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A MODEL REDUCTION METHOD FOR MULTISCALE ELLIPTIC
PDEs WITH RANDOM COEFFICIENTS USING AN OPTIMIZATION

APPROACH∗

THOMAS Y. HOU† , DINGJIONG MA‡ , AND ZHIWEN ZHANG§

Abstract. In this paper, we propose a model reduction method for solving multiscale elliptic
PDEs with random coefficients in the multiquery setting using an optimization approach. The
optimization approach enables us to construct a set of localized multiscale data-driven stochastic
basis functions that give an optimal approximation property of the solution operator. Our method
consists of the offline and online stages. In the offline stage, we construct the localized multiscale
data-driven stochastic basis functions by solving an optimization problem. In the online stage,
using our basis functions, we can efficiently solve multiscale elliptic PDEs with random coefficients
with relatively small computational costs. Therefore, our method is very efficient in solving target
problems with many different force functions. The convergence analysis of the proposed method is
also presented and has been verified by the numerical simulations.
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1. Introduction. 1Many physical and engineering applications involve uncer-
tainty quantification (UQ) can be described by stochastic partial differential equations
(SPDEs, i.e., PDEs driven by Brownian motion) or partial differential equations with
random coefficients (RPDEs). In recent years, there has been an increased interest in
the simulation of systems with uncertainties, and several numerical methods have been
developed in the literature to solve UQ problems; see [15, 38, 6, 25, 18, 35, 5, 27, 37,
26, 32, 34, 16] and references therein. These methods are effective when the dimension
of the solution space is not huge. However, when SPDEs or RPDEs involve multiscale
features, the problems become challenging as they require tremendous computational
resources to resolve the small scales of the solutions.

Recently, some progress has been made in developing numerical methods for mul-
tiscale PDEs with random coefficients. In [17], Hou and Liu proposed a heterogeneous
stochastic finite element method (HSFEM) framework to solve elliptic PDEs with
random coefficients, which discretizes the equations using the heterogeneous coupling
of spatial basis with different local stochastic basis to exploit the local stochastic
structure of the solution space. Zabaras and co-authors proposed a stochastic varia-
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A MODEL REDUCTION METHOD FOR MULTISCALE RANDOM PDE 827

tional multiscale method for diffusion in heterogeneous random media [3, 14]. They
combined the generalized polynomial chaos (gPC) method with variational multiscale
method to do model reduction. In [1], Arnst and Ghanem considered the probabilistic
equivalence and stochastic model reduction in multiscale analysis. In [22], Kevrekidis
et al. applied the equation-free idea to study stochastic incompressible flow problems
among others.

We also make some progress in developing numerical methods for multiscale PDEs
with random coefficients by exploring the low-dimensional structure of the solutions
and constructing problem-dependent basis functions to solve these RPDEs. In [10,
39, 21], we proposed the data-driven stochastic methods to solve partial differential
equations with high-dimensional random input and/or multiscale coefficients. We
found that the data-driven stochastic basis functions can be used to solve the RPDEs
with many different force functions. However, to obtain these data-driven stochastic
basis functions, we need to choose a set of force functions, solve the RPDEs for
each force function, and extract related basis information. Therefore, these data-
driven stochastic methods cannot fully explore the information hidden in the RPDE’s
operator. This motivates us to develop more efficient data-driven stochastic methods
to solve RPDEs.

In this paper, we propose a new approach to construct multiscale data-driven
stochastic basis functions, which can be used to solve multiscale PDEs with random
coefficients in the multiquery setting. Our method is inspired by the recent devel-
opment in exploring intrinsic low-dimensional structures of the deterministic elliptic
problems; see [20, 24, 31, 29, 30] and references therein. We shall use the following
multiscale elliptic equation with random coefficient as an example to illustrate the
main idea of our approach,

Lε(x, ω)uε(x, ω) ≡ −∇ · (aε(x, ω)∇uε(x, ω)) = f(x), x ∈ D,ω ∈ Ω.(1)

More details about the setting of the problem (1) will be discussed in section 3.
Our method consists of the offline and online stages. In the offline stage, we apply
an optimization approach to systematically construct localized multiscale data-driven
stochastic basis functions on each patch associated with each coarse interior grid. The
basis functions are energy minimizing functions on local regions of the domain. Thus,
they give an optimal approximation property of the stochastic multiscale solution
operator. We emphasize that the construction of the basis functions only depends on
the RPDE’s operator and does not depend on the forcing functions. Therefore, our
method fully explores the information hidden in the RPDE’s operator.

In the online stage, using our localized multiscale data-driven stochastic basis
functions, we can efficiently solve the multiscale RPDEs for a broad range of forcing
functions. Under some mild conditions, we prove that the basis functions have ex-
ponential decay property away from the center of the local patch. In addition, we
analyze the error between the numerical solution obtained from our method and the
exact solution. Finally, we carry out several numerical experiments to show that our
new method can offer considerable savings over many existing methods.

Though there are several prior works on the numerical methods for multiscale
elliptic PDEs with random coefficients, the novelty of our paper is that we provide
a unified approach to upscale the physical space and random space simultaneously.
Moreover, the optimization approach that we use to construct the localized mul-
tiscale random basis functions (see (14)–(15)) enables us to explore the localized
random structures in the solution space so that we can compute problems that are
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828 THOMAS Y. HOU, DINGJIONG MA, AND ZHIWEN ZHANG

parametrized by many random variables. More details will be demonstrated in Fig-
ure 1 and section 5.3. In addition, we prove that the multiscale random basis functions
have an optimal approximation property. We remark that our paper shares some simi-
larity with the idea presented in [17], in the sense that we both investigate the localized
structures in the random space. However, we construct the local random basis func-
tions and multiscale basis function at the same time by solving a local optimization
problem.

The rest of the paper is organized as follows. In section 2, we give a brief in-
troduction of the generalized polynomial chaos method and data-driven stochastic
method and operator compression. In section 3, we first introduce the construction
of localized basis functions for a deterministic elliptic operator. Then, we present the
derivation of our multiscale data-driven stochastic basis functions. Issues regarding
the practical implementation of our method will be discussed. Some convergence anal-
ysis of our method will be discussed in section 4.2. In section 5, we present numerical
results to demonstrate the efficiency of our method. Concluding remarks are made in
section 6.

2. Preliminaries. To make this paper self-contained, in this section we give a
brief review of the gPC method and data-driven stochastic method.

2.1. The generalized polynomial chaos method. In many physical and en-
gineering problems, randomness generally comes from various independent sources, so
randomness in the PDE (1) is often given in terms of independent random variables.
We assume the randomness in the differential operator Lε(x, ω) is given in terms of
r independent random variables, i.e., ξ(ω) = (ξ1(ω), ξ2(ω), . . . , ξr(ω)). Without loss
of generality, we can further assume such independent random variables have the
same distribution function ρ(x). We get Lε(x, ω) = Lε(x, ξ1(ω), . . . , ξr(ω)). By the
Doob–Dynkin lemma [28], the solution of (1) can still be represented by these random
variables, i.e., uε(x, ω) = uε(x, ξ1(ω), . . . , ξr(ω)).

Let {Hi(ξ)}∞i=1 denote the one-dimensional, ρ(ξ)-orthogonal polynomials, i.e.,∫
Ω

Hi(ξ)Hj(ξ)ρ(ξ)dξ = δij .

For some commonly used distributions, such as the Gaussian distribution and the
uniform distribution, such orthogonal polynomial sets are Hermite polynomials and
Legendre polynomials, respectively [15, 38]. For general distributions, such a polyno-
mial set can be obtained by numerical methods [35]. Furthermore, by a tensor product
representation, we can use the one-dimensional polynomial Hi(ξ) to construct a set
of orthonormal basis Hα(ξ)’s of L2(Ω) as follows:

Hα(ξ) =

r∏
i=1

Hαi(ξi), α ∈ J∞r ,(2)

where α is a multi-index and J∞r is a multi-index set of countable cardinality,

J∞r = {α = (α1, α2, . . . , αr) |αi ≥ 0, αi ∈ N}.

The zero multi-index corresponds to H0(ξ) = 1, which is used to represent the mean
of the solution. Clearly, the cardinality of J∞r is infinite. For the purpose of numer-
ical computations, we prefer a finite set of polynomials. There are many choices of
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truncations. One possible choice is the set of polynomials whose total orders are at
most p, i.e.,

(3) Jpr =

{
α |α = (α1, α2, . . . , αr), αi ≥ 0, αi ∈ N, |α| =

r∑
i=1

αi ≤ p

}
.

The cardinality of Jpr in (3) or the number of polynomial basis functions, denoted

by NgPC = |Jpr |, is equal to (p+r)!
p!r! . Another good choice is the sparse truncation

method proposed in [33, 18]. We may simply write such a truncated set as J when no
ambiguity arises.

