomy. The framework substantially facilitates a comparison of the different schemes and can guide the development of new, more effective protocols

    Implementing PRISMA/DB in an OOPL

    Get PDF
    PRISMA/DB is implemented in a parallel object-oriented language to gain insight in the usage of parallelism. This environment allows us to experiment with parallelism by simply changing the allocation of objects to the processors of the PRISMA machine. These objects are obtained by a strictly modular design of PRISMA/DB. Communication between the objects is required to cooperatively handle the various tasks, but it limits the potential for parallelism. From this approach, we hope to gain a better understanding of parallelism, which can be used to enhance the performance of PRISMA/DB.\ud The work reported in this document was conducted as part of the PRISMA project, a joint effort with Philips Research Eindhoven, partially supported by the Dutch "Stimuleringsprojectteam Informaticaonderzoek (SPIN)

    Designing Software Architectures As a Composition of Specializations of Knowledge Domains

    Get PDF
    This paper summarizes our experimental research and software development activities in designing robust, adaptable and reusable software architectures. Several years ago, based on our previous experiences in object-oriented software development, we made the following assumption: ‘A software architecture should be a composition of specializations of knowledge domains’. To verify this assumption we carried out three pilot projects. In addition to the application of some popular domain analysis techniques such as use cases, we identified the invariant compositional structures of the software architectures and the related knowledge domains. Knowledge domains define the boundaries of the adaptability and reusability capabilities of software systems. Next, knowledge domains were mapped to object-oriented concepts. We experienced that some aspects of knowledge could not be directly modeled in terms of object-oriented concepts. In this paper we describe our approach, the pilot projects, the experienced problems and the adopted solutions for realizing the software architectures. We conclude the paper with the lessons that we learned from this experience

    A database management capability for Ada

    Get PDF
    The data requirements of mission critical defense systems have been increasing dramatically. Command and control, intelligence, logistics, and even weapons systems are being required to integrate, process, and share ever increasing volumes of information. To meet this need, systems are now being specified that incorporate data base management subsystems for handling storage and retrieval of information. It is expected that a large number of the next generation of mission critical systems will contain embedded data base management systems. Since the use of Ada has been mandated for most of these systems, it is important to address the issues of providing data base management capabilities that can be closely coupled with Ada. A comprehensive distributed data base management project has been investigated. The key deliverables of this project are three closely related prototype systems implemented in Ada. These three systems are discussed

    Schema architecture and their relationships to transaction processing in distributed database systems

    Get PDF
    We discuss the different types of schema architectures which could be supported by distributed database systems, making a clear distinction between logical, physical, and federated distribution. We elaborate on the additional mapping information required in architecture based on logical distribution in order to support retrieval as well as update operations. We illustrate the problems in schema integration and data integration in multidatabase systems and discuss their impact on query processing. Finally, we discuss different issues relevant to the cooperation (or noncooperation) of local database systems in a heterogeneous multidatabase system and their relationship to the schema architecture and transaction processing

    WIDE - A Distributed Architecture for Workflow Management

    Get PDF
    This paper presents the distributed architecture of the WIDE workflow management system. We show how distribution and scalability are obtained by the use of a distributed object model, a client/server architecture, and a distributed workflow server architecture. Specific attention is paid to the extended transaction support and active rule support subarchitectures
    • 

    corecore