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Abstract: The development of the smart city concept and inhabitants’ need to reduce travel time,
in addition to society’s awareness of the importance of reducing fuel consumption and respecting
the environment, have led to a new approach to the classic travelling salesman problem (TSP)
applied to urban environments. This problem can be formulated as “Given a list of geographic
points and the distances between each pair of points, what is the shortest possible route that visits
each point and returns to the departure point?”. At present, with the development of Internet of
Things (IoT) devices and increased capabilities of sensors, a large amount of data and measurements
are available, allowing researchers to model accurately the routes to choose. In this work, the aim
is to provide a solution to the TSP in smart city environments using a modified version of the
metaheuristic optimization algorithm Teacher Learner Based Optimization (TLBO). In addition, to
improve performance, the solution is implemented by means of a parallel graphics processing unit
(GPU) architecture, specifically a Compute Unified Device Architecture (CUDA) implementation.

Keywords: smart cities; meta-heuristics; travelling salesman problem; TLBO; parallelism; GPU

1. Introduction

The Smart City concept involves providing the urban environment with smart infras-
tructure, technology, and procedures to ameliorate the quality of life of inhabitants from an
integrated perspective. Among the different aspects that have an impact on improving the
quality of life, several action fronts can be noted related to the movement of people and
goods, that is, traffic in the urban or metropolitan environment [1]. Indeed, effective traffic
management results in a reduction in the travel times of citizens in their vehicles, which
in turn has a positive impact on reducing the stress levels of drivers and optimizing the
arrival at their workplaces for the effective performance of different professional activities.
In addition, effective traffic management also entails better use of existing infrastructure
and a reduction in pollution levels, an issue that is becoming increasingly relevant given
people’s awareness of environmental care and the impact on health.

The problem of traffic in cities becomes more relevant if we take into account the
displacements that must be made by carriers and couriers to take different goods from
headquarters to different delivery points, whether they are supermarkets, offices, private
or homes. It should also be pointed out that the problem will affect the different platforms
of autonomous vehicle fleets in the near future, in which the driver takes a passive role and
the vehicle makes the decisions regarding the route to be followed to reach its destination
in the shortest time.

The large amount of data and measurements that Internet of Things (IoT) devices
can provide allows researchers to accurately model the different routes within an urban
environment [2]. In this way, as explained in [3,4], smart cities should provide user-centered
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mobility services, implementing intelligent and/or automated transportation systems that
incorporate strategies of artificial intelligence and technologies, such as the IoT and Physical
Internet (PI). The integration of different technologies, such as RFID and LoRaWAN (Long-
Range WAN), to implement PI oriented to provide Mobility-as-a-Service is demonstrated
in [5].

With the information available, routes are not only determined by the distance between
different geographical points, but can also incorporate aspects related to the expected time
of arrival, which include, in addition to the distance itself, traffic lights and their crossing
times, pedestrian crossings, and possible traffic jams.

A correspondence can be established between this problem and the classic combinato-
rial travelling salesman problem (TSP), in this case applied to car movements within urban
environments. This problem can be informally described in the following manner: “Given
a list of geographical points and the distances between each pair of points, what is the
shortest possible path that passes one and only one point and returns to the starting point?”.

The problem has given rise to a wide variety of research, and various algorithms and
heuristics have been developed to try to reduce the complexity when obtaining solutions.
In this paper, the aim is to provide an optimal or suboptimal solution to TSP instances
applied to smart city environments, using a modified version of the metaheuristic opti-
mization algorithm Teacher Learner Based Optimization (TLBO). In addition, performance
is improved by implementing the solution on a parallel graphics processing unit (GPU)
architecture, specifically a Compute Unified Device Architecture (CUDA) implementation.

This paper is organized as follows: Section 2 provides a review of state-of-the-art traffic
congestion management in smart cities. Section 3 introduces a formal description of the TSP
and its similarity with the problem of managing traffic in urban environments. Section 4
describes the TLBO method applied to both continuous and discrete domains. Section 5
shows the manner in which TLBO is implemented on a parallel CUDA architecture to
enhance its performance. Section 6 depicts the results of the parallel TLBO when applied
to a set of real scenarios from a well-known benchmark. Finally, in Section 7 conclusions of
the research work are outlined and future lines of research are proposed.

