92,672 research outputs found

    MTL-Model Checking of One-Clock Parametric Timed Automata is Undecidable

    Full text link
    Parametric timed automata extend timed automata (Alur and Dill, 1991) in that they allow the specification of parametric bounds on the clock values. Since their introduction in 1993 by Alur, Henzinger, and Vardi, it is known that the emptiness problem for parametric timed automata with one clock is decidable, whereas it is undecidable if the automaton uses three or more parametric clocks. The problem is open for parametric timed automata with two parametric clocks. Metric temporal logic, MTL for short, is a widely used specification language for real-time systems. MTL-model checking of timed automata is decidable, no matter how many clocks are used in the timed automaton. In this paper, we prove that MTL-model checking for parametric timed automata is undecidable, even if the automaton uses only one clock and one parameter and is deterministic.Comment: In Proceedings SynCoP 2014, arXiv:1403.784

    Revisiting Reachability in Timed Automata

    Full text link
    We revisit a fundamental result in real-time verification, namely that the binary reachability relation between configurations of a given timed automaton is definable in linear arithmetic over the integers and reals. In this paper we give a new and simpler proof of this result, building on the well-known reachability analysis of timed automata involving difference bound matrices. Using this new proof, we give an exponential-space procedure for model checking the reachability fragment of the logic parametric TCTL. Finally we show that the latter problem is NEXPTIME-hard

    Behavioral models of digital IC ports from measured transient waveforms

    Get PDF
    This paper addresses the behavioral modeling of output ports of digital integrated circuits via the identification of nonlinear parametric models. The aim of the approach is to produce models for signal integrity (SI) simulation directly from the measured transient responses of the devices. The modeling process is thoroughly described and an experimental demonstration of its feasibility is give

    Single-Piece State-Space Behavioral Models for IC Output Buffers

    Get PDF
    In this paper enhancements of parametric behavioral models for the output buffers of digital ICs are explored. A model based on a single-piece structure, which offers improved accuracy in describing state transition events for arbitrary load conditions, is proposed. This model exploits the potentiality of local-linear state-space parametric relations. These relations can be effectively estimated from input-output port responses only, and provide better stability properties and improved efficienc

    M[pi]log, Macromodeling via parametric identification of logic gates

    Get PDF
    This paper addresses the development of computational models of digital integrated circuit input and output buffers via the identification of nonlinear parametric models. The obtained models run in standard circuit simulation environments, offer improved accuracy and good numerical efficiency, and do not disclose information on the structure of the modeled devices. The paper reviews the basics of the parametric identification approach and illustrates its most recent extensions to handle temperature and supply voltage variations as well as power supply ports and tristate devices

    On the verification of parametric and real-time systems

    Get PDF
    2009 - 2010Parametric and Real-Time Systems play a central role in the theory underlying the Verification and Synthesis problems. Real-time systems are present everywhere and are used in safety critical applications, such as flight controllers. Failures in such systems can be very expensive and even life threatening and, moreover, they are quite hard to design and verify. For these reasons, the development of formal methods for the modeling and analysis of safety-critical systems is an active area of computer science research. The standard formalism used to specify the wished behaviour of a realtime system is temporal logic. Traditional temporal logics, such as linear temporal logic (LTL), allow only qualitative assertions about the temporal ordering of events. However, in several circumstances, for assessing the efficiency of the system being modeled, it may be useful to have additional quantitative guarantees. An extension of LTL with a real-time semantics is given by the Metric Interval Temporal Logic (MITL), where changes of truth values happen according to a splitting of the line of non-negative reals into intervals. However, even with quantitative temporal logics, we would actually like to find out what quantitative bounds can be placed on the logic operators. In this thesis we face with the above problem proposing a parametric extension of MITL, that is the parametric metric interval temporal logic (PMITL), which allows to introduce parameters within intervals . For this logic, we study decision problems which are the analogous of satisfiability, validity and model-checking problems for non-parametric temporal logic. PMITL turns out to be decidable and we show that, when parameter valuations give only non-singular sets, the considered problems are all decidable, EXPSPACE-complete, and have the same complexity as in MITL. Moreover, we investigate the computational complexity of these problems for natural fragments of PMITL, and show that in meaningful fragments of the logic they are PSPACE-complete. We also consider a remarkable problem expressed by queries where the values that each parameter may assume are either existentially or universally quantified. We solve this problem in several cases and we propose an algorithm in EXPSPACE. Another interesting application of the temporal logic is when it is used to express specification of concurrent programs, where programs and properties are formalized as regular languages of infinite words. In this case, the verification problem (whether the program satisfies the specification) corresponds to solve the language inclusion problem. In the second part of this thesis we consider the Synthesis problem for realtime systems, investigating the applicability of automata constructions that avoid determinization for solving the language inclusion problem and the realizability problem for real-time logics. Since Safra’s determinization procedure is difficult to implement, we present Safraless algorithms for automata on infinite timed words. [edited by author]IX n.s

    Parametric Macromodels of Drivers for SSN Simulations

    Get PDF
    This paper addresses the modeling of output and power supply ports of digital drivers for accurate and efficient SSN simulations. The proposed macromodels are defined by parametric relations, whose parameters are estimated from measured or simulated port transient responses, and are implemented as SPICE subcircuits. The modeling technique is applied to commercial high-speed devices and a realistic simulation example is shown
    corecore