5,414 research outputs found

    A Light Modality for Recursion

    Full text link
    We investigate the interplay between a modality for controlling the behaviour of recursive functional programs on infinite structures which are completely silent in the syntax. The latter means that programs do not contain "marks" showing the application of the introduction and elimination rules for the modality. This shifts the burden of controlling recursion from the programmer to the compiler. To do this, we introduce a typed lambda calculus a la Curry with a silent modality and guarded recursive types. The typing discipline guarantees normalisation and can be transformed into an algorithm which infers the type of a program.Comment: 32 pages 1 figure in pdf forma

    Coinduction in Flow: The Later Modality in Fibrations

    Get PDF
    This paper provides a construction on fibrations that gives access to the so-called later modality, which allows for a controlled form of recursion in coinductive proofs and programs. The construction is essentially a generalisation of the topos of trees from the codomain fibration over sets to arbitrary fibrations. As a result, we obtain a framework that allows the addition of a recursion principle for coinduction to rather arbitrary logics and programming languages. The main interest of using recursion is that it allows one to write proofs and programs in a goal-oriented fashion. This enables easily understandable coinductive proofs and programs, and fosters automatic proof search. Part of the framework are also various results that enable a wide range of applications: transportation of (co)limits, exponentials, fibred adjunctions and first-order connectives from the initial fibration to the one constructed through the framework. This means that the framework extends any first-order logic with the later modality. Moreover, we obtain soundness and completeness results, and can use up-to techniques as proof rules. Since the construction works for a wide variety of fibrations, we will be able to use the recursion offered by the later modality in various context. For instance, we will show how recursive proofs can be obtained for arbitrary (syntactic) first-order logics, for coinductive set-predicates, and for the probabilistic modal mu-calculus. Finally, we use the same construction to obtain a novel language for probabilistic productive coinductive programming. These examples demonstrate the flexibility of the framework and its accompanying results

    Relational semantics of linear logic and higher-order model-checking

    Full text link
    In this article, we develop a new and somewhat unexpected connection between higher-order model-checking and linear logic. Our starting point is the observation that once embedded in the relational semantics of linear logic, the Church encoding of any higher-order recursion scheme (HORS) comes together with a dual Church encoding of an alternating tree automata (ATA) of the same signature. Moreover, the interaction between the relational interpretations of the HORS and of the ATA identifies the set of accepting states of the tree automaton against the infinite tree generated by the recursion scheme. We show how to extend this result to alternating parity automata (APT) by introducing a parametric version of the exponential modality of linear logic, capturing the formal properties of colors (or priorities) in higher-order model-checking. We show in particular how to reunderstand in this way the type-theoretic approach to higher-order model-checking developed by Kobayashi and Ong. We briefly explain in the end of the paper how his analysis driven by linear logic results in a new and purely semantic proof of decidability of the formulas of the monadic second-order logic for higher-order recursion schemes.Comment: 24 pages. Submitte

    Step-Indexed Normalization for a Language with General Recursion

    Get PDF
    The Trellys project has produced several designs for practical dependently typed languages. These languages are broken into two fragments-a_logical_fragment where every term normalizes and which is consistent when interpreted as a logic, and a_programmatic_fragment with general recursion and other convenient but unsound features. In this paper, we present a small example language in this style. Our design allows the programmer to explicitly mention and pass information between the two fragments. We show that this feature substantially complicates the metatheory and present a new technique, combining the traditional Girard-Tait method with step-indexed logical relations, which we use to show normalization for the logical fragment.Comment: In Proceedings MSFP 2012, arXiv:1202.240

    Sequent Calculus in the Topos of Trees

    Full text link
    Nakano's "later" modality, inspired by G\"{o}del-L\"{o}b provability logic, has been applied in type systems and program logics to capture guarded recursion. Birkedal et al modelled this modality via the internal logic of the topos of trees. We show that the semantics of the propositional fragment of this logic can be given by linear converse-well-founded intuitionistic Kripke frames, so this logic is a marriage of the intuitionistic modal logic KM and the intermediate logic LC. We therefore call this logic KMlin\mathrm{KM}_{\mathrm{lin}}. We give a sound and cut-free complete sequent calculus for KMlin\mathrm{KM}_{\mathrm{lin}} via a strategy that decomposes implication into its static and irreflexive components. Our calculus provides deterministic and terminating backward proof-search, yields decidability of the logic and the coNP-completeness of its validity problem. Our calculus and decision procedure can be restricted to drop linearity and hence capture KM.Comment: Extended version, with full proof details, of a paper accepted to FoSSaCS 2015 (this version edited to fix some minor typos

    Guard Your Daggers and Traces: On The Equational Properties of Guarded (Co-)recursion

    Full text link
    Motivated by the recent interest in models of guarded (co-)recursion we study its equational properties. We formulate axioms for guarded fixpoint operators generalizing the axioms of iteration theories of Bloom and Esik. Models of these axioms include both standard (e.g., cpo-based) models of iteration theories and models of guarded recursion such as complete metric spaces or the topos of trees studied by Birkedal et al. We show that the standard result on the satisfaction of all Conway axioms by a unique dagger operation generalizes to the guarded setting. We also introduce the notion of guarded trace operator on a category, and we prove that guarded trace and guarded fixpoint operators are in one-to-one correspondence. Our results are intended as first steps leading to the description of classifying theories for guarded recursion and hence completeness results involving our axioms of guarded fixpoint operators in future work.Comment: In Proceedings FICS 2013, arXiv:1308.589
    • …
    corecore