1,015 research outputs found

    A Model Reduction Method for Multiscale Elliptic Pdes with Random Coefficients Using an Optimization Approach

    Get PDF
    In this paper, we propose a model reduction method for solving multiscale elliptic PDEs with random coefficients in the multiquery setting using an optimization approach. The optimization approach enables us to construct a set of localized multiscale data-driven stochastic basis functions that give an optimal approximation property of the solution operator. Our method consists of the offline and online stages. In the offline stage, we construct the localized multiscale data-driven stochastic basis functions by solving an optimization problem. In the online stage, using our basis functions, we can efficiently solve multiscale elliptic PDEs with random coefficients with relatively small computational costs. Therefore, our method is very efficient in solving target problems with many different force functions. The convergence analysis of the proposed method is also presented and has been verified by the numerical simulations

    Sparse Generalized Multiscale Finite Element Methods and their applications

    Full text link
    In a number of previous papers, local (coarse grid) multiscale model reduction techniques are developed using a Generalized Multiscale Finite Element Method. In these approaches, multiscale basis functions are constructed using local snapshot spaces, where a snapshot space is a large space that represents the solution behavior in a coarse block. In a number of applications (e.g., those discussed in the paper), one may have a sparsity in the snapshot space for an appropriate choice of a snapshot space. More precisely, the solution may only involve a portion of the snapshot space. In this case, one can use sparsity techniques to identify multiscale basis functions. In this paper, we consider two such sparse local multiscale model reduction approaches. In the first approach (which is used for parameter-dependent multiscale PDEs), we use local minimization techniques, such as sparse POD, to identify multiscale basis functions, which are sparse in the snapshot space. These minimization techniques use l1l_1 minimization to find local multiscale basis functions, which are further used for finding the solution. In the second approach (which is used for the Helmholtz equation), we directly apply l1l_1 minimization techniques to solve the underlying PDEs. This approach is more expensive as it involves a large snapshot space; however, in this example, we can not identify a local minimization principle, such as local generalized SVD

    Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods

    Get PDF
    In this paper, we discuss a general multiscale model reduction framework based on multiscale finite element methods. We give a brief overview of related multiscale methods. Due to page limitations, the overview focuses on a few related methods and is not intended to be comprehensive. We present a general adaptive multiscale model reduction framework, the Generalized Multiscale Finite Element Method. Besides the method's basic outline, we discuss some important ingredients needed for the method's success. We also discuss several applications. The proposed method allows performing local model reduction in the presence of high contrast and no scale separation

    Sparse operator compression of higher-order elliptic operators with rough coefficients

    Get PDF
    We introduce the sparse operator compression to compress a self-adjoint higher-order elliptic operator with rough coefficients and various boundary conditions. The operator compression is achieved by using localized basis functions, which are energy-minimizing functions on local patches. On a regular mesh with mesh size hh, the localized basis functions have supports of diameter O(hlog⁑(1/h))O(h\log(1/h)) and give optimal compression rate of the solution operator. We show that by using localized basis functions with supports of diameter O(hlog⁑(1/h))O(h\log(1/h)), our method achieves the optimal compression rate of the solution operator. From the perspective of the generalized finite element method to solve elliptic equations, the localized basis functions have the optimal convergence rate O(hk)O(h^k) for a (2k)(2k)th-order elliptic problem in the energy norm. From the perspective of the sparse PCA, our results show that a large set of Mat\'{e}rn covariance functions can be approximated by a rank-nn operator with a localized basis and with the optimal accuracy
    • …
    corecore