By the Cameron–Martin theorem [7], we know the solution of (1) admits a poly-
nomial chaos expansion,

u(x, ω) =
∑

α∈J∞
r

vα(x)Hα(ξ(ω)) ≈
∑
α∈Jpr

vα(x)Hα(ξ(ω)).(4)

The expansion coefficients uα(x) can be obtained by the Galerkin projection with
standard finite element basis functions. To simplify the notation, we write the poly-
nomial chaos basis and its expansion coefficient in a vector form. Substituting the
expansion of u(x, ω) into (1), multiplying both sides by Hβ(ξ(ω)), and taking the
expectations, we obtain a coupled PDEs system for the expansion coefficient uα(x)

−∇ · (TH
αβ(x)∇vα(x)) = f(x, θ)E[Hβ(ξ(ω))], ∀β ∈ Jpr ,(5)

where the tensor TH
αβ(x) = E[aε(x, ξ(ω))Hα(ξ(ω))Hβ(ξ(ω))] and the Einstein sum-

mation is assumed. By solving (5), we can obtain the polynomial chaos solution. This
is the basic idea of the polynomial chaos method that has been successfully applied to
many SPDE problems. However, the number of the basis increases fast, which makes
it inefficient for high-dimensional problems.

2.2. The data-driven stochastic method. We recognized that limitations
of the polynomial chaos method were caused by the predetermined (i.e., problem-
independent) basis functions in the solution expansion (4). The use of predeter-
mined basis functions has the advantage of being easy to implement; however, it has
a limitation in tackling more challenging high-dimensional SPDE and RPDE prob-
lems. We found that many high-dimensional SPDE and RPDE problems have certain
low-dimensional structures, in the sense of Karhunen–Loève expansion (KLE), which
suggest the existence of reduced-order models and better formulations for efficient nu-
merical methods. Motivated by this observation, we have made progress in developing
a data-driven stochastic method (DSM) for solving high-dimensional RPDE problems
[10, 40, 39, 21].

In the DSM, we explore the low-dimensional structures of the high-dimensional
RPDE solutions and construct a set of problem-dependent stochastic basis functions
{Ai(ω)}mi=1, which give a compact representation for a broad range of forcing func-
tions. The DSM consists of offline and online stages. In the offline stage, we use the
KLE of RPDE solutions to construct a set of data-driven stochastic basis functions.
Specifically, we assume that the force function f(x) in (1) can be parameterized by

f(x) ≈
∑K
i=1 cifi(x). With such a parametrization of f(x), we begin our construction

of the stochastic basis {Ai(ω)}m1
i=0 based on the KL expansion of the RPDE solution

of (1) with f1(x) as a forcing function. We propose an error analysis to evaluate
the completeness of the data-driven basis {Ai(ω)}mi=0. Multiple trial functions fi(x),
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830 THOMAS Y. HOU, DINGJIONG MA, AND ZHIWEN ZHANG

i = 2, . . . ,K, are used to enrich the stochastic basis and improve the accuracy of our
method. When this enriching process is done, we obtain the data-driven stochastic
basis functions, denoted by {Ai(ω)}mi=0, where A0(ω) ≡ 1 is used to represent the
mean of the solution. In the online stage, we solve (1) for any given forcing function
by projecting the stochastic solution into the data-driven stochastic basis,

u(x, ω) ≈
m∑
i=0

ui(x)Ai(ω).(6)

Then, we use the Galerkin projection to derive a coupled deterministic system of
PDEs for ui(x) and solve this system by any standard numerical method. Compared
with the gPC method, the ratio of the computational complexities between DSM
(in the online stage) and gPC is of an order O((m/Np)

2), where m and Np are the
numbers of the basis used in the DSM and gPC, respectively. We expect that m is
much smaller than Np when the effective random dimension of the solution is small.
More details about the construction of the data-driven stochastic basis can be found
in [10].

The DSM is very efficient in solving RPDEs with many different force functions.
However, it does not fully explore the information hidden in the Green’s function of
the RPDEs (1). Since we need to choose a set of trial functions when we construct
the data-driven stochastic basis functions.

3. Derivation of the multiscale data-driven stochastic basis functions.
In this section, we shall provide the detailed derivation of the multiscale data-driven
stochastic basis functions. We first introduce the idea of constructing adaptive basis
functions using an optimization approach for a deterministic elliptic operator. Then,
we discuss the derivation of the multiscale data-driven stochastic basis functions using
the optimization approach, which provides an effective model reduction method for
the stochastic multiscale elliptic PDEs (1).

3.1. Localized basis functions for elliptic operator. Consider the deter-
ministic elliptic equation with the homogeneous Dirichlet boundary conditions

Lu(x) ≡ −∇ · (a(x)∇u(x)) = f(x), x ∈ D,(7)

where the force function f(x) ∈ L2(D). For a self-adjoint, positive definite operator
L, (7) has a unique solution, denoted by L−1u(x). In practice, (7) can be solved
using numerical methods, such as a finite element method or finite difference method.
When the operator L contains multiscale features, i.e., L(·) ≡ −∇ · (aε(x)∇·), where
0 < ε � 1 is the small-scale parameter, one can construct multiscale basis functions
to solve it efficiently [19]. Recently, much effort has been devoted to build localized
basis functions that give an optimal approximation property of the solution operator.
The basis functions are energy minimizing functions on local patches and provide an
optimal convergence rate for elliptic problems in the energy norm (see [4, 24, 20, 30,
11]).

To construct such localized basis functions, we first partition the physical domain
D into a set of regular coarse elements with mesh size H � ε. For example, we divide
D into a set of nonoverlapping triangles TH = {Ke}Me=1 such that no vertex of one
triangle lies in the interior of the edge of another triangle. In each element K, we
define a set of nodal basis {ϕj,K , j = 1, . . . , d} with d being the number of nodes of the
element. We neglect the subscript K for notational simplicity. The functions ϕi(x)
are called measurement functions, which are chosen as the characteristic functions on
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each coarse element in [20, 30] and piecewise linear basis functions in [24]. In [23],
we find that using the nodal basis functions will reduce the error so we use the same
setting in this paper.

Let N denote the set of interior vertices of TH and Nx be the number of interior
vertices. For every vertex xi ∈ N , let ϕi(x) denote the corresponding nodal basis
function, i.e., ϕi(xj) = δij . For now, we assume that all the nodal basis functions
ϕi(x) are continuous across the boundaries of the elements, so that

V H = {ϕi(x) : i = 1, . . . , d} ⊂ H1
0 (D).

In order to obtain localized basis functions, we define local patches of coarse elements.
For r > 0, let Sr be the union of the elements Ke intersecting the ball B(xi, r) which
is centered at xi ∈ N and of radius r. Let ψloci (x) be the minimizer of the following
optimization problem:

ψloci = arg min
ψ∈H1

0 (D)

‖ψ‖2a(8)

s.t.

∫
Sr

ψϕj = δi,j ∀1 ≤ j ≤ Nx,(9)

ψ(x) = 0, x ∈ D\Sr.(10)

In the objective function, ‖ψ‖a is the energy norm associated with the differential
operator L defined by ‖ψ‖2a =

∫
D
∇ψT (x)a(x)∇ψ(x)dx. We neglect the superscript

ε for notational simplicity. In (10), we have used the fact that the basis function
ψ defined on the whole domain has an exponential decay property so that we can
localize the basis function ψ to its associated patches Sr and set ψ(x) = 0, x ∈
D\Sr. On a uniform mesh of size H, if we choose the diameter r of each patch to
be H log(1/H), we will obtain a convergence rate of order O(H) in the energy norm.
We have incorporated the boundary condition of the elliptic problem into the above
optimization problem through the definition of the solution space H1

0 (D) and the
energy norm ‖ · ‖a. After we obtain the localized basis functions, we use the Galerkin
method to solve (7).

Recall that the number of localized basis functions is equal to the number of
interior vertices. We can obtain the localized basis functions ψloci , i = 1, . . . , Nx,
by solving the optimization problem (8)–(10). In general, we cannot solve this opti-
mization problem analytically as it is an optimization problem in infinite-dimensional
space. Thus, we have to resort to numerical methods. In the finite element frame-
work, we partition the physical domain Sr into a set of nonoverlapping fine triangles
with size h� ε. Then, we use a standard finite element method to discretize ψi, ϕj ,
1 ≤ i, j ≤ Nx. In the discrete level, the optimization problem (8)–(10) is reduced to
a constrained quadratic optimization problem, which can be efficiently solved using
Lagrange multiplier methods.

Remark 3.1. The localized basis functions ψloci are defined on a coarse mesh.
However, they are represented on a fine mesh, which already contains the small-scale
information of the multiscale solution. Therefore, the localized basis functions allow
us to solve the multiscale problems on a coarse mesh.

Remark 3.2. For a self-adjoint, elliptic different operator L and its correspond-
ing energy norm, the constrained quadratic optimization problem obtained from the
numerical discretization of (8)–(10) is a convex optimization problem. The convexity
property makes the problem easy to solve since a local minimum must be the global
minimum.
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3.2. Compression of the random space. We shall derive localized multiscale
data-driven stochastic basis functions that can efficiently compress the solution space
of multiscale elliptic PDEs with random coefficients. We consider the following prob-
lem posed on a bounded domain D and subject to a Dirichlet boundary condition:

−∇ · (aε(x, ω)∇uε(x, ω)) = f(x), x ∈ D,ω ∈ Ω,(11)

uε(x, ω) = 0, x ∈ ∂D,(12)

where the physical domain D is assumed to be a convex polygon domain in Rd,
d = 2, 3, and Ω is a sample space. The forcing function f(x) is assumed to be
in L2(D) (not just H−1(D)) because this is necessary for the compactness of the
solution space. We also assume that the problem is uniformly elliptic almost surely,
namely, there exist amin, amax > 0, such that

P (ω ∈ Ω : a(x, ω) ∈ [amin, amax] ∀x ∈ D) = 1.(13)

Note that we do not make any assumption on the regularity of the coefficient a(x) ∈
L∞(D), which can be arbitrarily rough for each realization a(x, ω). Furthermore,
we assume a(x, ω) is parameterized in terms of r independent random variables,
i.e., a(x, ω) = a(x, ξ1(ω), . . . , ξr(ω)), and then according to the Doob–Dynkin
lemma the solution can be represented by these random variables, i.e., u(x, ω) =
u(x, ξ1(ω), . . . , ξr(ω)).

