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Abstract— In this paper enhancements of parametric behav-
ioral models for the output buffers of digital ICs are explored. A
model based on a single-piece structure, which offers improved
accuracy in describing state transition events for arbitrary load
conditions, is proposed. This model exploits the potentiality of
local-linear state-space parametric relations. These relations can
be effectively estimated from input-output port responses only,
and provide better stability properties and improved efficiency.

I. INTRODUCTION

The modeling of the input and output buffers of digital

Integrated Circuits (IC) is a key issue in signal integrity and

electromagnetic compatibility simulations. Behavioral models

are the best solution of this modeling problem [1], [2], as

they offer the accuracy and efficiency needed to tackle the

distortion effects and the complexity of real digital systems.

Behavioral models based on nonlinear parametric relations and

identification method, in particular, are now well developed

and provide very good accuracy as well as the ability to

include high-order and susceptibility effects [3].

The aim of this work is to explore an enhancement of

parametric behavioral models for digital IC output buffers,

that further improves their accuracy and robustness, while

preserving their advantages. To this end, the development of

behavioral models defined by a single-piece structure, i.e.,
by a relation holding for both logic states, is addressed. The

present behavioral models for output buffers are based on a

two-piece structure, where two separate submodels contain

the information on the behavior in the two logic states.

The use of a single-piece structure can add information on

the behavior during state transitions, improving the accuracy

and robustness of the model in describing state switching

events. Recently, a single-piece model for IC output buffers

has been proposed (e.g., see [4]). This model is based on

a sophisticate continuous-time neural network structure and

has outstanding accuracy performance. In order to minimize

the cost of estimating the model parameters and the model

run time, in this work nonlinear parametric relations based on

the state-space representation are exploited. These relations

are a recent advancement in parametric modeling and offer

improved efficiency for multiple input/output variables as well

as better stability properties, i.e., improved robustness. They

are well suited to enable enhanced and compact behavioral

models with a single-piece structure.

II. IC OUTPUT BUFFER MODELS

In this Section, the behavioral modeling of IC output buffers

and its main issues are shortly reviewed. IC output buffers

(simply drivers in the following) are circuits composed of a

cascade of inverter stages interfacing IC internal logic with

external interconnects. The typical driver structure is sketched

in Fig. 1 along with the relevant electrical variables.

A behavioral driver model is a relation between the output

variables vo and io. In order to describe the operation in the

two logic states and the switching between them, this relation

must also change according to the value of a control variable.

In standard behavioral models, the control variable is taken

into account by means of a two-piece structure:

io = wH(t)iH(vo,
dvo

dt
) + wL(t)iL(vo,

dvo

dt
) (1)

where iH and iL are submodels accounting for the device

behavior in the logic High and Low state, respectively. The

time-varying functions wH(t) and wL(t) provide the transition

between the two submodels iH and iL, i.e., the switching

between the two logic states. The physical meaning of the

two-piece assumption and the easy estimation of the model

parameters from the port waveforms are the main strengths of

this model structure.

The main elements defining a driver model based on (1) are

the structure of the equation itself (piecewise) and the relations

used to generate the submodels iH and iL. Submodels iH and

iL can be obtained from either simplified equivalent circuit

representations (e.g., see IBIS [1]) or from parametric rela-

tions and identification methods. Models based on parametric

vgvi vo

ioVd

Fig. 1. Typical IC output buffer (dashed box) and its main electrical variables.
Voltage vi is the control voltage applied by the IC logic core, vo and io are
the circuit output voltage and currents, respectively. The bold triangle symbol
indicates the last inverter stage and vg its input voltage.
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relations, in particular, are today well established and proved

to be very accurate, efficient and flexible [2]. Therefore, in

order to further enhance IC driver models, different model

structures and improved parametric relations are considered.

Two-piece models exploit information on the behavior of

the driver in the two logic states only. The information on

the behavior during logic state transitions is confined in

the weighting functions of the model. On the other hand,

single-piece models can be more accurate in describing state

transitions, because they can include additional information

on the device behavior in intermediate states [5]. Concerning

the parametric relations, only input/output parametric relation

have been exploited up to now. Recently, state-space relations

have been proposed which can be more efficient and robust

than the input/output relations. The objective of this work,

therefore, is to verify the feasibility and the performance of a

single-piece model exploiting state-space parametric relations.

III. SINGLE-PIECE MODELS

Different single-piece models can be devised to relate the

port variables of the drivers. Here, we focus on a model defined

by a static and a dynamic part:

io = ios(vo, vg) + id(vo, vg) (2)

where ios is the DC output characteristic of the driver and id
is a dynamic model accounting for the difference between the

actual response and the static one. In order to include any DC

contribution of io into ios, the dynamic part is null for constant

vo and vg waveforms. This kind of representation, in which

the static and dynamic parts are splitted, has been already

exploited in the two-piece models [2]. Its main advantage is a

facilitated estimation of the parameters of the dynamic part, as

the information on the static behavior is completely contained

in the static part.

