661 research outputs found

    Massively parallel computing on an organic molecular layer

    Full text link
    Current computers operate at enormous speeds of ~10^13 bits/s, but their principle of sequential logic operation has remained unchanged since the 1950s. Though our brain is much slower on a per-neuron base (~10^3 firings/s), it is capable of remarkable decision-making based on the collective operations of millions of neurons at a time in ever-evolving neural circuitry. Here we use molecular switches to build an assembly where each molecule communicates-like neurons-with many neighbors simultaneously. The assembly's ability to reconfigure itself spontaneously for a new problem allows us to realize conventional computing constructs like logic gates and Voronoi decompositions, as well as to reproduce two natural phenomena: heat diffusion and the mutation of normal cells to cancer cells. This is a shift from the current static computing paradigm of serial bit-processing to a regime in which a large number of bits are processed in parallel in dynamically changing hardware.Comment: 25 pages, 6 figure

    Neural nets on the MPP

    Get PDF
    The Massively Parallel Processor (MPP) is an ideal machine for computer experiments with simulated neural nets as well as more general cellular automata. Experiments using the MPP with a formal model neural network are described. The results on problem mapping and computational efficiency apply equally well to the neural nets of Hopfield, Hinton et al., and Geman and Geman

    Vesicle computers: Approximating Voronoi diagram on Voronoi automata

    Full text link
    Irregular arrangements of vesicles filled with excitable and precipitating chemical systems are imitated by Voronoi automata --- finite-state machines defined on a planar Voronoi diagram. Every Voronoi cell takes four states: resting, excited, refractory and precipitate. A resting cell excites if it has at least one excited neighbour; the cell precipitates if a ratio of excited cells in its neighbourhood to its number of neighbours exceed certain threshold. To approximate a Voronoi diagram on Voronoi automata we project a planar set onto automaton lattice, thus cells corresponding to data-points are excited. Excitation waves propagate across the Voronoi automaton, interact with each other and form precipitate in result of the interaction. Configuration of precipitate represents edges of approximated Voronoi diagram. We discover relation between quality of Voronoi diagram approximation and precipitation threshold, and demonstrate feasibility of our model in approximation Voronoi diagram of arbitrary-shaped objects and a skeleton of a planar shape.Comment: Chaos, Solitons & Fractals (2011), in pres

    Excitable Delaunay triangulations

    Full text link
    In an excitable Delaunay triangulation every node takes three states (resting, excited and refractory) and updates its state in discrete time depending on a ratio of excited neighbours. All nodes update their states in parallel. By varying excitability of nodes we produce a range of phenomena, including reflection of excitation wave from edge of triangulation, backfire of excitation, branching clusters of excitation and localized excitation domains. Our findings contribute to studies of propagating perturbations and waves in non-crystalline substrates

    Cellular automaton supercolliders

    Get PDF
    Gliders in one-dimensional cellular automata are compact groups of non-quiescent and non-ether patterns (ether represents a periodic background) translating along automaton lattice. They are cellular-automaton analogous of localizations or quasi-local collective excitations travelling in a spatially extended non-linear medium. They can be considered as binary strings or symbols travelling along a one-dimensional ring, interacting with each other and changing their states, or symbolic values, as a result of interactions. We analyse what types of interaction occur between gliders travelling on a cellular automaton `cyclotron' and build a catalog of the most common reactions. We demonstrate that collisions between gliders emulate the basic types of interaction that occur between localizations in non-linear media: fusion, elastic collision, and soliton-like collision. Computational outcomes of a swarm of gliders circling on a one-dimensional torus are analysed via implementation of cyclic tag systems

    Towards heterotic computing with droplets in a fully automated droplet-maker platform

    Get PDF
    The control and prediction of complex chemical systems is a difficult problem due to the nature of the interactions, transformations and processes occurring. From self-assembly to catalysis and self-organization, complex chemical systems are often heterogeneous mixtures that at the most extreme exhibit system-level functions, such as those that could be observed in a living cell. In this paper, we outline an approach to understand and explore complex chemical systems using an automated droplet maker to control the composition, size and position of the droplets in a predefined chemical environment. By investigating the spatio-temporal dynamics of the droplets, the aim is to understand how to control system-level emergence of complex chemical behaviour and even view the system-level behaviour as a programmable entity capable of information processing. Herein, we explore how our automated droplet-maker platform could be viewed as a prototype chemical heterotic computer with some initial data and example problems that may be viewed as potential chemically embodied computations
    corecore