Proceeding with the construction of the multiscale data-driven stochastic basis,
we introduce the concept of compression of the random space. To demonstrate the
main idea, let us first consider the localized basis functions and the compression of
the physical space. The localized basis functions ψloci (x), i = 1, . . . , N are associated
with the interior vertices of coarse elements with mesh size H. However, when we
solve the problem (8)–(10) numerically, each basis function ψloci (x) is represented by

a set of finite element basis functions defined on Sr, i.e., ψloci (x) =
∑Ns
s=1 b

i
sλs(x),

where λs(x) are defined on fine elements with mesh size h and Ns is the number of
fine-scale finite element basis functions. The small-scale information has already been
captured by the basis functions ψloci (x).

In the random space, we also have a similar structure. Consider a probabil-
ity space {Ω,F, P} and ξ(ω) = (ξ1(ω), ξ2(ω), . . . , ξr(ω)) is a set of independent and
identically distributed (i.i.d.) random variables on Ω. From this parametrization,
we define a set of polynomial basis functions, Hα(ξ(ω)), α ∈ J∞r . By the Cameron–
Martin theorem [7], any random variable X(ω) with finite variance can be represented
as X(ω) =

∑
α∈J∞

r
cαHα(ξ(ω)) ≈

∑
α∈Jpr cαHα(ξ(ω)). In general, the polynomial

basis functions can be applied to most random systems. However, the number of the
basis functions grows exponentially fast with respect to r and p.

Our recent studies on the elliptic PDEs with random coefficients show that when
the random coefficients have some regularity in the stochastic space and the force func-
tion f(x) is in L2(D), the solutions have some sparse or low-dimensional representa-
tion. Therefore, we can compress the dimension of the solution space by constructing
data-driven stochastic basis functions [10, 40, 39, 21]. Compared to the polynomial
basis functions, the data-driven stochastic basis functions are more efficient in solving
elliptic PDEs with random coefficients.

3.3. Construct multiscale data-driven stochastic basis functions. In this
section, we shall propose a new approach to compress the physical and random space
simultaneously. In the physical space, we use the same notation defined in section
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3.1. The key is to construct a set of multiscale data-driven stochastic basis functions.
In (10), the nodal basis functions ϕj(x) are defined on coarse elements. The number
of coarse elements controls the degree of freedom that we want to compress in the
physical space.

In the random space, we choose a set of low-order polynomials, e.g., {Hα(ξ(ω)), |α|
=
∑r
i=1 αi ≤ p}, p is small, and the total number is Nξ. For notational simplicity, we

reorder this set of low-order polynomials as {Hl(ξ(ω)), 1 ≤ l ≤ Nξ}. Let ψi,k(x, ξ(ω))
be the minimizer of the following optimization problem, where indices i and k are
associated with physical and random dimensions

ψi,k(x, ξ(ω)) = arg min
ψ∈H1

0 (D)⊗L2(Ω)

‖ψ(x, ξ(ω))‖2a(14)

s.t. E
[∫

D

ψ(x, ξ(ω))ϕj(x)Hl(ξ(ω))dx

]
= δi,jδk,l ∀1 ≤ j ≤ Nx, 1 ≤ l ≤ Nξ,(15)

where the number of the basis functions is NxNξ. In the objective function (14),
‖ψ‖a is the energy norm associated with the differential operator L defined by ‖ψ‖2a =
E
[ ∫
D
∇ψT (x, ω)a(x, ω)∇ψ(x, ω)dx

]
. In the constraint (15), the condition δk,l ensures

that different ψi,k with different k are uncorrelated, which is important in the opti-
mality approximation property stated in Lemma 3.2 and Theorem 3.3. We neglect
the superscript ε for notational simplicity. The boundary condition of the elliptic
problem has already been incorporated in the above optimization problem through
the definition of the solution space H1

0 (D) ⊗ L2(Ω) and the corresponding energy
norm ‖ · ‖a. Under the uniformly elliptic assumption, our multiscale stochastic basis
functions ψi,k(x, ξ(ω)) still maintain the energy minimizing and exponential decay
property in physical space. The proof will be provided later.

We solve the optimization problem (14)–(15) using numerical methods. Specifi-
cally, we apply the stochastic finite element method (SFEM) [15] to discretize
ψi,k(x, ξ(ω)) and represent

ψi,k(x, ξ(ω)) =

Nh∑
s=1

∑
α∈Jpr

bi,ks,αλs(x)Hα(ξ(ω)),(16)

where λs(x) are FEM nodal basis functions defined on fine elements with mesh size h,
Nh is the number of FEM nodal basis, and Hα(ξ(ω)) are the high-order polynomials
basis with cardinality |Jpr | for a large p. In the discrete level, the optimization problem
(14)–(15) is reduced to a constrained quadratic optimization problem, which can be
efficiently solved using the Lagrange multiplier method. After we obtain the basis
functions {ψi,k(x, ξ(ω))}, we can use the Galerkin method to solve (11) for many
different force functions.

Remark 3.3. In the optimization problem (14)–(15), we choose a set of low-order
polynomials Hl(ξ(ω)), 1 ≤ l ≤ Nξ as measurement functions in the random space.
However, the random part of the multiscale data-driven stochastic basis functions
ψi,k(x, ξ(ω)) are represented by a set of polynomials with a high cardinality; see (16).

The SFEM is an efficient method to solve elliptic PDEs with random coefficients.
However, the size of the coupled linear system grows dramatically when we increase
the degree of freedom in the random space and/or the physical space, which limits
its scope in tackling more challenging high-dimensional SPDE and RPDE problems.
With our multiscale data-driven stochastic basis, we compress both the random space
and physical space so that we can efficiently solve (11).
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3.4. Exponential decay of the basis functions in physical space. In this
section we shall show that the basis functions ψi,k(x, ξ(ω)) obtained by the opti-
mization problem (14)–(15) have an exponential decay property with respect to node
xi in the physical space. Recall that any feasible solution has a gPC expansion
ψ(x, ξ(ω)) =

∑
α∈Jpr gα(x)Hα(ξ(ω)) with |Jpr | � Nξ. We first fix k and substi-

tute ψ(x, ξ(ω)) into the constraint (15) and compute the expectation with respect to
Hl(ξ(ω)), 1 ≤ l ≤ Nξ. We know the basis functions ψ·,k(x, ξ(ω)) satisfy

ψ·,k(x, ξ(ω)) = g·,k(x)Hk(ξ(ω)) + g·,Nξ+1
(x)HNξ+1(ξ(ω)) + · · ·+ g·,|Jpr |(x)H|Jpr |(ξ(ω))

= g·,k(x)Hk(ξ(ω)) +R·,k(x, ξ(ω)),(17)

where R·,k(x, ξ(ω)) denotes the remaining terms in ψ·,k(x, ξ(ω)) except for
g·,k(x)Hk(ξ(ω)). Equation (17) reveals the structures of the basis ψ·,k(x, ξ(ω)) in
the random space, which consists of Hk(ξ(ω)) and a linear combination of high-order
gPC basis.

To study the property of the basis ψi,k(x, ξ(ω)) in the physical space, we consider
the optimization problem realization by realization. Let ξ(ω∗) be a random sample,
and then constraint (15) is reduced to the following form:∫

D

(
gi,k(x)Hk(ξ(ω∗)) +Ri,k(x, ξ(ω∗))

)
ϕj(x)dx = δi,j ∀1 ≤ j ≤ Nx.(18)

We consider the physical component first since the form (18) almost surely satisfies the
constraint in the random space. For a deterministic elliptic PDE, it has been proved
that ψ·,k(x, ξ(ω∗)) = gi,k(x)Hk(ξ(ω∗)) + Ri,k(x, ξ(ω∗)) will decay exponentially fast
away from physical node xi [24, 30, 20]. Therefore, we know that ψ·,k(x, ξ(ω)) has
the exponential decay property in the physical space almost surely. Furthermore, we
get that each gPC expansion coefficient (e.g., gi,k(x) or gi,Nξ+n(x), n ≥ 1) will decay
exponentially fast away from physical node xi. Finally, we reach to the following
proposition.

