427,220 research outputs found

    Communication systems supporting multimedia multi-user applications

    Get PDF
    Multimedia multi-user applications are becoming more and more important. Intensive research is underway on the design of protocols and protocol entities for future communication systems supporting multimedia multi-user applications. The development of a service description ensures that protocol designs actually produce the required functional behavior. The authors explain the approach to the description of a multimedia multi-user service. An example illustrates the use of the service description in the design of communication systems. Next, they present the basic requirements of multimedia and multi-user communications. A call model underlies and structures the service description. Finally, the authors describe the service in terms of service element

    Applying OGC sensor web enablement to ocean observing systems

    Get PDF
    The complexity of marine installations for ocean observing systems has grown significantly in recent years. In a network consisting of tens, hundreds or thousands of marine instruments, manual configuration and integration becomes very challenging. Simplifying the integration process in existing or newly established observing systems would benefit system operators and is important for the broader application of different sensors. This article presents an approach for the automatic configuration and integration of sensors into an interoperable Sensor Web infrastructure. First, the sensor communication model, based on OGC's SensorML standard, is utilized. It serves as a generic driver mechanism since it enables the declarative and detailed description of a sensor's protocol. Finally, we present a data acquisition architecture based on the OGC PUCK protocol that enables storage and retrieval of the SensorML document from the sensor itself, and automatic integration of sensors into an interoperable Sensor Web infrastructure. Our approach adopts Efficient XML Interchange (EXI) as alternative serialization form of XML or JSON. It solves the bandwidth problem of XML and JSON.Peer ReviewedPostprint (author's final draft

    A TLA+ Formal Specification and Verification of a New Real-Time Communication Protocol

    Get PDF
    AbstractWe describe the formal specification and verification of a new fault-tolerant real-time communication protocol, called DoRiS, which is designed for supporting distributed real-time systems that use a shared high-bandwidth medium. Since such a kind of protocol is reasonably complex and requires high levels of confidence on both timing and safety properties, formal methods are useful. Indeed, the design of DoRiS was strongly based on formal methods, where the TLA+ language and its associated model-checker TLC were the supporting design tool. The protocol conception was improved by using information provided by its formal specification and verification. In the end, a precise and highly reliable protocol description is provided

    Easing the Transition from Inspiration to Implementation: A Rapid Prototyping Platform for Wireless Medium Access Control Protocols

    Get PDF
    Packet broadcast networks are in widespread use in modern wireless communication systems. Medium access control is a key functionality within such technologies. A substantial research effort has been and continues to be invested into the study of existing protocols and the development of new and specialised ones. Academic researchers are restricted in their studies by an absence of suitable wireless MAC protocol development methods. This thesis describes an environment which allows rapid prototyping and evaluation of wireless medium access control protocols. The proposed design flow allows specification of the protocol using the specification and description language (SDL) formal description technique. A tool is presented to convert the SDL protocol description into a C++ model suitable for integration into both simulation and implementation environments. Simulations at various levels of abstraction are shown to be relevant at different stages of protocol design. Environments based on the Cinderella SDL simulator and the ns-2 network simulator have been developed which allow early functional verification, along with detailed and accurate performance analysis of protocols under development. A hardware platform is presented which allows implementation of protocols with flexibility in the hardware/software trade-off. Measurement facilities are integral to the hardware framework, and provide a means for accurate real-world feedback on protocol performance

    Scyther : semantics and verification of security protocols

    Get PDF
    Recent technologies have cleared the way for large scale application of electronic communication. The open and distributed nature of these communications implies that the communication medium is no longer completely controlled by the communicating parties. As a result, there has been an increasing demand for research in establishing secure communications over insecure networks, by means of security protocols. In this thesis, a formal model for the description and analysis of security protocols at the process level is developed. At this level, under the assumption of perfect cryptography, the analysis focusses on detecting aws and vulnerabilities of the security protocol. Starting from ??rst principles, operational semantics are developed to describe security protocols and their behaviour. The resulting model is parameterized, and can e.g. capture various intruder models, ranging from a secure network with no intruder, to the strongest intruder model known in literature. Within the security protocol model various security properties are de??ned, such as secrecy and various forms of authentication. A number of new results about these properties are formulated and proven correct. Based on the model, an automated veri??cation procedure is developed, which signi ??cantly improves over existing methods. The procedure is implemented in a prototype, which outperforms other tools. Both the theory and tool are applied in two novel case studies. Using the tool prototype, new results are established in the area of protocol composition, leading to the discovery of a class of previously undetected attacks. Furthermore, a new protocol in the area of multiparty authentication is developed. The resulting protocol is proven correct within the framework

