16,192 research outputs found

    The LAB@FUTURE Project - Moving Towards the Future of E-Learning

    Get PDF
    This paper presents Lab@Future, an advanced e-learning platform that uses novel Information and Communication Technologies to support and expand laboratory teaching practices. For this purpose, Lab@Future uses real and computer-generated objects that are interfaced using mechatronic systems, augmented reality, mobile technologies and 3D multi user environments. The main aim is to develop and demonstrate technological support for practical experiments in the following focused subjects namely: Fluid Dynamics - Science subject in Germany, Geometry - Mathematics subject in Austria, History and Environmental Awareness ñ€“ Arts and Humanities subjects in Greece and Slovenia. In order to pedagogically enhance the design and functional aspects of this e-learning technology, we are investigating the dialogical operationalisation of learning theories so as to leverage our understanding of teaching and learning practices in the targeted context of deployment

    Combining relevance information in a synchronous collaborative information retrieval environment

    Get PDF
    Traditionally information retrieval (IR) research has focussed on a single user interaction modality, where a user searches to satisfy an information need. Recent advances in both web technologies, such as the sociable web of Web 2.0, and computer hardware, such as tabletop interface devices, have enabled multiple users to collaborate on many computer-related tasks. Due to these advances there is an increasing need to support two or more users searching together at the same time, in order to satisfy a shared information need, which we refer to as Synchronous Collaborative Information Retrieval. Synchronous Collaborative Information Retrieval (SCIR) represents a significant paradigmatic shift from traditional IR systems. In order to support an effective SCIR search, new techniques are required to coordinate users' activities. In this chapter we explore the effectiveness of a sharing of knowledge policy on a collaborating group. Sharing of knowledge refers to the process of passing relevance information across users, if one user finds items of relevance to the search task then the group should benefit in the form of improved ranked lists returned to each searcher. In order to evaluate the proposed techniques we simulate two users searching together through an incremental feedback system. The simulation assumes that users decide on an initial query with which to begin the collaborative search and proceed through the search by providing relevance judgments to the system and receiving a new ranked list. In order to populate these simulations we extract data from the interaction logs of various experimental IR systems from previous Text REtrieval Conference (TREC) workshops

    Mobile support in CSCW applications and groupware development frameworks

    No full text
    Computer Supported Cooperative Work (CSCW) is an established subset of the field of Human Computer Interaction that deals with the how people use computing technology to enhance group interaction and collaboration. Mobile CSCW has emerged as a result of the progression from personal desktop computing to the mobile device platforms that are ubiquitous today. CSCW aims to not only connect people and facilitate communication through using computers; it aims to provide conceptual models coupled with technology to manage, mediate, and assist collaborative processes. Mobile CSCW research looks to fulfil these aims through the adoption of mobile technology and consideration for the mobile user. Facilitating collaboration using mobile devices brings new challenges. Some of these challenges are inherent to the nature of the device hardware, while others focus on the understanding of how to engineer software to maximize effectiveness for the end-users. This paper reviews seminal and state-of-the-art cooperative software applications and development frameworks, and their support for mobile devices

    Assessing a Collaborative Online Environment for Music Composition

    Get PDF
    The current pilot study tested the effectiveness of an e-learning environment built to enable students to compose music collaboratively. The participants interacted online by using synchronous and asynchronous resources to develop a project in which they composed a new music piece in collaboration. After the learning sessions, individual semi-structured interviews with the participants were conducted to analyze the participants\u2019 perspectives regarding the e-learning environment\u2019s functionality, the resources of the e-learning platform, and their overall experience with the e-learning process. Qualitative analyses of forum discussions with respect to metacognitive dimensions, and semi-structured interview transcriptions were performed. The findings showed that the participants successfully completed the composition task in the virtual environment, and that they demonstrated the use of metacognitive processes. Moreover, four themes were apparent in the semi-structured interview transcriptions: Teamwork, the platform, face-to-face/online differences, and strengths/weaknesses. Overall, the participants exhibited an awareness of the potential of the online tools, and the task performed. The results are discussed in consideration of metacognitive processes, and the following aspects that rendered virtual activity effective for learning: The learning environment, the platform, the technological resources, the level of challenge, and the nature of the activity. The possible implications of the findings for research on online collaborative composition are also considered

    Collaborative trails in e-learning environments

    Get PDF
    This deliverable focuses on collaboration within groups of learners, and hence collaborative trails. We begin by reviewing the theoretical background to collaborative learning and looking at the kinds of support that computers can give to groups of learners working collaboratively, and then look more deeply at some of the issues in designing environments to support collaborative learning trails and at tools and techniques, including collaborative filtering, that can be used for analysing collaborative trails. We then review the state-of-the-art in supporting collaborative learning in three different areas – experimental academic systems, systems using mobile technology (which are also generally academic), and commercially available systems. The final part of the deliverable presents three scenarios that show where technology that supports groups working collaboratively and producing collaborative trails may be heading in the near future

    Historical awareness support and its evaluation in collaborative software engineering

    Get PDF
    The types of awareness relevant to collaborative soft- ware engineering are identified and an additional type, "historical awareness" is proposed. This new type of awareness is the knowledge of how software artefacts re- sulting from collaboration have evolved in the course of their development. The types of awareness that different software engineer- ing environment architectures can support are discussed. A way to add awareness support to our existing OSCAR sys- tem, a component of the GENESIS software engineering platform, is proposed. Finally ways of instrumenting and evaluating the awareness support offered by the modified system are outlined

    Ontology-based collaborative framework for disaster recovery scenarios

    Full text link
    This paper aims at designing of adaptive framework for supporting collaborative work of different actors in public safety and disaster recovery missions. In such scenarios, firemen and robots interact to each other to reach a common goal; firemen team is equipped with smart devices and robots team is supplied with communication technologies, and should carry on specific tasks. Here, reliable connection is mandatory to ensure the interaction between actors. But wireless access network and communication resources are vulnerable in the event of a sudden unexpected change in the environment. Also, the continuous change in the mission requirements such as inclusion/exclusion of new actor, changing the actor's priority and the limitations of smart devices need to be monitored. To perform dynamically in such case, the presented framework is based on a generic multi-level modeling approach that ensures adaptation handled by semantic modeling. Automated self-configuration is driven by rule-based reconfiguration policies through ontology

    Using the Internet to improve university education

    Get PDF
    Up to this point, university education has largely remained unaffected by the developments of novel approaches to web-based learning. The paper presents a principled approach to the design of problem-oriented, web-based learning at the university level. The principles include providing authentic contexts with multimedia, supporting collaborative knowledge construction, making thinking visible with dynamic visualisation, quick access to content resources via information and communication technologies, and flexible support by tele-tutoring. These principles are used in the MUNICS learning environment, which is designed to support students of computer science to apply their factual knowledge from the lectures to complex real-world problems. For example, students may model the knowledge management in an educational organisation with a graphical simulation tool. Some more general findings from a formative evaluation study with the MUNICS prototype are reported and discussed. For example, the students' ignorance of the additional content resources is discussed in the light of the well-known finding of insufficient use of help systems in software applications
    • 

    corecore