Proposition 3.1. Consider the construction of the multiscale data-driven stochas-
tic basis functions in (14)–(15), and let H be the mesh size of the coarse elements and
Sr be the union of the elements Ke intersecting the ball B(xi, r) which is centered at
xi ∈ N and of radius r > 0. The basis function ψi,k(·, ξ(ω)) satisfies the following
property:

(19)

∫
D∩(B(xi,r))c

E
[
∇ψTi,k(·, ξ(ω))a(·, ω)∇ψi,k(·, ξ(ω))

]
dx

≤ e1− r
lH

∫
D

E
[
∇ψTi,k(·, ξ(ω))a(·, ω)∇ψi,k(·, ξ(ω))

]
dx

with l = 1 + e
π

√
amax

amin
(1 + 23/2(2/δ)1+d/2) and 0 < δ < 1 a parameter such that the

coarse element contains a ball with radius δH.

The proof for the deterministic case is given in [30], which is based on an iterative
Caccioppoli-type argument. The exponential decay rate is almost surely uniform for
each realization under the assumption (13). This proposition enables us to localize
the basis functions so the corresponding stiffness matrix is sparse. Specifically, we
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Fig. 1. Profiles of the multiscale data-driven stochastic basis functions. Upper left: ψnearL (x, y).

Lower left: ψnearH (x, y). Upper right: ψfarL (x, y). Lower right: ψfarH (x, y). Here, “near” (“far”)
means the basis is associated with the node xnear (xfar), and “L” (“H”) means the projection of
the basis function on a low- (high-) order polynomial basis.

solve the following optimization problems:

ψloci,k (x, ξ(ω)) = arg min
ψ∈H1

0 (D)⊗L2(Ω)

‖ψ(x, ξ(ω))‖2a(20)

s.t. E
[∫

Sr

ψ(x, ξ(ω))ϕj(x)Hl(ξ(ω))dx

]
= δi,jδk,l, ∀1 ≤ j ≤ Nx, 1 ≤ l ≤ Nξ,(21)

ψ(x, ξ(ω)) = 0, x ∈ D\Sr,(22)

where Sr is the union of the elements Ke intersecting the ball B(xi, r) which is cen-
tered at xi ∈ N and of a radius r. The construction (20)–(22) enables us to obtain
basis functions that capture the localized random structure in the solution space. To
illustrate, we consider the problem (11)–(12) on D = [0, 1] × [0, 1] with a coefficient
that has a localized random structure, i.e.,

aε(x, y, ω) = 0.1 +
2 + p sin 2πx/ε

2− p cos 2πy/ε
ξ(ω)1D1

(x, y),(23)

where p = 1.5, ε = 1/31, ξ(ω) ∈ U [0, 1], 1D1
(x, y) is an indicator function, and

D1 = [1/8, 3/8]× [1/8, 3/8]. Obviously the random structure in aε(x, y, ω) is localized
in a subdomain.

In Figure 1, we show the profiles of multiscale data-driven stochastic basis func-
tions associated with two different coarse vertices xnear = ( 1

8 ,
1
8 ) and xfar = ( 3

8 ,
7
8 ).

For simplicity, we introduce the following notation, ψnearL (x, y), ψnearH (x, y), ψfarL (x, y),

and ψfarH (x, y). Here, “near” (“far”) means the basis is associated with the node xnear
(xfar), which is near (far from) the random region D1. “L” means the projection of
the basis function on a polynomial of order 0, while the “H” means the projection
of the basis function on a polynomial of order 5. In our experiment, we find that
ψnearH (x, y) still has large magnitude as it is close to D1, but ψfarH (x, y) has a neg-
ligible magnitude as it is far away. Therefore, our method automatically captures
localized stochastic structures in the solution space, which allows us to further reduce
the computational cost.
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3.5. Optimal approximation property of the basis functions. We shall
show that the basis functions ψi,k(x, ξ(ω)) have some remarkable optimal approxima-
tion properties that can be used for practical computation. First, we define the tensor
basis φj,l(x, ξ(ω)) = ϕj(x)Hl(ξ(ω)), where ϕj(x) and Hl(ξ(ω)), 1 ≤ j ≤ Nx, 1 ≤ l ≤
Nξ are defined in (15). Then, we define the inner products in the tensor space as

(u, v) = E
[∫

D

u(x, ω)v(x, ω)dx

]
,(24)

(u, v)a = E
[∫

D

∇uT (x, ω)a(x, ω)∇v(x, ω)dx

]
.(25)

Equipped with the above definitions, we know that (15) implies (φj,l, ψi,k) = δi,jδk,l.
We define the solution space for (11) as V = H1

0 (D)⊗L2(Ω) and the space spanned by
the multiscale data-driven stochastic basis functions as VDSM = span{ψi,k(x, ξ(ω))}.
We also define the space

V0 := {v ∈ V : (v, φj,l) = 0, 1 ≤ j ≤ Nx, 1 ≤ l ≤ Nξ}.(26)

Note that V0 is the subspace of V . Throughout the paper we also assume that the
force functions belong to the space spanned by the basis ϕi, i.e., f(x) ∈ span{ϕi}Nxi=1.

Namely, f(x) can be approximated by span{ϕi}Nxi=1 up to an O(H) error. Using the
integration by parts and the definition of (25), (26), we easily find that for every v ∈ V0

(ψi,k, v)a = 0 ∀1 ≤ i ≤ Nx, 1 ≤ k ≤ Nξ.(27)

Based on the above definition, we prove the following lemma.

Lemma 3.2. Let u(x, ω) ∈ V and u∗(x, ω) =
∑Nx,Nξ
i=1,k=1 ui,kψi,k(x, ξ(ω)) with

ψi,k(x, ξ(ω)) defined by (14) and ui,k = (u(x, ω), φi,k(x, ξ(ω))). Then, we have

(
u(x, ω), u(x, ω)

)
a

=
(
u∗(x, ω), u∗(x, ω)

)
a

+
(

(u− u∗)(x, ω), (u− u∗)(x, ω)
)
a
.

(28)

Proof. According to the definition, it is obvious that (u − u∗) ∈ V0. Then use
the orthogonal condition (27), we know that (u∗, u − u∗)a = 0. Thus, (u, u)a =
((u− u∗) + u∗, (u− u∗) + u∗)a = (u∗, u∗)a + ((u− u∗), (u− u∗))a.

Using the above lemma, we obtain the optimal approximation property of our
multiscale data-driven stochastic basis functions.

Theorem 3.3. Let u(x, ω) be the exact solution to (11) and u∗(x, ω) be the nu-

merical solution obtained using our method, i.e., u∗(x, ω) =
∑Nx,Nξ
i=1,k=1(u(x, ω),

φi,k(x, ξ(ω)))ψi,k(x, ξ(ω)). Then, we get the optimal approximation property(
(u− u∗), (u− u∗)

)
a

= inf
v∈VDSM

(
u− v, u− v

)
.(29)

Proof. The proof of (29) is simply based on the result obtained in the Lemma 3.2
and the fact that u − u∗ is orthogonal to the space VDSM with respect to the inner
product (·, ·)a.

4. Error analysis. We shall analyze the error between the numerical solution
obtained from our method, denoted by uDSM (x, ω) and the exact solution u(x, ω).
For notational simplicity, we omit the superscript ε. We choose the mesh size h of
the fine grids small enough so that the error between u(x, ω) and the FEM solution
uh(x, ω) is negligible. Thus, we simply choose uh(x, ω) as a reference solution. Before
proceeding to the main analysis, let us first introduce some notation and assumptions.
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4.1. Some notation and assumptions. Throughout the section, we shall use
D to denote the spatial domain and Ω to denote the random event space. Then in
the tensor space H1

0 (D)⊗ L2(Ω), we define the norm by

‖u‖H1
0 (D)⊗L2(Ω) =

(∫
Ω

(∫
D

|∇xu(x, ξ(ω))|2dx
)
dP (ω)

) 1
2

,(30)

where P (ω) is the probability distribution function of random variables. Moreover,
the corresponding energy norm associated with coefficient a(x, ξ(ω)) can be defined
by

‖u‖(a,H1
0 (D)⊗L2(Ω)) =

(∫
Ω

(∫
D

a(x, ξ(ω))|∇xu(x, ξ(ω))|2dx
)
dP (ω)

) 1
2

,(31)

where we use a subscript “a” in the norm notation to indicate that the norm is
associated with a(x, ξ(ω)). In addition, we need higher regularity in the random
space when we estimate the convergence rate of our method in the random space. Let
Dν
ξu(x, ·) denote the νth-order mixed derivatives of u(x, ·) with respect to the variable

ξ = (ξ1, . . . , ξr) in the random space, where ν = (ν1, . . . , νr) and νi are nonnegative
integers. Then, we define the norm and the seminorm in the random space as follows:

(32)

‖u(x, ·)‖2Hp(Ω) =

∫
Ω

∑
|ν|≤p

|Dν
ξu(x, ·)|2dP (ω),

|u(x, ·)|2Hp(Ω) =

∫
Ω

∑
|ν|=p

|Dν
ξu(x, ·)|2dP (ω).

Finally, we assume the stability of the solution with respect to the random dimension
[9, 16].

Assumption 4.1. If u(x, ω) is the solution to (11) with boundary condition (12),
and u(x, ·) ∈ Hp(Ω),∀x ∈ D, then, there exists two positive constants C1, C2 that
depend on the values of λmin and λmax and the bound of the derivative of a(x, ξ(ω))
with respect to ξ(ω) so that the following inequalities hold:

‖u(x, ·)‖Hp(Ω) ≤ C1‖f(x)‖L2(D) ∀x ∈ D,(33)

‖∇xu(x, ·)‖Hp(Ω) ≤ C2‖f(x)‖L2(D) ∀x ∈ D,(34)

where f(x) is the source term and p is the regularity of u(x, ·) with respect to the
random variables and is problem-dependent.