2. The Concern of Traffic Management in Smart Cities and Urban Environments

One of the main problems to be addressed in an urban environment is vehicle traffic
management. Although freight traffic is almost inevitably composed of trucks and vans,
passenger movement throughout a city is still mostly operated by private vehicles [6]. As
an example, 45% of American people had no access to public transportation in 2018 [7].

Numerous issues regarding the problems associated with car traffic in urban environ-
ments are currently being studied. Because the main objective in designing a smart city
is to improve “personal satisfaction by utilizing innovation to enhance the proficiency of
administrations and address occupants issues” [2], the movements of inhabitants through
the city must be managed in such a way that travel time is reduced according to the spe-
cific needs of each inhabitant, but concerns about pollution and well-being must also be
addressed. The same issues apply to freight transport, because transporters must make
their deliveries in an efficient way, trying to reduce delivery times, pollution rates, and
stress and tiredness of drivers.

Several research works can be found that deal with the possibility of monitoring
traffic in urban environments by means of different technologies and methods. In the
work of Rizwan et al. [2], an inexpensive real-time traffic management system is proposed
to provide a smart service by activating traffic indicators to instantly update the traffic
information. Inexpensive vehicle detection sensors are embedded in the middle of the road
every 500 m or 1000 m; IoT is used to quickly acquire traffic information and send it for
processing; and real-time flow data is sent for Big Data analysis. In the work of Fernandez-
Ares [8], an approach was developed which tracks the movement of people and vehicles
by monitoring the radioelectric space, capturing Wi-Fi and Bluetooth signals supplied by
smartphones or on-board hands-free devices. In the work of Sendra et al. [9], a collaborative
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Long-Range (LoRa)-based sensor network to monitor the pollution levels in smart cities
is developed. The system consists of geo-located nodes embedded in vehicles and fixed
places to monitor temperature, relative humidity, and concentration of CO2 in urban
environments. The system uses the gathered data to generate the necessary orders to traffic
signs and panels that control the traffic circulation. In Kazmi et al. [10], a methodology is
proposed that uses VITAL-OS, an IoT platform that enables collection, integration, and
management of data streams coming from multifunctional IoT devices and data sources.
The information gathered is analyzed to detect traffic noise events; if the noise level on
a particular road is higher than a certain threshold, the required traffic signal junction is
managed for traffic re-routing to alternative paths. In Kök et al. [11], a deep learning model
is proposed for analyzing IoT smart city data. The model is based on Long Short Term
Memory (LSTM) networks to predict future values of air quality. In Jabbarpour et al. [12],
an IoT application called Intelligent Guardrails is shown. It uses vehicular networks to
identify traffic situation of the roads, and incorporates electronic and mechanical techniques
to increase the number of lanes of the congested side of a highway while decreasing the
lanes on the non-congested side. In Singh et al. [13], a visual Big Data analytics framework
for automatic detection of bikers who do not wear a helmet in city traffic is proposed. The
paper discusses the issues involved in visual Big Data analytics for traffic control in a city
on a surveillance data scope. In Pawłowicz et al. [14], an approach of a traffic management
system is proposed. It includes 5G communication, RFID-based parking space monitoring,
and cloud services for supervision and machine learning. In Rathore et al. [15], a system
for a smart digital city that uses IoT devices for collecting city data and Big Data analytics
for acquiring knowledge is proposed. A model is proposed to develop a system that can
handle a large volume of city data and provide guidelines to the local authorities. The
system implementation involves several stages, including data generation and gathering,
aggregation, filtering, classification, preprocessing, computing, and decision making. The
gathered data from smart components within the city is processed in real-time to achieve
a smart service using Hadoop under Apache Spark. Data generated by smart homes,
smart parking areas, weather systems, pollution monitoring sensors, and vehicle networks
are used for analysis and testing. In the work of Behnke and Kirschstein [16], a study
on the effect of path selection in emission-oriented urban vehicle routing is presented,
which is composed of a heterogeneous road network with regard to speed and acceleration
frequency. An algorithm to determine all means of emission minimization for pairs of
origin and destination nodes given a specific vehicle is proposed and tested using the road
network from the city of Berlin.

In Ehmke et al. [17], two data-driven approaches for determining time-dependent
emission minimizing paths in urban environments are proposed. Their performances
are compared with respect to computing efficiency and solution quality. On average,
emissions-minimizing methods can reduce emissions by approximately 3.5% compared
to distance-minimizing paths, and 5.0% with regard to minimum time-dependent paths.
The emissions-optimized path is roughly 4% longer than the paths generated by distance-
based methods, and around 6% longer with regard to travel time compared to travel-time
optimized paths.

