10 research outputs found

    Force measurement capability for robotic assisted minimally invasive surgery systems

    Full text link
    An automated laparoscopic instrument capable of non-invasive measurement of tip/tissue interaction forces for direct application in robotic assisted minimally invasive surgery systems_ is introduced in this paper. It has the capability to measure normal grasping forces as well as lateral interaction forces without any sensor mounted on the tip jaws. Further to non-invasive actuation of the tip, the proposed instrument is also able to change the grasping direction during surgical operation. Modular design of the instrument allows conversion between surgical modalities (e.g., grasping, cutting, and dissecting). The main focus of this paper is on evaluation of the grasping force capability of the proposed instrument. The mathematical formulation of fenestrated insert is presented and its non-linear behaviour is studied. In order to measure the stiffness of soft tissues, a device was developed that is also described in this paper. Tissue characterisation experiments were conducted and results are presented and analysed here. The experimental results verify the capability of the proposed instrument in accurately measuring grasping forces and in characterising artificial tissue samples of varying stiffness.<br /

    Analysis of Strain Transfer to FBG’s for Sensorized Telerobotic End-effector Applications

    Get PDF
    Sensorized instruments which cater for the measurement of interaction forces during surgical procedures are not available on current commercial Minimally Invasive Robotic Surgical (MIRS) systems. This paper investigates the ef-fectiveness of advanced optical sensing technology (Fiber Bragg Grating) as sur-gical end effector strain/force sensors. The effects of adhesive bonding layer thickness and length are specifically addressed owing to their importance for ef-fective strain transfer and ensuring compactness of the resulting sensing arrange-ment. The strain transfer characteristics of the compound sensing arrangement are evaluated by the examination of shear transfer through the fiber coating and adhe-sive layers. Detailed analysis of the sensing scheme is facilitated through the use of FEA. Validation of the resulting models is achieved through experimentation carried out on an application-specific evaluation platform. Results show that strain values from an FBG are comparable to that of an electrical strain gauge sensor

    Force Measurement Methods in Telerobotic Surgery: Implications for End-Effector Manufacture

    Get PDF
    Haptic feedback in telesurgical applications refers to the relaying of position and force information from a remote surgical site to the surgeon in real-time during a surgical procedure. This feedback, coupled with visual information via microscopic cameras, has the potential to provide the surgeon with additional ‘feel’ for the manipulations being performed at the instrument-biological tissue interface. This increased sensitivity has many associated benefits which include, but are not limited to; minimal tissue damage, reduced recuperation periods, and less patient trauma. The inclusion of haptic feedback leads to reduction in surgeon fatigue which contributes to enhanced performance during operation. Commercially available Minimally Invasive Robotic Surgical (MIRS) systems are being widely used, the best-known examples being from the daVinci® by Intuitive Surgical Inc. However, currently these systems do not possess force feedback capability which therefore restricts their use during many delicate and complex procedures. The ideal system would consist of a multi-degree-of-freedom framework which includes end-effector instruments with embedded force sensing included. A force sensing characterisation platform has been developed by this group which facilitates the evaluation of force sensing technologies. Surgical scissors have been chosen as the instrument and biological tissue phantom specimens have been used during testing. This test-bed provides accurate, repeatable measurements of the forces produced at the interface between the tissue and the scissor blades during cutting using conventional sensing technologies. The primary focus of this paper is to provide a review of the traditional and developing force sensing technologies with a view to establishing the most appropriate solution for this application. The impact that an appropriate sensing technology has on the manufacturability of the instrument end-effector is considered. Particular attention is given to the issues of embedding the force sensing transducer into the instrument tip

    Force-detecting gripper and force feedback system for neurosurgery applications

    Get PDF
    Purpose For the application of less invasive robotic neurosurgery to the resection of deep-seated tumors, a prototype system of a force-detecting gripper with a flexible micromanipulator and force feedback to the operating unit will be developed. Methods Gripping force applied on the gripper is detected by strain gauges attached to the gripper clip. The signal is transmitted to the amplifier by wires running through the inner tube of the manipulator. Proportional force is applied on the finger lever of the operating unit by the surgeon using a bilateral control program. A pulling force experienced by the gripper is also detected at the gripper clip. The signal for the pulling force is transmitted in a manner identical to that mentioned previously, and the proportional torque is applied on the touching roller of the finger lever of the operating unit. The surgeon can feel the gripping force as the resistance of the operating force of the finger and can feel the pulling force as the friction at the finger surface. Results A basic operation test showed that both the gripping force and pulling force were clearly detected in the gripping of soft material and that the operator could feel the gripping force and pulling force at the finger lever of the operating unit. Conclusions A prototype of the force feedback in the microgripping manipulator system has been developed. The system will be useful for removing deep-seated brain tumors in future master-slave-type robotic neurosurgery. © 2013 CARS

    A FEEDBACK-BASED DYNAMIC INSTRUMENT FOR MEASURING THE MECHANICAL PROPERTIES OF SOFT TISSUES

    Get PDF
    In this paper, a novel feedback-based dynamic instrument integrated into a Minimally- Invasive-Surgery (MIS) tool to evaluate the mechanical impedance of soft tissues is presented. This instrument is capable of measuring viscoelasticity of tissues if specific boundary conditions are known. Some important advantages of the proposed instrument are that it is robust and simple in comparison to other similar instruments as it does not require magnitude information of plant’s displacement output and no force sensor is used. The precision and accuracy of the measurements of the proposed instrument for soft tissues is noticeably higher than similar instruments, which are not optimized to work with soft tissues. The proposed dynamic instrument is designed to detect the frequency shifts caused by contacting a soft tissue using an improved phase-locked loop feedback system (closed loop). These frequency shifts can then be used to evaluate the mechanical properties of the tissue. The closed-loop method works fast (with an approximate resonance-frequency-shift rate of 15 Hz per second), and is capable of measuring dy­ namic mechanical properties of viscoelastic tissues, while previous focus was mostly on static/quasi-static elastic modulus. The instrument is used to evaluate the equivalent stiffness of several springs and cantilever beams, mass of reference samples, and also the frequency shifts of several phantoms with injected tumors, noting that these frequency shifts can be used to measure the viscoelasticity of the tissues. It is also shown that the instrument can be used for tumor localization in these phantoms