As an example, in Fig. 2 the DC output current of a driver

(dashed lines) and the DC output characteristic of a two-

piece (solid thin lines) model are compared. The weighting

functions of the model (1) are computed by the two-waveform

method [5]. As it was expected, the static characteristic of the

two-piece model and the actual one are similar near the load

lines (straight lines of Fig. 2) only. These lines correspond to

the loads used in the computation of the weighting functions

wH and wL of (1). In contrast, the static part ios(vo, vg) of

the single-piece model (2), reproduce the actual DC output

curves, thus eliminating the error of the two-piece model on

the DC contribution in the intermediate states.

In order to obtain a driver output model, a control variable

defining the logic state of the model and driving the switching

process must also be defined. For the sake of simplicity, here

we assume that all the internal variables of the driver are

accessible. The most natural control variable for model (2) is

the driver last stage input voltage vg . For vg = Vd and vg = 0
the DC characteristic of the Low and High logic states are

selected, whereas intermediate vg values lead to intermediate

states. In our model, the role of coefficients wH and wL of

the two-piece models is played by a suitable vg(t) waveform.

In actual operation, vg(t) is decided by the circuits preceding

the last stage and by the backward transmission properties of

the last stage. However, the backward transmission of inverter

stages is weak, and it has been verified that vg(t) weakly

depends on the driven loads. The backward transmission is,

therefore, neglected and the input voltage vg of the last stage

that is observed when the driver is connected to a reference

resistor (a 100 Ω resistor in the modeling example of Sec.V) is

used as a control waveform. In conclusion, the proposed model

is defined by (2) and by a function vgr(t), i.e., the reference

input voltage of the last stage, that controls the logic state and

the state switching.

IV. STATE-SPACE PARAMETRIC MODELS

Several modeling methods based on state-space parametric

relation have been proposed recently. In this paper, a method

based on Locally-Linear State-Space (LLSS) equations is ex-

ploited [6]. This method is based on the approximation of the

complex dynamic behavior of a nonlinear dynamic system by

means of the composition of locally linear state-space models.

The operating domain of the system is partitioned into smaller

domains where the system behavior is approximated by a

linear state-space equation. Even if this idea has been already

investigated in the literature, the implementation of [6] has

several strengths. Mainly, the model parameters are obtained

from the input/output port responses only via an optimization

procedure and the different domains are authomatically com-

puted during model estimation.

As an example, a LLSS representation for id(vo, vg) of (2)

is defined by the following discrete-time state-space equation:

0 1 2 3 4 5

−80

−60

−40

−20

0

20

40

 v
o
  V

 i o  m
A

100 Ω

100 Ω 5V

Fig. 2. Solid-line curves: DC output current of an example CMOS driver
(vg parameter); dashed lines: DC output current of a two-piece model of
the driver; straight solid lines: load lines of the two loads (indicated) used
to compute the weighting functions of the two-piece model. The driver and
two-piece model curves intersect along the load lines only.
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⎧⎪⎨
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x(k + 1) =
s∑

i=1

pi(φ(k)) (Aix(k) + biu(k) + oi)

iH(k) = cT x(k) + du(k)

(3)

where k is the discrete-time variable; vector x collects the

internal states, u the input variables vo and vg , and pi(·) is

the weighting coefficient of the i− th local model. Each local

model is defined by the state matrix Ai and by the vectors

bi and oi. The argument of the weights, i.e., the scheduling

vector φ(k), corresponds to the operating point of the system

and it is in general a function of both the input and the

state variables. Among all the possible choices for pi(φ(k)),
a common solution in local linear modeling, that is also used

in [6], amounts to defining the weights as normalized radial

basis functions depending on the input sequence u(k) only.

The radial functions vary between zero and one and their sum

is forced to be one at each operating point of the system.

It is worth to remark that, under some specific assumptions,

the above parametrized state-space equation can arbitrarily

approximate any nonlinear dynamic system [6].

Since the computation of the model parameters of (3),

i.e., the local model matrices and the parameters defining

the weights, requires the solution of a nonlinear non-convex

approximation problem, a modified version of the Levenberg-

Marquardt (LM) iterative method is proposed in [6]. The basic

version of the LM algorithm has been suitably modified to

handle the non-uniqueness of a state-space representation that

may cause ill-conditioning of the matrices during the model

estimation. In addition, the parameter initialization is carried

out by means of a deterministic procedure, thus avoiding the

dependence of the estimated model on the initial guess of the

parameters. Besides, the initial guess of the matrices defining

the local models are set equal to the matrices of a single

global stable linear model. The parameters of the global linear

model are computed by means of the application of an efficient

subspace identification method [7]. The latter subspace method

also provides the automatic computation of the number of

internal state variables, i.e., the size of vector x of (3). The

initial radial weighting functions pi are distributed uniformly

over the range of the input sequence.

In the proposed implementation of the algorithm, during

the training no additional constraints are included to enforce

model stability. The model stability is verified a posteriori

and the device models obtained so far by using the proposed

approach have been verified to be stable.