In the work of Suzuki [18], attention is paid on the so-called pollution routing problem
(PRP), which tries to minimize the fuel consumption or pollutants emission of trucks.
The final goal is to develop a decision support system of pollution vehicle routing for
eco-friendly enterprises. The work identifies, by analyzing the state-of-the-art PRP and
gathering expert opinions from carrier managers, a practical PRP model that uses a minimal
subset of the main factors affecting fuel consumption, and then develops a solution for
this model. In Ehmke et al. [19], research is focused on the problem of minimizing CO2
emissions in the routing of a fleet of capacitated vehicles in urban environments. A local
search procedure, named the tabu search heuristic, is adapted to solve the problem. The
research uses instances from a real road network dataset and 230 million speed observations.
In Kramer et al. [20], a metaheuristic approach, called ILS-SOA-SP, is proposed to solve
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the PRP; this method integrates iterated local search (ILS) with a set partitioning (SP)
procedure and a speed optimization algorithm (SOA). The proposed method has the
benefit of performing combined route and speed optimization within several local search
and integer programming components.

As a summary, a wide variety of research has been carried out with regard to the im-
provement of quality of life in smart cities in terms of traffic management and, consequently,
the reduction of fuel consumption, street noise, and pollution.

3. The Travelling Salesman Problem

The TSP has given rise to a wide variety of research, due to its simplicity of description
but its complexity at the time of obtaining a solution [21]. If the problem is formulated
using graph theory terminology, it can be defined as a graph G = (V, A), where V = {v1,
. . . ,vn} consists of a set of n vertices (nodes) and A = {(vi, vj)/vi, vj ∈ V, i 6= j} is a set of
edges with an associated non-negative cost (distance) matrix D = (dij). The problem is
symmetric if dij = dji for any pair of vertices (vi, vj) ∈ A, and it is said to be asymmetric
(ATSP) otherwise.

If I:{1, . . . , n}→ {1, . . . ,n} is a bijective function that determines a reordering of vertices
vi in V, the TSP can be defined as obtaining the minimal result for the following calculation:

FTSP =
n−1

∑
j=1

dI(j)I(j+1) (1)

It is easy to establish an analogy or correspondence between the TSP and the problem
of managing traffic in smart cities. For example, the set of nodes can be related to the
different city locations where a van or truck must deliver its cargo from a depot. As
previously explained, the meaning of distance in the case of urban environments is different
from the mere concept of geographical distance, because it can also incorporate traffic lights
and their crossing times, pedestrian crossings, speed limits, and even dynamic factors,
such as temporary traffic jams, road maintenance works, and accidents. In addition, data
collected on fuel consumption and pollution related to different roads can be added.

For a set of n nodes, obtaining the optimal solution by means of exhaustive search
is a problem that implies (n − 1)! comparisons. As an example, in the case of ten nodes,
the required comparisons between possible solutions would be 9! = 362,880, and 15 nodes
would imply comparing 14! = 87,178,291,200 possible solutions to obtain the best solution.
The extensive list of research papers related to TSP has produced different methods that try
to decrease the aforementioned complexity. Heuristic methods are suitable for managing
TSP, and much attention has been paid to these types of methods among researchers on
optimization. In [22], a review of swarm intelligence applied to graph search problems is
contributed, but the paper focuses almost solely on ant colony optimization (ACO) and
bee colony optimization (BCO).

In [23], two different modifications of the artificial bee colony (ABC) method are
applied to TSP: a combinatorial algorithm, called CABC, and an improved version of
CABC, called qCABC. Experiments are performed on a benchmark of 15 TSP instances.
The performance of these two algorithms and eight different genetic algorithm (GA)
versions is compared. Moreover, the performance of ABC is also compared with the ant
colony system (ACS) and bee colony optimization methods. Results show the suitability of
CBAC and qCABC algorithms to be applied to TSP problems.

Most of the works related to solving the TSP by means of metaheuristic optimization
methods use the ant colony optimization method [24–28], sometimes in a hybrid version
with other methods [29]. This is because the natural behavior of ants in the development of
a colony can be easily matched to the problem of finding the shortest path between a series
of nodes.
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4. The TLBO Optimization Method
4.1. Original TLBO Formulation

Rao [30] developed a series of metaheuristic algorithms that do not require the adjust-
ment of initial parameters to operate. Among these algorithms, TLBO imitates the learning
process that takes place in the classroom: from the teacher to the students. It is an iterative
process that evolves in stages to optimize a function with multiple variables. This process
culminates when the conditions that make the solution valid are met.