The above assumption is satisfied if a(x, ξ(ω)) satisfies certain regularity condi-
tions. We refer the interested reader to [13] for more details.

4.2. Error analysis. After introducing the necessary notation and assumption,
we are in the position to proceed to the error analysis. We shall consider errors
from the spatial space and the random space approximation. Applying the triangle
inequality, we divide the error into three parts,

‖uh − uDSM‖ ≤ ‖uh − ugPCh ‖+ ‖ugPCh − ugPCH ‖+ ‖ugPCH − uDSM‖,(35)

where uh refers to the reference solution obtained using the finite element method
(FEM) on fine mesh with size h, ugPCh is the gPC solution obtained using the same fine
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mesh as uh, ugPCH is gPC solution obtained using the new multiscale basis functions in
the physical space (see (14)–(15)), and uDSM is the solution obtained using the same

multiscale basis as ugPCH but the dimension of the random basis is further reduced. We
have assumed that the error between uh and the exact solution u to (11) is negligible.

We first analyze the error between uh(x, ω) and the solution ugPCh (x, ω). To
illustrate the main idea, we assume the coefficient in (11) is parameterized by one-
dimensional random variable ξ(ω) = ξ1(ω) that follows uniform distribution U [−1, 1]
and the basis functions in the gPC method are Legendre polynomials. But we empha-
size that the convergence estimate (36) holds for general gPC methods if we tensorize
the orthogonal polynomials and use the multi-index.

Lemma 4.2. Let uh(x, ω) be the reference solution and ugPCh (x, ω) be the gPC
solution using the same mesh. Then we get the convergence estimate as follows:

‖uh − ugPCh ‖(a,H1
0 (D)⊗L2(Ω)) ≤ CpN−p‖f(x)‖L2(D),(36)

where N is the highest order of polynomial basis in the gPC method, p is an integer
that quantifies the regularity of uh(x, ω) in the random space, and Cp is a constant
that is independent of N but depends on amin and amax.

Proof. Let Lk(ξ(ω)) be the Legendre polynomial of order k and SN be the space
spanned by Legendre polynomials of degrees at mostN , i.e., SN = span{Lk(ξ(ω))}Nk=0.
Let PN denote the projection operator on SN . Specifically, we have the projec-
tion of uh(ω) onto SN defined as PNuh(ω) =

∑N
k=0 ukLk(ξ(ω)), where the coeffi-

cients uk = (uh,Lk)
(Lk,Lk) and the inner product of two functions are defined as (v, w) ≡∫

Ω
v(ω)w(ω)dP (ω). To estimate the decay rate in the projection coefficients, we use

the property that Legendre polynomials satisfy the Sturm–Liouville eigenvalue prob-
lem as follows:

LLk(ξ(ω)) =
d

dξ

(
(1− (ξ(ω))2)

d

dξ

)
Lk(ξ(ω)) = −k(k + 1)Lk(ξ(ω)).(37)

Some simple calculations imply that

(uh, Lk) = − 1

2k(k + 1)

∫ 1

−1

uhLLkdP (ω) = − 1

k(k + 1)
(L uh, Lk).(38)

Then, we repeat the above derivation and get (uh, Lk) = (− 1
k(k+1) )l(L luh, Lk), where

l ≥ 1 is an integer. Finally, we obtain the error estimate of the projection approxi-
mation as

(39)

‖uh(ω)− PNuh(ω)‖2L2(Ω) =

∞∑
k=N+1

(uh, Lk)2
L2(Ω)

(Lk, Lk)L2(Ω)

=

∞∑
k=N+1

1

(k(k + 1))2l‖Lk‖2L2(Ω)

(L luh, Lk)2
L2(Ω)

≤ N−4l‖L luh‖2L2(Ω) ≤ CpN
−4l‖uh‖2H2l(Ω),

where the Parseval’s identity is used in the first equation. Using the gPC method to
solve (11), we know that ugPCh (x, ω) = PNuh(x, ω). If we take the regularity index
p = 2l and use the stability assumptions (33), (34) and integrate over the physical
space D, we prove the lemma.
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When the coefficient in (11) is parameterized by r i.i.d. random variables ξ =
(ξ1, . . . , ξr), we use the multi-index α = (α1, . . . , αr), 0 ≤ αi ≤ Ni, αi ∈ N to label the
gPC basis and the multi-index ν = (ν1, . . . , νr), νi ≥ 0, νi ∈ N to label the order of
the mixed derivatives. We define the tensorized Legendre polynomials by Lα(ξ(ω)) =∏r
i=1 Lαi(ξi(ω)) and SN = span{Lα(ξ(ω))}. Let PN denote the projection operator

on SN , i.e., PNuh(ω) = uαLα(ξ(ω)), where the Einstein summation convention is
used and N =

∏r
i=1Ni.

Corollary 4.3. Let uh(x, ω) be the reference solution and ugPCh (x, ω) =
PNuh(x, ω) be the gPC solution using the same mesh. Then we get the convergence
estimate as follows:

‖uh(x, ω)− PNuh(x, ω)‖2L2(Ω) ≤ (N−4ν1
1 N−4ν2

2 . . . N−4νr
r )‖L νuh‖2L2(Ω).(40)

If the highest order of the polynomials are the same in each random variable and
|ν| =

∑r
i=1 νi, we get

‖uh(x, ω)− PNuh(x, ω)‖2L2(Ω) ≤ N
−4|ν|
1 ‖L νu‖2L2(Ω) ≤ CpN

−4|ν|
1 ‖u‖2H2|ν|(Ω).(41)

Remark 4.1. One may choose the best N -term Galerkin approximations in the
gPC method, which reduces the total number of basis functions and maintains an
optimal convergence rate [13]. In this paper, we do not want to complicate the
presentation by pursuing this direction.

Remark 4.2. The classical orthogonal polynomials arise from a differential equa-
tion of the form

Q(x)u′′(x) + L(x)u′(x) = λu,(42)

where Q(x) and L(x) are polynomials and the function u(x) and the constant λ are
obtained by solving this Sturm–Liouville type eigenvalue problem. The solutions of
(42) have singularities unless λ takes on specific values. Let {λk, uk(x)}, k = 0, 1, . . .
denote the corresponding eigenvalues and eigenfunctions. Then, {uk(x)} form a set of

orthogonal polynomials and the eigenvalues satisfy λk = k(k−1)
2 Q′′(x) + kL′(x) [2, 8].

Therefore, the error estimates proved in Lemma 4.2 and the Corollary 4.3 hold for
other types of orthogonal polynomials.

We then analyze the error of the gPC solutions obtained on the fine mesh and
the coarse mesh.

Lemma 4.4. Let ugPCh (x, ω) and ugPCH (x, ω) denote the gPC solutions obtained
on the fine mesh with FEM basis functions and the coarse mesh with our multiscale
basis functions, respectively. We get the following error estimate:

‖ugPCh − ugPCH ‖(a,H1
0 (D)⊗L2(Ω)) ≤ C2H‖f(x)‖L2(D),(43)

where C2 depends on amin and amax and H is the mesh size of coarse elements.

Proof. We only need to analyze the error in the physical space as the random
space is discretized using the same method. Let Vh denote the space spanned by the
FE nodal basis functions on the fine mesh. For each realization ω, we know that
ugPCh (x, ω) ∈ Vh ∩H1

0 (D) and ugPCH (x, ω) ∈ Vh ∩H1
0 (D). Let e(x, ω) = ugPCh (x, ω)−

ugPCH (x, ω) denote the error. We have e(x, ω) ∈ Vh ∩H1
0 (D). Using the e(x, ω) as the

test function to derive the weak formulation of (11), we get

a
(
ugPCh (x, ω), e(x, ω)

)
=
(
f(x), e(x, ω)

)
.(44)
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Using the Galerkin orthogonality property a(ugPCH (x, ω), e(x, ω)) = 0, we get

a
(
e(x, ω), e(x, ω)

)
=
(
f(x), e(x, ω)

)
.(45)

We introduce a coarse mesh interpolation operator JH , which is a weighted Clément’s
interpolation defined in [12]. Given v ∈ Vh∩H1

0 (D), JHv =
∑
xj∈N (JHv)(xj)ϕj(x),

where (JHv)(xj) =
∫
D
vϕj(x)dx/

∫
D
ϕj(x)dx. Then we have JHe(x, ω) = 0. From

(45), we get the estimate as follows:

‖e(x, ω)‖2a ≤ ‖f(x)‖L2(D)‖e(x, ω))‖L2(D) = ‖f(x)‖L2(D)‖e(x, ω))−JHe(x, ω)‖L2(D)

. H‖f(x)‖L2(D)‖e(x, ω)‖H1(D),(46)

where we have used the holder inequality, the interpolation inequality, and the def-
inition of the energy norm ‖ · ‖a. Note that the relationship between ‖ · ‖a and H1

norm implies that

‖e(x, ω)‖a . C2H‖f(x)‖L2(D),(47)

where C2 depends on amin and amax. Since the estimate (47) holds for each realization
ω, we integrate over the stochastic space and prove the lemma.