    A Modular, Automated Laparoscopic Grasper with Three-Dimensional Force Measurement Capability

    No full text

    Anthropomorphic surgical system for soft tissue robot-assisted surgery

    Get PDF
    Over the past century, abdominal surgery has seen a rapid transition from open procedures to less invasive methods such as laparoscopy and robot-assisted minimally invasive surgery (R-A MIS). These procedures have significantly decreased blood loss, postoperative morbidity and length of hospital stay in comparison with open surgery. R-A MIS has offered refined accuracy and more ergonomic instruments for surgeons, further minimising trauma to the patient.This thesis aims to investigate, design and prototype a novel system for R-A MIS that will provide more natural and intuitive manipulation of soft tissues and, at the same time, increase the surgeon's dexterity. The thesis reviews related work on surgical systems and discusses the requirements for designing surgical instrumentation. From the background research conducted in this thesis, it is clear that training surgeons in MIS procedures is becoming increasingly long and arduous. Furthermore, most available systems adopt a design similar to conventional laparoscopic instruments or focus on different techniques with debatable benefits. The system proposed in this thesis not only aims to reduce the training time for surgeons but also to improve the ergonomics of the procedure.In order to achieve this, a survey was conducted among surgeons, regarding their opinions on surgical training, surgical systems, how satisfied they are with them and how easy they are to use. A concept for MIS robotic instrumentation was then developed and a series of focus group meetings with surgeons were run to discuss it. The proposed system, named microAngelo, is an anthropomorphic master-slave system that comprises a three-digit miniature hand that can be controlled using the master, a three-digit sensory exoskeleton. While multi-fingered robotic hands have been developed for decades, none have been used for surgical operations. As the system has a human centred design, its relation to the human hand is discussed. Prototypes of both the master and the slave have been developed and their design and mechanisms is demonstrated. The accuracy and repeatability of the master as well as the accuracy and force capabilities of the slave are tested and discussed

    Optical Microsystems for Static and Dynamic Tactile Sensing: Design, Modeling, Fabrication and Testing

    Get PDF
    Minimally invasive surgical operations encompass various surgical tasks ranging from conventional endoscopic/laparoscopic methods to recent sophisticated minimally invasive surgical techniques. In such sophisticated techniques, surgeons use equipment varying from robotic-assisted surgical platforms for abdominal surgery to computer-controlled catheters for catheter-based cardiovascular surgery. Presently, the countless advantages that minimally invasive surgery offers for both patients and surgeons have made the use of such surgical operations routine and reliable. However, in such operations, unlike conventional surgical operations, surgeons still suffer from the lack of tactile perception while interacting with the biological tissues using surgical instruments. To address this issue, it is necessary to develop a tactile sensor that can mimic the fingertip tactile perceptions of surgeons. In doing so and to satisfy the needs of surgeons, a number of considerations should be implemented in the design of the tactile sensors. First, the sensor should be magnetic resonance compatible to perform measurements even in the presence of magnetic resonance imaging (MRI) devices. Currently, such devices are in wide-spread use in surgical operation rooms. Second, the sensor should be electrically-passive because introducing electrical current into the patients’ body is not desirable in various surgical operations such as cardiovascular operations. Third, the sensor should perform measurements under both static and dynamic loading conditions during the sensor-tissue interactions. Such a capability of the sensor ensures that surgeons receive tactile feedback even when there is continuous static contact between surgical tools and tissues. Essentially, surgeons need such feedback to make surgical tasks safer. In addition, the size of the sensor should be miniaturized to address the size restrictions. In fact, the combination of intensity-based optical fiber sensing principles and micro-systems technology is one of the limited choices that address all the required considerations to develop such tactile sensors in a variety of ways. The present thesis deals with the design, modeling, manufacturing, testing, and characterizing of different tactile sensor configurations based on detection and integration methods. The various stages of design progress and principles are developed into different design configurations and presented in different chapters. The main sensing principle applied is based on the intensity modulation principle of optical fibers using micro-systems technology. In addition, a hybrid sensing principle is also studied by integrating both optical and non-optical detection methods. The micromachined sensors are categorized into five different generations. Each generation has advantages by comparison with its counterpart from the previous generation. The initial development of micromachined sensors is based on optical fiber coupling loss. In the second phase, a hybrid optical-piezoresistive sensing principle is studied. The success of these phases was instrumental in realizing a micromachined sensor that has the advantage of being fully optical. This sensor measures the magnitude of concentrated and distributed force, the position of a concentrated force, the variations in the force distribution along its length, the relative hardness of soft contact objects, and the local discontinuities in the hardness of the contact objects along the length of the contact area. Unlike most electrical-based commercially-available sensors, it performs all of these measurements under both static and dynamic loading conditions. Moreover, it is electrically passive and potentially MRI-compatible. The performances of the sensors were experimentally characterized for specific conditions presented in this thesis. However, these performances are easily tunable and adjustable depending upon the requirements of specific surgical tasks. Although the sensors were initially designed for surgical applications, they can have numerous other applications in the areas of robotics, automation, tele-display, and material testing
    corecore