LLSS models designed as outlined in this Section have

additional strengths. Mainly, the state-space nature of this

class of representations facilitates the modeling of devices with

multiple inputs. Besides, they have been proven to be effective

for the characterization of the strongly nonlinear behavior

of real devices, possibly with high-order dynamical effects.

Finally, LLSS models that have a relatively small size (a few

local models are usually sufficient for the modeling problem

at hand), leading to efficient model implementations.

V. NUMERICAL EXAMPLE

In this Section, the single-piece model and the LLSS

ideas introduced in the two previous sections are tested on

a modeling example. The example involves the four-inverter-

stage CMOS driver defined in [8], pag. 492, for which a

Device Level (DL) model is available. The responses of this

DL model are used as reference for both the estimation of

the model parameters and the assessment of the accuracy of

the obtained models. This DL model is for a slightly dated

CMOS technology, nevertheless it is still representative of

current drivers and it is public. Besides, the state transition

of this driver are difficult to describe by means of traditional

two-piece models.

For the example driver, a traditional two-piece model with

parametric input/output submodels and a single-piece model

with an LLSS dynamic part are generated. The traditional

model has been generated as described in [2] and turns out

to have a dynamic order equal two and both the parametric

submodels iH and iL defined by six basis functions. On

the contrary, the parameters of the single-piece model are

estimated from the response of the driver when its last stage is

driven by the vgr(t) waveform defined in Sec. III and it feeds a

transmission line load (LC line, Zo = 50 Ω, 3ns time delay and

10pF capacitor load). The transmission line reflections excite

the output port dynamic behavior. This allows to estimate id
parameters via a standard algorithm by using vgr, voe and the

difference current:

ide(t) = ioe(t) − ios(voe(t), vgr(t)) (4)

where voe(t) and ioe(t) are the output driver waveforms

recorded in the switching experiment with the transmission

line load. The mapping ios is approximated by a sum of 20

sigmoidal functions and the obtained LLSS dynamic model is

composed of two linear state-space submodels with 7 internal

state variables.

The properties and performance of the single-piece model

obtained have been verified. A cumulative test is carried out

by driving a 50 Ω SSTL termination series connected to a

supplemental disturbing voltage source. The modeled device

applies a High logic pulse lasting 25ns and the disturbing

source applies a signal with large level variations and a

small amplitude white noise component. The voltage responses

obtained by using the modeled driver and its single- and two-

piece models are shown in Fig. 3 and 4.

The waveform of the bottom panel of Fig. 3 demonstrates

the ability of the single-piece model to perform as well as

the two-piece model in describing driver operation in fixed

logic state. The edge part of the responses, shown in Fig. 4,

demonstrate the key feature expected from a single-piece

model, i.e., its ability to describe state transitions for arbitrary

loads. The edges predicted by the single-piece model, in fact,

are in good agreement with the driver response, whereas the

edges predicted by the two-piece model are less accurate. This

confirms that the proposed model improves the accuracy of

two-piece models.
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Fig. 3. Voltage responses of a test circuit composed of a driver and a noisy
SSTL load (see Sec.IV). Solid line: reference; dashed line: single-piece LLSS
model; dotted line: two-piece model. Top panel: complete waveform; bottom
panel: close-up for the operation in High logic state.

For an additional performance evaluation, the stability of the

single-piece LLSS models is assessed by means of an analysis

of the eigenvalues of the linearized model as suggested in [9].

This analysis confirms that the obtained models are locally

stable, thus avoiding possible spurious dynamics for any

excitation or load condition.

Finally, the implementation and efficiency issues are ad-

dressed. Two-piece models require the implementation of

two dynamic submodels, two v-i curves and two switching

functions of time. In contrast, the proposed single-piece model

requires the implementation of a dynamic part, one v-i 2D

mapping and one switching function of time. The dynamic

LLSS part has a complexity comparable to the one of the sub-

models composing two-piece models. Besides, it can be even

simpler than the submodels of two-pieces models, if multiple

input and output variables are involved. The v-i mapping can

be critical from the efficiency point of view, however effective

implementations can be obtained via sigmoidal expansions

as in this study. In conclusion, the numerical efficiencies of

single-piece and two-piece models are comparable. Indeed the

run times of the models developed for this example are similar.

VI. CONCLUSIONS

The feasibility of a single-piece model is addressed by

developing a model composed of the output DC characteristic

of the last driver stage and of a LLSS dynamic relation. The

logic state of this model is controlled by a variable that mimics

the input voltage of the last driver stage.
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Fig. 4. Edges of the waveforms of Fig.3 that correspond to state transition
of the modeled device. Solid line: reference; dashed line: single-piece LLSS
model; dotted line: two-piece model.

The obtained model benefits of the advantages of state-space

based relations and turns out to be more accurate in describing

state transition events. On the other hand, the single-piece

model studied in this work has low estimation cost and is

almost as simple as current two-piece models. It has the po-

tential to be used in large scale simulation for electromagnetic

compatibility and signal integrity.
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