Finally, we analyze the error between the solution ugPCH and the solution uDSMH

obtained using our method. Note that both ugPCH and uDSMH are represented in the

same physical space. The ugPCH is obtained using the gPC method with NgPC basis
functions (see, e.g., (3)), while the number of the stochastic basis functions for uDSMH

is Nξ, which is further reduced.

Lemma 4.5. Let ugPCH (x, ω) and uDSM (x, ω) denote the solutions that have been
defined above. Then we get the following error estimate:

‖ugPCH (x, ω)− uDSM (x, ω)‖(a,H1
0 (D)⊗L2(Ω)) ≤ C3

NgPC∑
i=Nξ+1

µi,(48)

where C3 is a constant depending on the diameter of domain D, amin and amax, and
µi are eigenvalues of the covariance matrix of the solution ugPCH (x, ω).

Proof. Let VDSM = span{ψi,k(x, ξ(ω))}, i = 1, . . . , Nx, and k = 1, . . . , Nξ. We
know that uDSM ∈ VDSM ⊆ H1

0 (D)⊗ L2(Ω). Recall that the bilinear form a(u, v) is
defined as

a(u, v) =

∫
Ω

(∫
D

∇xu(x, ω) · a(x, ω)∇xv(x, ω)dx

)
dP (ω)(49)

and the right-hand-side term is defined as

(f, v) =

∫
Ω

∫
D

f(x)v(x, ω)dxdP (ω).(50)

Note that ugPCH (x, ω) and uDSM (x, ω) are represented using the same physical basis
functions and the gradient in the bilinear form of a(u, v) is only in respect to the
physical space. We have

a(ugPCH (x, ω), v(x, ω)) = (f(x), v(x, ω)) ∀v(x, ω) ∈ VDSM ,(51)

a(uDSM (x, ω), v(x, ω) = (f(x), v(x, ω)) ∀v(x, ω) ∈ VDSM .(52)
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Then, we get the following orthogonality condition:

a(ugPCH (x, ω)− uDSM (x, ω), v(x, ω)) = 0 ∀v(x, ω) ∈ VDSM .(53)

Similar to the derivation of the Céa’s lemma, combining with (53) and using the fact
uDSM (x, ω) ∈ VDSM , we obtain

a(ugPCH − uDSM , ugPCH − uDSM ) = a(ugPCH − uDSM , ugPCH − v) ∀v ∈ VDSM .

Then we get the following error estimate:

‖ugPCH − uDSM‖(a,H1
0 (D)⊗L2(Ω)) ≤ inf

∀v∈VDSM
‖ugPCH − v‖(a,H1

0 (D)⊗L2(Ω)),

≤ C3 inf
∀v∈VDSM

‖ugPCH − v‖H1
0 (D)⊗L2(Ω),(54)

where C3 depends on amin and amax. Since ugPCH (x, ω) and uDSM (x, ω) are repre-
sented using the same physical basis functions, we only analyze the error generated
from the random space. For each node xi on the coarse mesh, we have

ugPCH (xi, ω) =

NgPC∑
l=1

ugPCH,l (xi)Hl(ξ(ω)), and uDSM (xi, ω) =

Nξ∑
k=1

uDSMk (xi)Ak(ξ(ω)),

(55)

where each Ak(ξ(ω)) is a linear combination of gPC basis Hl(ξ(ω)), i.e., Ak(ξ(ω)) =∑NgPC
l=1 AklHl(ξ(ω)). Applying the Gram–Schmidt algorithm to {Ak(ξ(ω))}Nξk=1, we

can construct a set of orthogonal basis functions, still denoted by {Ak(ξ(ω))}Nξk=1. Let

VA = span{Ak(ξ(ω))}Nξk=1. We have

inf
∀v∈VA

‖ugPCH (xi, ω)− v(xi, ω)‖L2(Ω) = ‖ugPCH (xi, ω)−ΠVA(ugPCH (xi, ω))‖L2(Ω),(56)

where ΠVA is the projection operator onto the subspace VA. Since the number of
coarse nodes is Nx, we collect all the gPC coefficients together and define

(57) Y =


ugPCH,1 (x1) · · · ugPCH,1 (xNx)

...
. . .

...

ugPCH,NgPC
(x1) · · · ugPCH,NgPC

(xNx)

 .

Then, we analyze the error between ugPCH (x, ω) and uDSM (x, ω) through the sin-
gular value decomposition (SVD) of Y . Specifically, we compute the eigenvalues
and eigenvectors of Y Y T vi = µivi, i = 1, . . . , NgPC , where vi are eigenvectors and
µ1 ≥ · · ·µNgPC ≥ 0 are corresponding eigenvalues. If we choose the first Nξ eigenvec-

tors and take VNξ = span{vi}
Nξ
i=1, we have

min
VNξ

‖Y −ΠVNξ
(Y )‖ ≤

NgPC∑
i=Nξ+1

µi,(58)

where ΠVNξ
is the projection operator onto the subspace VNξ . Recall that the optimal

approximation property of our basis functions that is proved in section 3.5 and both
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VA and VNξ are Nξ-dimensional space. We know that for each coarse grid node xi,
i = 1, . . . , Nx, we have

min
VA
‖ugPCH (xi, ω)−ΠVA(ugPCH (xi, ω))‖L2(Ω) ≤ min

VNξ

‖Y −ΠVNξ
(Y )‖ ≤

NgPC∑
i=Nξ+1

µi.

(59)

Therefore by the definition of the norm ‖ · ‖(a,H1
0 (D)⊗L2(Ω)) and the fact that the error

is independent of the physical space approximation, we complete our proof by using
(56), (58), and (59)

‖ugPCH − uDSM‖(a,H1
0 (D)⊗L2(Ω)) ≤ C3 inf

∀v∈VDSM
‖ugPCH − v‖H1

0 (D)⊗L2(Ω) ≤ C3

NgPC∑
i=Nξ+1

µi,

(60)

where C3 depends on amin, amax, and the domain size.

Remark 4.3. How to determine the random dimension of the solution (i.e., Nξ) a
priori is very challenging since it depends on the regularity of the coefficient aε(x, ω)
and the force f(x). We propose an a posteriori approach to estimate Nξ in this work.
See Appendix A for more details. The same issue was also discussed in [17].

Theorem 4.6. If uh(x, ω) is the reference solution to (11) and (12) and uDSM (x, ω)
is the solution obtained by our method, we have the error estimate as follows:
(61)

‖uh − uDSM‖(a,H1
0 (D)⊗L2(Ω)) ≤

r∏
i=1

N−2νi
i ‖L νuh‖L2(Ω) + C2H‖f(x)‖L2(D)⊗L2(Ω)

+ C3

NgPC∑
i=Nξ+1

µi

with C2 and C3 depending on amin and amax and µi being eigenvalues of the covariance
kernel of the solution uh(x, ω).

Proof. For simplicity, we use ‖ ·‖ to denote the norm ‖ ·‖a,H1
0 (D)⊗L2(Ω)), and then

by the triangle inequality we can get

‖uh − uDSM‖ ≤ ‖uh − ugPCh ‖+ ‖ugPCh − ugPCH ‖+ ‖ugPCH − uDSM‖.(62)

By the three lemmas that have been proved before in section 4.2, we can get the error
estimate directly.

5. Numerical examples. In this section, we shall perform numerical experi-
ments to test the performance and accuracy of the proposed method. We also verify
our error analysis through numerical experiments.

5.1. An example with an oscillatory coefficient. We consider the following
multiscale elliptic PDE with random coefficient on D = [0, 1]× [0, 1]:

−∇ · (aε(x, y, ω)∇uε(x, y, ω)) = f(x, y), (x, y) ∈ D,ω ∈ Ω,(63)

uε(x, y, ω) = 0, (x, y) ∈ ∂D.(64)
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Fig. 2. The mean error of our method in the L2 norm and the H1 norm.

The multiscale and random information is described by the coefficient

(65)

aε(x, y, ω) = 0.1 +
2 + p1 sin( 2π(x−y)

ε1
)

2− p1 cos( 2π(x−y)
ε1

)
ξ1(ω) +

2 + p2 cos( 2πy
ε2

)

2− p2 sin( 2πx
ε2

)
ξ2(ω)

+
2 + p3 sin( 2π(x−0.5)

ε3
)

2− p3 cos( 2π(y−0.5)
ε3

)
ξ3(ω),

where ε1 = 1/11, ε2 = 1/14, ε3 = 1/17, p1 = 1.6, p2 = 1.4, p3 = 1.5, and {ξi(ω)}3i=1

are independent uniform random variables in [0, 1]. We choose the parameters of the
coefficient (65) in such a way that it will generate oscillatory features in the solution.