    Data Minimisation in Communication Protocols: A Formal Analysis Framework and Application to Identity Management

    Full text link
    With the growing amount of personal information exchanged over the Internet, privacy is becoming more and more a concern for users. One of the key principles in protecting privacy is data minimisation. This principle requires that only the minimum amount of information necessary to accomplish a certain goal is collected and processed. "Privacy-enhancing" communication protocols have been proposed to guarantee data minimisation in a wide range of applications. However, currently there is no satisfactory way to assess and compare the privacy they offer in a precise way: existing analyses are either too informal and high-level, or specific for one particular system. In this work, we propose a general formal framework to analyse and compare communication protocols with respect to privacy by data minimisation. Privacy requirements are formalised independent of a particular protocol in terms of the knowledge of (coalitions of) actors in a three-layer model of personal information. These requirements are then verified automatically for particular protocols by computing this knowledge from a description of their communication. We validate our framework in an identity management (IdM) case study. As IdM systems are used more and more to satisfy the increasing need for reliable on-line identification and authentication, privacy is becoming an increasingly critical issue. We use our framework to analyse and compare four identity management systems. Finally, we discuss the completeness and (re)usability of the proposed framework

    Synthesis Of Distributed Protocols From Scenarios And Specifications

    Get PDF
    Distributed protocols, typically expressed as stateful agents communicating asynchronously over buffered communication channels, are difficult to design correctly. This difficulty has spurred decades of research in the area of automated model-checking algorithms. In turn, practical implementations of model-checking algorithms have enabled protocol developers to prove the correctness of such distributed protocols. However, model-checking techniques are only marginally useful during the actual development of such protocols; typically as a debugging aid once a reasonably complete version of the protocol has already been developed. The actual development process itself is often tedious and requires the designer to reason about complex interactions arising out of concurrency and asynchrony inherent to such protocols. In this dissertation we describe program synthesis techniques which can be applied as an enabling technology to ease the task of developing such protocols. Specifically, the programmer provides a natural, but incomplete description of the protocol in an intuitive representation — such as scenarios or an incomplete protocol. This description specifies the behavior of the protocol in the common cases. The programmer also specifies a set of high-level formal requirements that a correct protocol is expected to satisfy. These requirements can include safety requirements as well as liveness requirements in the form of Linear Temporal Logic (LTL) formulas. We describe techniques to synthesize a correct protocol which is consistent with the common-case behavior specified by the programmer and also satisfies the high-level safety and liveness requirements set forth by the programmer. We also describe techniques for program synthesis in general, which serve to enable the solutions to distributed protocol synthesis that this dissertation explores

    VLSI design of stability routing protocol for sensors in wireless mobile ad-hoc networks

    Get PDF
    This thesis gives a detailed description of the Application specific integrated circuit (ASIC) design of Stability routing protocol for sensors in mobile ad-hoc networks. The Stability routing protocol is based on the signal strength and position components during data transmission while considering sensors in an ad-hoc network. A general ad-hoc network has unpredictable and variable mobility patterns therefore the signal strength criteria is adopted for routing. Signal strength criteria has been proved to be efficient for communication between the mobile nodes without any data loss. In this thesis an architecture for a processor implementing stability routing protocol for effective communication has been designed. The processor detects the alert signal from the sensor network and sends an emergency signal to all the other nodes in the network. Apart form sending the emergency signal the processor also sends the position and velocity components of its own node to all the other nodes in the network. The other functionality of the processor is whenever the processor receives data from another node it updates the information and sends that information to the destination node. A VHDL model for this architecture was developed, a selected set of specific conditions are evaluated through simulation. VHDL simulation validates the functionality of the architecture. This model was synthesized and the place and route was done using cadence tools
    corecore