562 research outputs found

    A Parallel Meta-Heuristic Approach to Reduce Vehicle Travel Time in Smart Cities

    Get PDF
    The development of the smart city concept and inhabitants’ need to reduce travel time, in addition to society’s awareness of the importance of reducing fuel consumption and respecting the environment, have led to a new approach to the classic travelling salesman problem (TSP) applied to urban environments. This problem can be formulated as “Given a list of geographic points and the distances between each pair of points, what is the shortest possible route that visits each point and returns to the departure point?”. At present, with the development of Internet of Things (IoT) devices and increased capabilities of sensors, a large amount of data and measurements are available, allowing researchers to model accurately the routes to choose. In this work, the aim is to provide a solution to the TSP in smart city environments using a modified version of the metaheuristic optimization algorithm Teacher Learner Based Optimization (TLBO). In addition, to improve performance, the solution is implemented by means of a parallel graphics processing unit (GPU) architecture, specifically a Compute Unified Device Architecture (CUDA) implementation.This research was supported by the Spanish Ministry of Science, Innovation and Universities and the Research State Agency under Grant RTI2018-098156-B-C54 co-financed by FEDER funds, and by the Spanish Ministry of Economy and Competitiveness under Grant TIN2017-89266-R, co-financed by FEDER funds

    WoLF Ant

    Get PDF
    Ant colony optimization (ACO) algorithms can generate quality solutions to combinatorial optimization problems. However, like many stochastic algorithms, the quality of solutions worsen as problem sizes grow. In an effort to increase performance, we added the variable step size off-policy hill-climbing algorithm called PDWoLF (Policy Dynamics Win or Learn Fast) to several ant colony algorithms: Ant System, Ant Colony System, Elitist-Ant System, Rank-based Ant System, and Max-Min Ant System. Easily integrated into each ACO algorithm, the PDWoLF component maintains a set of policies separate from the ant colony\u27s pheromone. Similar to pheromone but with different update rules, the PDWoLF policies provide a second estimation of solution quality and guide the construction of solutions. Experiments on large traveling salesman problems (TSPs) show that incorporating PDWoLF with the aforementioned ACO algorithms that do not make use of local optimizations produces shorter tours than the ACO algorithms alone
    • …
    corecore