Multiquery results in the online stage. We shall show that our multiscale data-
driven stochastic basis functions can be used to solve a multiquery problem. In our
computations, we use the standard FEM to discretize the spatial dimension. We
choose a 256 × 256 fine mesh to well resolve the spatial dimension of the stochastic
solution uε(x, y, ω). Since the solution uε(x, y, ω) is smooth in stochastic space, we use
a sparse-grid based stochastic collocation method to discretize the stochastic space.
First, we conduct a convergence study and find that the relative errors of the mean
and the standard deviation (STD) between the solutions obtained by a seven-level
sparse grid in the SFEM and higher-level sparse grids are smaller than 0.1% both in
the L2 and the H1 norms. Therefore, we choose a seven-level sparse grid with 207
points in the SFEM to compute the reference solution.

To implement our method, we take the physical coarse mesh grid to be 8×8
and choose the polynomial chaos basis functions of total order 4 to approximate the
stochastic space. We remark that in our DSM method, the forcing function f(x, y)
should be well-resolved by the coarse mesh; otherwise the numerical error will be
large. We choose F = {sin(kiπx+φi) cos(liπy+ϕi)}20

i=1, where ki and li are uniformly
distributed over the interval [0, 4], while φi and ϕi are uniformly distributed over the
interval [0, 1], as the function class of the right-hand side in the preconditioning of
the our method. In Figures 2 and 3, we show the relative errors of the mean and the
STD of our method in the L2 norm and the H1 norm, respectively. One can see that
our method is efficient in solving the multiquery problem.

In Figure 4, we show the mean and STD of the solution corresponding to f(x, y) =
sin(2.3πx + 0.2) cos(1.5πy − 0.3). We use the notation SC to denote the reference
solution, which is obtained using the stochastic finite element method on the fine mesh,
while using the notation DSM to denote the solution obtained using our method. One
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Fig. 3. The STD error of our method in the L2 norm and the H1 norm.
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Fig. 4. Profiles of the mean and the STD solution.

can see that the mean and the STD of the DSM solution match the mean and the
STD of the exact solution very well, and the multiscale solution has heterogeneous
structures.

In Figure 5, we plot the profiles of the data-driven stochastic basis functions
obtained from our method, which are associated with the grid (0.5, 0.5). One can
find the exponential decay of the basis functions. Therefore, we can localize the
computational domain of the basis functions and reduce the computational cost.

Verification of the convergence rate with respect to mesh size H. We shall test two
different coefficients. In the first case, the coefficient is parameterized by one random
variable,

aε(x, y, ω) = 0.1 +
2 + p1 sin( 2π(x−y)

ε1
)

2− p1 cos( 2π(x−y)
ε1

)
ξ1(ω),(66)

where p1 = 1.6 and ε1 = 1
14 . The highest order of the gPC basis functions is 7.

We change the coarse mesh grid from 4 × 4 to 64 × 64. We compare the results
on different meshes and calculate the numerical error with respect to the reference
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Fig. 5. Profiles of the data-driven stochastic basis functions. Left is the projection on the
zeroth-order gPC basis. Right is the projection on one of the first-order gPC basis.
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Fig. 6. Convergence results with respect to mesh size. Left is for the one random variable (r.v.)
case. Right is for the three random variables (r.v.s) case.

solution obtained by using the fine mesh 1
256 . In the second case, the coefficient is

given by (65), which is parameterized by three random variables. The highest order
of the gPC basis functions is 4. We choose the coarse mesh grids as 5 × 5, 10 × 10,
12 × 12, and 15 × 15. In Figure 6, we plot the convergence results with respect to
mesh size H. For both experiments, we obtain a first-order convergence for the error
in the H1 norm, which agrees with our error analysis.

Verification of the convergence rate with respect to the polynomial order. We shall
fix the coarse mesh size to be H = 1

16 . We choose the coarse mesh in such a way that
the error from the physical space is small. The coefficient is given by (66), which is
parameterized by one random variable. Then we take the polynomial order from 1
to 15. In Figure 7, we plot convergence results with respect to different polynomial
orders. One can see the exponential decay with respect to the polynomial orders
increase. When the order is bigger than 6, other sources of errors become dominant.
In the second case, the coefficient is given by (65), which is parameterized by three
random variables. We observe the qualitative decay of the error (not shown here).

Investigate the decay of the eigenvalue µi. We shall show that the eigenvalues µi
that appear in (48) have an exponential decay property. Therefore, we only need to
use a small number of multiscale data-driven stochastic basis functions in the random
space. We test the problem (63) with coefficient (65) and f(x, y) = sin(2.3πx +
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Fig. 7. Convergence results with respect to the polynomial chaos order, where H = 1
16
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Fig. 8. Decay speed of the eigenvalues.

0.2) cos(1.5πy − 0.3). We choose the fine mesh with 256 × 256 grids and the highest
total order of the gPC polynomials is 4. In Figure 8, we plot the eigenvalues µi,
i = 1, . . . , 10, of the matrix Y Y T with Y defined in (57). One can see that the
eigenvalues µi indeed decay exponentially fast.

Verification of the Theorem 4.6. We investigate the influence of the polynomial
order, coarse mesh size H and Nξ in the numerical errors. Specifically, we fix one
parameter and see the influence of the other two parameters in the numerical errors.
In Tables 1–2 we show the results for the problem (63) with the coefficient (66). We
can see that when Nξ = 1 the error associated with the DSM basis becomes dominant.
When we increase Nξ, we observe the expected convergence behaviors with respect to
the polynomial order and the coarse mesh size H, respectively. In addition, we find
that the influence of mesh size in the physical domain is more remarkable than the
gPC order since the mean of a solution is determined by the zeroth-order gPC basis.
We repeat the same experiment for computing the STD and find that the gPC order
plays an important role instead (not shown here).

Comparison of the DSM solver with the SFEM solver. For the problem (63) with
the coefficient (65), we choose H = 1

16 and Nξ = 4 in the DSM, and h = 1
128 and

NgPC = 35 in the SFEM method. In the offline stage of the DSM, it takes about
t = 452.4s to construct the basis functions. In the online stage of the DSM, it takes
t = 43.35s to generate the stiffness matrix and t = 0.02s to compute one solution.
In the SFEM, it takes about t = 139s to generate the stiffness matrix and t = 47s
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Table 1
Relative H1 errors for the mean with Nξ = 1.

gPC order\H 1
4

1
8

1
16

1
32

3 0.34218657 0.31633653 0.31237960 0.31122084
4 0.34225440 0.31643948 0.31249174 0.31123848
5 0.34230197 0.31650228 0.31255827 0.31124899
6 0.34233300 0.31654051 0.31259810 0.31125507

Table 2
Relative H1 errors for mean with Nξ = 4.

gPC order\H 1
4

1
8

1
16

1
32

3 0.15474457 0.06433402 0.03782529 0.03161160
4 0.15219654 0.05911018 0.02885954 0.02054079
5 0.15133297 0.05735245 0.02548124 0.01573967
6 0.15100367 0.05668353 0.02413148 0.01360107

to compute one solution. Simple calculation shows that the DSM method is superior
to the SFEM if one needs to solve (63) with more that eight different force terms.
Therefore, the DSM is a very efficient method in solving multiscale elliptic PDEs with
random coefficients in the multiquery setting.

5.2. An example with a coefficient that does not have scale separation.
We consider the problem (63)–(64) on D = [0, 1] × [0, 1] with a coefficient that does
not have scale separation. The coefficient aε(x, y, ω) is a random linear combination
of three deterministic coefficient fields plus a constant, i.e.,

aε(x, y, ω) =

3∑
i=1

ξi(ω)ki(x, y) + 0.5,(67)

where {ξi}3i=1 are independent uniform random variables in [0, 1], and ki(x, y), i =
1, . . . , 3, are some deterministic coefficients without scale separation. Specifically,
ki(x, y) = |θi(x, y)|, where θi(x, y), i = 1, . . . , 3, are defined on 5 × 5, 9 × 9, and
17× 17 grids over the domain D. For each grid cell, the value of θi(x, y) is normally
distributed. In Figure 9, we show four samples of the coefficient aε(x, y, ω). One can
see that the coefficient does not have any periodic structure.

Multiquery results in the online stage. The implementation of the SCFEM and
our method are exactly the same as in the previous example. In the online stage we
use them to solve the effective equation of the multiscale SPDE (63). We randomly
generate 20 force functions of the form f(x, y) ∈ {sin(kiπx + li) cos(miπx + ni}20

i=1,
where ki, li, mi, and ni are random numbers. In Figure 10, we show the relative error
for the mean function obtained using our method in the L2 norm and the H1 norm,
respectively. The results for the STD error are similar to those that we obtained in
the previous examples (not shown here).

Verification of the convergence rate with respect to mesh size H. We shall test two
different coefficients. In the first case, the coefficient is parameterized by one random
variable, i.e., aε(x, y, ω) = ξ1(ω)k1(x, y) + 0.5. The highest order of the gPC basis
functions is 7. We change the coarse mesh grid from 4 × 4 to 64 × 64. We compare
the results on different meshes and calculate the numerical error with respect to the
reference solution obtained by the fine mesh 1

256 . In the second case, the coefficient is
given by (67), which is parameterized by three random variables. The highest order
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Fig. 9. Some coefficient samples of a(x, y, ω).
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Fig. 10. The mean error of our method in the L2 norm and the H1 norm.

of the gPC basis functions is 4. We choose the coarse mesh grids as 5 × 5, 10 × 10,
12 × 12, and 15 × 15. In Figure 11, we plot the convergence results with respect to
mesh-size H. For both experiments, we obtain first-order convergence for the error in
the H1 norm.