For each stage, a random population of possible solutions (called individuals) is
created. These values are assigned taking into account the domain of the function f. Once
these values are assigned for the population, two stages are carried out, as detailed below.

4.1.1. Teacher Stage

Individual i within the population is represented by vector X(i). Therefore, X(i,j) refers
to variable j of individual i. The teacher stage aims to assess the function for each member
of the population considering its own parameters, f (X(i)). The individual with a value
closest to the optimum is selected as the teacher (Xbest). Then, teacher values are used to
bring his disciples closer to him by following Equation (2), which also takes into account
the mean values of the population. Thus, each individual will have its new (Xnew) solution.

Xnew(i, j) = X(i, j) + rand(0, 1)(Xbest(j)− TFactor·Xm(j)) (2)

As can be observed in Equation (2), the value of X(i,j) is modified according to the
distance that exists between the teacher and the mean of the population (Xm). The factor
T is a random integer value that can be valued at 1 or 2, and whose calculation is shown
in Equation (3). After changing the values of each individual, the function is evaluated
again (f(Xnew(i)). Only in the case that the evaluation offers a more optimal solution than
the original one, the new values calculated for the individual i are taken.

TFactor = round(1 + rand(0, 1)) (3)

4.1.2. Learner Stage

At the learner stage, again all individuals are evaluated and compared. This time
the comparison takes place with another randomly selected student. In this pair-wise
comparison, the student with the optimal solution is called Best Learner and the other is
called Worst Learner. Both students are used to set up a possible new individual Xnew from
the original X(i) according to Equation (4). In case this proposal is more optimal than the
original one, the new values calculated will replace the original ones for that individual.

Xnew(i, j) = X(i, j) + rand(0, 1)·(BestLearner(j)−WorstLearner(j)) (4)

In this algorithm only the number of iterations and the number of individuals in the
population have to be fixed; therefore, its main advantage is that there are no parameters
that have to be adjusted for the algorithm to converge towards an optimal solution, as
happens in other metaheuristic algorithms. In the recent years, there has been an increase
in the number of publications that highlight the advantages of TLBO for the resolution of a
large number of engineering problems [31–34].

4.2. Discrete TLBO

The problem to be solved in this research, the TSP, is of a discrete nature which comes
from the appropriate selection of a combination of sites whose sorting satisfies a criterion.
In the case of this research, the aim is to find the shortest route.

This problem does not fit with the characteristics of the original TLBO, whose domain
of solutions is established in a continuous range in which the selection of values taken from
a set is not possible. For this reason, it is necessary to make a change in the original TLBO
algorithm, so that discrete values taken from a set can be selected. This discrete version of
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the algorithm (DTLBO) is based on the research proposed in [35] and substantial changes
have been made to adapt it to the TSP case study.

In [35], the whole population consists of 100 individuals. Although the paper does not
mention it implicitly, it can be guessed that each subpopulation contains four individuals,
so 25 subpopulations are supposed to be formed. The division of a population into different
subpopulations is a strategy used in several metaheuristic methods to increase the diversity
of the population and, therefore, reduce the probability of being trapped in a local optimum.

4.2.1. Representation of Individuals

The representation of individuals in DTLBO changes substantially from the original
algorithm. In this version of the algorithm the individuals represent routes through a
set of places. Each variable within an individual corresponds to a node or location. As
shown in Figure 1, if a set of eight places has to be visited (v0, v1 . . . v7), an individual
could be represented as eight connected nodes that determine the next order of visit:
v7→v0→v1→v6→v4→v2→v5→v3.
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Figure 1. Representation of an individual solution.

In contrast to the work proposed in [35], which uses four completely random subpop-
ulations, in this version of the DTLBO one of the individuals is not generated randomly
but is assigned initial values based on a greedy strategy. This is intended to accelerate the
convergence of the algorithm and preserve its ability to avoid local minima by maintaining
randomness in the subpopulations.

