439 research outputs found

    Cyber-Virtual Systems: Simulation, Validation & Visualization

    Full text link
    We describe our ongoing work and view on simulation, validation and visualization of cyber-physical systems in industrial automation during development, operation and maintenance. System models may represent an existing physical part - for example an existing robot installation - and a software simulated part - for example a possible future extension. We call such systems cyber-virtual systems. In this paper, we present the existing VITELab infrastructure for visualization tasks in industrial automation. The new methodology for simulation and validation motivated in this paper integrates this infrastructure. We are targeting scenarios, where industrial sites which may be in remote locations are modeled and visualized from different sites anywhere in the world. Complementing the visualization work, here, we are also concentrating on software modeling challenges related to cyber-virtual systems and simulation, testing, validation and verification techniques for them. Software models of industrial sites require behavioural models of the components of the industrial sites such as models for tools, robots, workpieces and other machinery as well as communication and sensor facilities. Furthermore, collaboration between sites is an important goal of our work.Comment: Preprint, 9th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2014

    Overview to the Codes Project:Computational Models in Product Life Cycle –Codes

    Get PDF

    Activity Report: Automatic Control 2009

    Get PDF

    Activity Report: Automatic Control 2012

    Get PDF

    A Cloud-Based Collaboration Platform for Model-Based Design of Cyber-Physical Systems

    Full text link
    Businesses, particularly small and medium-sized enterprises, aiming to start up in Model-Based Design (MBD) face difficult choices from a wide range of methods, notations and tools before making the significant investments in planning, procurement and training necessary to deploy new approaches successfully. In the development of Cyber-Physical Systems (CPSs) this is exacerbated by the diversity of formalisms covering computation, physical and human processes. In this paper, we propose the use of a cloud-enabled and open collaboration platform that allows businesses to offer models, tools and other assets, and permits others to access these on a pay-per-use basis as a means of lowering barriers to the adoption of MBD technology, and to promote experimentation in a sandbox environment

    Design Study of a Hybrid Power System for a Ferry Using Open Simulation Platform

    Get PDF
    In a hybrid power system, an energy storage device unlocks the possibility of optimizing the design and operation. Only a properly tuned control strategy with correctly sized machinery under specific operation profiles will maximize the benefit. Therefore, a proper design should be chosen with consideration for the system behavior including the control strategy. This can be achieved using a dynamic system simulation. In this paper, a design study of a hybrid power system for a ferry is presented as a proof of concept for using Open Simulation Platform (OSP) for a design study at an early design stage. A complete system for a vessel and the power system is set up using the models contributed by different parties. A large number of sets of design parameters are created by the design of experiments. Results of simulations are presented, and the range of proper designs are selected based on the chosen criteria. A design tool was developed to integrate these processes for efficient use of the methodology. This study has successfully demonstrated the feasibility of the collaborative system design using co-simulation software from OSP.acceptedVersio

    Virtual plants in machine automation research and development

    Get PDF
    Computational product development has become the mainstream methodology in modern product development. The same trend has been visible also in research, where computational methods have gained popularity beside the traditional approach relying on theory and experimentations. The objective of this project task was to study and demonstrate a realistic approach for an industrial case to reuse existing mechanical design CAD model as the starting point and the template for mechanical system simulation using multibody system simulation, and to use this MBS model as a virtual test plant for automation and control system testing. In the report, the role of system modelling and simulation in the product process is first dis-cussed and some selected technologies, such as Modelica simulation language and Functional Mock-up Interface specification, are introduced. Then different possible implementations approaches for a test environment of the control and automation system of a multi-technical system are discussed. The latter part of report focuses on describing the selected approach for a demonstration system and its implementation. The demonstration showed that, at least for the selected case, modelling, simulation and post-processing of a multi-technical simulation system is relatively straightforward and fast with the selected tools. The demonstration gives some understanding of the process for implementing one relatively small multi-technical system but does not give realistic feedback about the challenges in industrial-scale process for virtual prototyping of large and complex systems and related data exchange and data management
    • …
    corecore