Verification of the convergence rate with respect to the polynomial order. We
fix the course mesh size to be H = 1

16 and the coefficient is given by aε(x, y, ω) =
ξ3(ω)k3(x, y) + 0.5. Then we take the polynomial order from 1 to 15. In Figure 12,
we plot convergence results with respect to different polynomial orders. One can find
the exponential decay with respect to the polynomial orders.
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Fig. 11. Convergence results with respect to mesh size. Left is for the one r.v. case. Right is
for the three r.v.s case.
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Fig. 12. Convergence results with respect to the polynomial chaos order, where H = 1
16

.

5.3. An example with a localized random coefficient. Finally we consider
the problem (63)–(64) on D = [0, 1]×[0, 1] with a coefficient that has localized random
features. The coefficient aε(x, y, ω) is given by

aε(x, y, ω) = 0.2 +

3∑
i=1

2 + pi sin( 2πx
εi

)

2− pi cos( 2πy
εi

)
ξi(ω)1D1

(x, y)

+

6∑
i=4

2 + pi cos( 2πx
εi

)

2− pi sin( 2πy
εi

)
ξi(ω)1D2(x, y)

+

9∑
i=7

2 + pi sin( 2π(x−y)
εi

)

2− pi cos( 2π(x−y)
εi

)
ξi(ω)1D3

(x, y)

+

12∑
i=10

2 + pi cos( 2π(x−0.5)
εi

)

2− pi sin( 2π(x−y)
εi

)
ξi(ω)1D4(x, y),

where D1 = [1/8, 3/8] × [1/8, 3/8], D2 = [5/8, 7/8] × [1/8, 3/8], D3 = [1/8, 3/8] ×
[5/8, 7/8], D4 = [5/8, 7/8]× [7/8, 7/8], {ξi}12

i=1 are independent uniform random vari-
ables in [0, 1], [ε1, ε2, . . . , ε12] = [1/11.1, 1/10.2, 1/15.1, 1/15.4, 1/13.9, 1/16.1, 1/17.3,
1/11.3, 1/13.3, 1/18.1, 1/16.7, 1/18], and [p1, p2, . . . , p12] = [1.81, 1.85, 1.90, 1.87, 1.82,
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(a) (b)

Fig. 13. Some coefficient samples of a(x, y, ω).
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Fig. 14. The mean error of our method in the L2 norm and the H1 norm.

1.85, 1.89, 1.85, 1.82, 1.83, 1.84, 1.86]. In Figure 13, we show two samples of the coeffi-
cient aε(x, y, ω). One can see the localized random features of the coefficient.

If we implement the gPC method in a brute force way, it is prohibitively expensive.

For instance, choosing the total order as 3 (see (3)) will generate (12+3)!
12!3! = 455 gPC

basis functions. Motivated by the observation in Figure 1, we propose an adaptive
method to truncate the order of polynomials in the gPC basis depending on the
physical location. For instance, when we solve the optimization problem (14)–(15) to
compute ψi,k(x, ξ(ω)) with the vertex xi ∈ D1, we define the sparse truncation order
as t = (3, 3, 3, 1, 1, 1, 1, 1, 1, 0, 0, 0) so the associated sparse truncated gPC basis index

is J3,t
12 = {α |α = (α1, α2, . . . , α12), 0 ≤ αi ≤ ti, αi ∈ N, |α| =

∑12
i=1 αi ≤ 3}, which

will generate 49 gPC basis functions. This sparse truncated gPC index J3,t
12 will be

used in (16), when we compute the basis ψi,k(x, ξ(ω)). The sparse truncation orders
associated with other vertices can be defined accordingly. Using the sparse truncation
techniques, we dramatically reduce the computational cost.

Multiquery results in the online stage. The implementation of the SCFEM and
our method are exactly the same as in the previous examples. In the online stage we
use them to solve the effective equation of the multiscale SPDE (63). We randomly
generate 20 force functions of the form f(x, y) ∈ {sin(kiπx + li) cos(miπx + ni)}20

i=1,
where ki, li, mi, and ni are random numbers. In Figure 14, we show the relative error
for the mean function obtained using our method in the L2 norm and the H1 norm,
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respectively. The results for the STD error are similar. We also obtain the same con-
vergence rate with respect to mesh size H and the polynomial order (not shown here).

6. Conclusion. In this paper, we developed a novel model reduction method
to construct multiscale data-driven stochastic basis functions that can be used to
solve multiscale elliptic PDEs with random coefficients in a multiquery setting. These
problems arise from various applications, such as the heterogeneous porous media
flow problem in water aquifer and oil reservoirs simulations. Our method consists of
the offline and online stages. In the offline stage, we construct the basis functions
through solving localized optimization problems. In the online stage, we can effi-
ciently solve the multiscale random PDEs using our multiscale data-driven stochastic
basis functions. Under some mild conditions, we analyzed the error between the
numerical solution obtained from our method and the exact solution. We presented
several numerical examples for two-dimensional stochastic elliptic PDEs with stochas-
tic multiscale coefficients to demonstrate the accuracy and efficiency of our proposed
method.

These numerical examples indicate the following advantages of our method: (1) by
compressing the physical space and the stochastic space simultaneously, our method
can solve the multiscale random PDEs with desirable accuracy on a coarse physi-
cal grid and using a few data-driven stochastic basis functions; (2) the data-driven
stochastic basis functions can be used to solve the multiscale random PDEs with a
class of deterministic force functions; and (3) the optimization approach enables us
to automatically explore the localized random structures in the solution space.

There are two directions we want to explore in our future work. First, we intend to
construct data-driven stochastic basis functions to compute the Helmholtz equation
in random media. In addition, we find that the stochastic structure in coefficient
a(x, ω) can influence the data-driven basis function in the stochastic components
automatically. As a consequence, we shall investigate how to infer the stochastic
structure of coefficient a(x, ω) through the multiscale data-driven stochastic basis
functions, namely, solving the multiscale random PDEs in an inverse problem setting.

Appendix A. Determine the random dimension of the solution space.
How to determine the random dimension of the solution space (i.e., Nξ in (15)) a
priori is an important issue in our method. The random dimension is determined
by two factors, (1) the regularity of the coefficient aε(x, ω), especially the ratio of
amax/amin, and (2) the regularity of the force term f(x). We propose an efficient a
posteriori approach to estimate Nξ, which means that if we choose Nξ in our method,
we can get the desired accuracy almost surely.

We assume the force function f(x) belongs to a space F , which is spanned by
fi(x), i = 1, . . . , N , i.e., F = span{f1(x), f2(x), . . . , fN (x)}, N � 1. Let urei (x, ω) =
Lε(x, ω)−1fi(x) denote the reference solution to (11) with the force function fi(x).
Similarly, let uDSMi (x, ω) = LεDSM (x, ω)−1fi(x) denote the numerical solution ob-
tained using Nξ basis functions in the stochastic dimension. In the physical dimen-
sion, the number of basis functions is equal to Nx ≈ H−d. The numerical error
is ei(x, ω) = urei (x, ω) − uDSMi (x, ω). Given a fixed Nξ, if all the error functions
‖ei(x, ω)‖ are less than a prescribed threshold, then we shall get our estimate for the
random dimension of the solution space. However, this approach is expensive since
N is large.

We propose a probabilistic approach to reduce the computational cost in esti-
mating Nξ. Specifically, we first generate r Gaussian vectors ωj = (ωj1, ω

j
2, . . . , ω

j
N )T ,

1 ≤ j ≤ r, r � N , where ωji ∼ N (0, 1) are i.i.d. random variables. Then, we gen-
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erate r force functions f̂j(x) =
∑N
i=1 ω

j
i fi(x). With this randomly generated f̂j(x),

we compute e(x, ω; f̂j) = ure(x, ω; f̂j)− uDSM (x, ω; f̂j). Using a similar probabilistic
argument (see [36, Lemma 3.14 and Theorem 3.15]), we get the following.

Lemma A.1. Fix a positive integer r and a real number α > 1. We generate
an independent family of standard Gaussian vectors {ωj = (ωj1, ω

j
2, . . . , ω

j
N )T : j =

1, 2, . . . , r} and random forces f̂j(x) =
∑N
i=1 ω

j
i fi(x). Then, except with probability

α−r, we have the estimate

‖ure(x, ω)− uDSM (x, ω)‖ ≤ α
√

2

π
max
i=1,...,r

‖ure(x, ω; f̂j)− uDSM (x, ω; f̂j)‖.(68)

By applying Lemma A.1, we can estimate the random dimension Nξ. Specifically,

given a fixed Nξ, if all ‖ure(x, ω; f̂j) − u(x, ω; f̂j)‖, j = 1, . . . , r, are less than a
prescribed threshold, we know that the numerical error ‖ure(x, ω)−uDSM (x, ω)‖ can

be bounded by the upper bound of the errors ‖ure(x, ω; f̂j) − uDSM (x, ω; f̂j)‖ with
the probability 1 − α−r. Otherwise, we increase Nξ and repeat the algorithm. Our
experiments show that if we choose r = 8 or r = 10, we have already been able to
implement the proposed a posteriori estimator. Therefore, this probabilistic approach
is very efficient.
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