4.2.2. DTLBO Teacher Stage

At this stage, a Partial Teacher is selected for each subpopulation. As with the original
TLBO, this teacher is used to improve the students in each subpopulation taking into
account the mean value of the subpopulation. In addition, to avoid losing the global vision
of the route, a global Teacher is also selected as the best individual of the whole population.
It must be taken into account that the calculation of the mean individual could violate the
path conditions of the TSP, so a viability condition must be added to its calculation. This
condition is performed in the following four steps

Step 1: The number of times a place appears is counted. To store the places that appear
more than once, the TempA vector is used. Each place is stored in the last position
(higher index) that it occupies in the original unfeasible vector; in case a place does
not appear or just appears once, the corresponding item remains empty (symbol -). In
Figure 2, it can be observed that locations 3 and 5 appear in the last positions they
occupied in the original unfeasible vector, that is, positions 5 and 6, respectively.

Step 2: Search for the missing locations. Again, in Figure 2 it can be seen that places 1, 6,
and 7 do not appear. The TempB vector is used to store these places. In this vector, the
index of the place that does not appear is written in the associated item, leaving the
remainder of the items empty.

Step 3: A vector TempC is created to indicate the places that appear just once. In Figure 2, it
can be observed that places 0, 2, and 4 appear in their corresponding positions within
TempC.

Step 4: Using the above mentioned vectors, a viable individual is constructed by adding to
the empty items of TempA and TempC the places that do not appear in them and that
are found in TempB.
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Figure 2. An example of the viability operation.

The crossover operation is used in the DTLBO to generate new individuals from
existing ones. This operation is indicated by the symbol ⊗. In this version of the algorithm,
four different ways of creating new individuals from crossovers were introduced and are
shown in Equation (5). In contrast to the work presented in [35], in which a fixed cross
is assigned between individuals, this approach makes a random selection for each cross
operation. This randomness avoids falling into local minima and increases the variability
of populations.

Xnew(i) = X(i) ⊗ Teacher
Xnew(i) = X(i) ⊗ PartialTeacher(i)
Xnew(i) = X(i) ⊗Mean(i)
Xnew(i) = PartialTeacher(i) ⊗Mean(i)

(5)

The operation of the crossover can be shown in Figure 3. Suppose that two individuals
A and B must generate a new one called Ac. The initial and final positions of the new
individual are selected randomly and thus the new individual Ac replaces the selected
items by those of individual B. Logically, after this crossover is performed, the viability
operation must be applied.
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Individual Ac

Figure 3. An example of the crossover operation.

To increase the variability of the populations, a mutation operator is included, which
is denoted by the symbol Θ (shown in the Equation (6)). Figure 4 shows the functionality
of this operator. Given an Ac individual, initial and final positions are randomly selected;
in the current example, these are positions 3 and 6. Once these positions are determined,
the elements included in this sequence (items of positions 3, 4, 5, and 6) are inverted to
create the mutated element Acm.

Acm(i) = ΘAc(i) (6)
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4.2.3. DTLBO Learner Stage

Similar to the original TLBO, in the learner stage a random individual k is chosen
for each individual i in the subpopulation to be compared with. The new individual is
created from Equation (7), where ⊗ represents the crossover operation, working in the
same way as the crossover operation in the teacher stage. Then it will be necessary to
apply the condition of viability on the new individual Xnew(i) and then apply the mutation
operator as described in the teacher stage.

Xnew(i) = X(i) ⊗ X(k) (7)

Although the accuracy of the DTLBO presented in [35] is best when compared with
well-known algorithms such as ACO, Particle Swarm Optimization (PSO), and Genetic
Algorithm (GA), and only in some specific cases it is slightly beaten by ACO and ABC. It
is also the case that its performance is low when cities have a large number of places to
visit. For this reason, this investigation focused on a revision of this algorithm based on
the improvement of its convergence and on a parallel implementation that allows taking
advantage of the performance of the multiprocessing present in the existing GPUs.

5. Parallel TLBO Implementation on GPU

As explained above, applying a series of modifications to the TLBO algorithm can
achieve significant results in discrete combinatorial problems, in this case, in the TSP
problem. Satisfying results are achieved compared to other algorithms [35].

The changes implemented in the original TLBO cause the different stages to be more
complex and add a higher computational cost to the algorithm. As a consequence, the
iterations of the DTLBO are significantly more expensive than those of the original TLBO,
and therefore the computation time is penalized. With the aim of minimizing the impact of
these modifications and the extra cost of computing on the performance of the algorithm, a
parallel implementation of the algorithm was developed using a CUDA architecture in a
GPU environment. Although parallelization of an algorithm using CUDA is not always
the best solution when applying parallelization techniques, the specific features of DTLBO
can be exploited to provide a remarkable improvement in performance when compared
to sequential solutions using this parallel architecture. Previous research has attempted
improvement of metaheuristic methods applied to graph search problems by means of
parallel implementations [36].

