8,231 research outputs found

    Fuzzy-based forest fire prevention and detection by wireless sensor networks

    Full text link
    Forest fires may cause considerable damages both in ecosystems and lives. This proposal describes the application of Internet of Things and wireless sensor networks jointly with multi-hop routing through a real time and dynamic monitoring system for forest fire prevention. It is based on gathering and analyzing information related to meteorological conditions, concentrations of polluting gases and oxygen level around particular interesting forest areas. Unusual measurements of these environmental variables may help to prevent wildfire incidents and make their detection more efficient. A forest fire risk controller based on fuzzy logic has been implemented in order to activate environmental risk alerts through a Web service and a mobile application. For this purpose, security mechanisms have been proposed for ensuring integrity and confidentiality in the transmission of measured environmental information. Lamport's signature and a block cipher algorithm are used to achieve this objective

    Named data networking for efficient IoT-based disaster management in a smart campus

    Get PDF
    Disasters are uncertain occasions that can impose a drastic impact on human life and building infrastructures. Information and Communication Technology (ICT) plays a vital role in coping with such situations by enabling and integrating multiple technological resources to develop Disaster Management Systems (DMSs). In this context, a majority of the existing DMSs use networking architectures based upon the Internet Protocol (IP) focusing on location-dependent communications. However, IP-based communications face the limitations of inefficient bandwidth utilization, high processing, data security, and excessive memory intake. To address these issues, Named Data Networking (NDN) has emerged as a promising communication paradigm, which is based on the Information-Centric Networking (ICN) architecture. An NDN is among the self-organizing communication networks that reduces the complexity of networking systems in addition to provide content security. Given this, many NDN-based DMSs have been proposed. The problem with the existing NDN-based DMS is that they use a PULL-based mechanism that ultimately results in higher delay and more energy consumption. In order to cater for time-critical scenarios, emergence-driven network engineering communication and computation models are required. In this paper, a novel DMS is proposed, i.e., Named Data Networking Disaster Management (NDN-DM), where a producer forwards a fire alert message to neighbouring consumers. This makes the nodes converge according to the disaster situation in a more efficient and secure way. Furthermore, we consider a fire scenario in a university campus and mobile nodes in the campus collaborate with each other to manage the fire situation. The proposed framework has been mathematically modeled and formally proved using timed automata-based transition systems and a real-time model checker, respectively. Additionally, the evaluation of the proposed NDM-DM has been performed using NS2. The results prove that the proposed scheme has reduced the end-to-end delay up from 2% to 10% and minimized up to 20% energy consumption, as energy improved from 3% to 20% compared with a state-of-the-art NDN-based DMS

    Fireground location understanding by semantic linking of visual objects and building information models

    Get PDF
    This paper presents an outline for improved localization and situational awareness in fire emergency situations based on semantic technology and computer vision techniques. The novelty of our methodology lies in the semantic linking of video object recognition results from visual and thermal cameras with Building Information Models (BIM). The current limitations and possibilities of certain building information streams in the context of fire safety or fire incident management are addressed in this paper. Furthermore, our data management tools match higher-level semantic metadata descriptors of BIM and deep-learning based visual object recognition and classification networks. Based on these matches, estimations can be generated of camera, objects and event positions in the BIM model, transforming it from a static source of information into a rich, dynamic data provider. Previous work has already investigated the possibilities to link BIM and low-cost point sensors for fireground understanding, but these approaches did not take into account the benefits of video analysis and recent developments in semantics and feature learning research. Finally, the strengths of the proposed approach compared to the state-of-the-art is its (semi -)automatic workflow, generic and modular setup and multi-modal strategy, which allows to automatically create situational awareness, to improve localization and to facilitate the overall fire understanding

    Development in building fire detection and evacuation system-a comprehensive review

    Get PDF
    Fire is both beneficial to man and his environment as well as destructive and deadly among all the natural disasters. A fire Accident occurs very rarely, but once it crops up its consequences will be devastating. The early detection of fire will help to avoid further consequences and saves the life of people. During the fire accidents, it is also important to guide people within the building to exit safely. Because of this, the paper gives a review of literature related to recent advancements in building fire detection and emergency evacuation system. It is intended to provide details about fire simulation tools with features, suitable hardware, communication methods, and effective user interface
    • …
    corecore