The initial and fundamental step when proceeding with the algorithm parallelization
consists in creating an adequate design of the memory structure and the execution flow
to minimize the global thread blockages. If GPU memory is mismanaged, the impact in
execution time can be detrimental because transference operations between the different
memory levels within the GPU imply a high latency. Therefore, these transferences should
be minimized.

5.1. Design of the Memory Organization

The first task that must be carried out to parallelize the algorithm is to conceive an
adequate design of the memory structure and the execution flow to minimize the blockage
of the different threads executing in parallel within the GPU. Thus, the different GPU
memory levels are organized to manage different kinds of data (thread, subpopulation,
and global levels) as shown in Figure 5.
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Global memory. This memory stores two main data blocks: an array that contains the
required points for generating the individuals of the populations in each block; and an array
that contains the whole set of pre-calculated distances between the different points. Global
memory also stores the best individual of the whole population and its evaluation (global
Teacher), which are globally calculated in each iteration to be used by every individual
within the population. Much of the data stored in the global memory will be only read but
never modified, and will be used to avoid computing the total distance travelled when
evaluating each individual. Only the best evaluation (global Teacher) must be modified if
required each iteration.

Block memory. This memory stores the data shared by a subpopulation. The memory
is organized in a matrix; each row corresponds to an individual, and each column stores the
index of an urban node. An extra column is in charge of storing the individual’s solution
to avoid repeating the evaluation.

Thread memory. This consists of a private, local memory to each thread which is not
shared with the remainder of individuals. The variables stored in this memory are used for
the calculations needed at each stage of the DTLBO, and are updated during each of the
iterations.

5.2. Execution Flow

An execution flow was devised to minimize the blockages of the threads at the time of
synchronization when running the algorithm (syncthreads). The TLBO consists of a series
of phases linked in such a way that they make it necessary to synchronize the threads to
obtain common data for the whole population, such as the mean individual and the best
individual (Teacher). In addition, to obtain this information, the reduction technique is
utilized to achieve a minimal number of iterations needed to obtain the aforementioned
values from the population. To build a parallel execution of the algorithm, each thread
corresponds to an individual of the population. The first thread (with index 0) of each
subpopulation is responsible for carrying out the operations in the local memory, and the
first thread of the first population is responsible for carrying out the necessary operations
in the global memory. This is represented in Figure 6. In this manner, conflicts and delays
in the access to the different memory levels are avoided.
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Figure 6. Subpopulation organization and memory accesses.

6. Experimentation

Experimentation was performed to compare the execution time when solving four
TSP problems from the TSPLIB library [37]. A sequential implementation and a manycore
GPU parallel implementation based on CUDA (9.2 version) were compared. The system
used for performing the experiments was equipped with a Pentium i7 3.2 GHz and an
NVIDIA GeForce 1060p graphics accelerator, 6 GB GPU RAM, and 32 GB DDR4 RAM.
Different scopes were devised for each of the problems by varying the population sizes
(64 and 128 individuals) and the number of iterations performed (1000, 5000, and 10,000
iterations). The cities from TSPLIB that were considered for the experiments were Berlin52,
Att48, Eil76, and Ch130, with 52, 48, 76, and 130 urban nodes, respectively. They represent
real scenarios taken from cities in Europe, USA, and China.

Figures 7–14 depict the results with respect to the CPU and GPU mean time in
milliseconds (ms) of 10 blocks of 1000 runs, each with a PC clean reset. Results show
that the DTLBO GPU parallel version improves performance up to 6× when dealing
with a high number of individuals and iterations. DTLBO reached the optimal path in
Att48 (distance = 33,523); in the case of Berlin52, the difference obtained with regard to
the optimal was only 2 (7544 versus 7542); in the case of the problems with a higher
number of urban nodes, DTBLO obtained 6336 in Ch130 (optimal = 6110), and 552.63 in
Eil76 (optimal = 538). The paths obtained for these four real urban scenarios are shown in
Figures 15–18.
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Figure 7. CPU and graphics processing unit (GPU) times (in ms) from Berlin130 with respect to
different populations (64 and 128) and iterations (1000, 5000, and 10,000).
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Figure 8. Speedup when comparing CPU and GPU times from Berlin130 with respect to different
populations (64 and 128) and iterations (1000, 5000, and 10,000).
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Figure 9. CPU and GPU times (in ms) for Att48 with respect to different populations (64 and 128)
and iterations (1000, 5000, and 10,000).
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Figure 10. Speedup when comparing CPU and GPU times for Att48 with respect to different
populations (64 and 128) and iterations (1000, 5000, and 10,000).
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Figure 11. CPU and GPU times for Eil76 (in ms) with respect to different populations (64 and 128)
and iterations (1000, 5000, and 10,000).
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Figure 12. Speedup when comparing CPU and GPU times for Eil76 with respect to different popula-
tions (64 and 128) and iterations (1000, 5000, and 10,000).
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The GPU’s features allow it to process a high number of threads per block. As a
consequence, it was noted that the increase in the population does not have as much
time penalty as the CPU, so the GPU times are only affected by the number of iterations.
Moreover, the GPU block architecture is highly suitable for subpopulation algorithms, due
to the fact that they can be placed in different blocks of the GPU and consequently run in
parallel if the number of subpopulations allows it. It is possible for different problems to
be executed on the same GPU, achieving a maximal utilization of the GPU resources and a
minimal response time. All of the optimal solutions were obtained with populations of
128 individuals. With populations of 64 individuals, it was only possible to generate one of
the optimal solutions (the one of the smallest problem).

It was established that population sizes of 64 and 128 are capable of computing all
scenarios without memory problems: in the case of 64 individuals, to have a population
size close to the number of variables of some problems; and in the case of 128 individuals,
to have a population size above almost all of the problems. The maximum of 128 is also
related to the limits of memory per block. The data stored at block level to be shared among
the whole population for learning, and the comparisons between individuals, limit the
population size. Although there are no thread-level memory conflicts, the information
needed to make certain calculations, especially for the calculation of valid solutions and the
choice of learners, makes it possible for memory conflicts to arise in some of the scenarios.
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7. Conclusions

In this research, a parallel implementation of the discrete Teaching Learning Based
Optimization algorithm (DTLBO) using a manycore GPU environment to improve the
algorithm performance was proposed and applied to provide optimal or suboptimal
solutions to the traveling salesman problem. Previous research has found this algorithm to
be an excellent option for solving the TSP, but its biggest drawback is its complexity and
computational cost when compared to other metaheuristic optimization algorithms. The
parallel implementation using a manycore GPU proposed and developed in this research
work substantially improved the algorithm performance, achieving important speedups
with respect to a sequential implementation. When a high number of individuals and
iterations are considered, the speedup is high as 6×. The results show that the algorithm is
adequate to be applied to problems in which the execution time is one of the determining
factors, especially when there are numerous urban nodes in the route that must be traveled
in an optimal way.

To summarize, the original DTLBO method was modified by including a greedy
strategy when searching for a first initial best individual instead of a purely random
generation. When creating new individuals from crossovers, four different ways were
considered, with one of them randomly selected each time. Indeed, because the method
is time-consuming, another significant contribution of the work consists in accelerating
the algorithm by means of a parallel implementation supported by CUDA architecture.
The parallelization of this kind of algorithm is not a trivial task and, in fact, the results
obtained when parallelizing an algorithm are not always better than those obtained with
a sequential implementation. The parallel implementation of DTLBO proposed in this
research work achieves satisfactory speedup results.

The developed implementation could be further enhanced in several parts by focusing
on improvements in thread block management to optimize the use of GPU resources.

Moreover, although in this research work parallel implementations of the algorithm
on CUDA were performed on a desktop computer, these algorithms can be executed in
embedded systems inside cars, because some cars already exist with NVIDIA chipsets
and support for CUDA, that are used for image recognition within smart driving. With
these systems, smart driving could be improved by performing route enhancement using
checkpoints within the GPU processing without penalizing the CPU. This is an important
issue due to the fact that, in embedded systems in cars, the CPU is a highly demanded
resource. Thus, it can be troublesome to run intensive processes on the CPU because the
CPU must manage other subsystems in the vehicle. Another line of future research is
the adoption of a multi-objective strategy aimed at improving travel time, which would
include factors other than distance, such as traffic lights, car accidents, and road works.
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