29,284 research outputs found

    Facilitating Mechanical Design with Augmented Reality

    Get PDF
    By enhancing a real scene with computer generated objects, Augmented Reality (AR), has proven itself as a valuable Human-Computer Interface (HCI) in numerous application areas such as medical, military, entertainment and manufacturing. It enables higher performance of on-site tasks with seamless presentation of up-to-date, task-related information to the users during the operation. AR has potentials in design because the current interface provided by Computer-aided Design (CAD) packages is less intuitive and reports show that the presence of physical objects help design thinking and communication. This research explores the use of AR to improve the efficiency of a design process, specifically in mechanical design.Singapore-MIT Alliance (SMA

    Discrete event simulation and virtual reality use in industry: new opportunities and future trends

    Get PDF
    This paper reviews the area of combined discrete event simulation (DES) and virtual reality (VR) use within industry. While establishing a state of the art for progress in this area, this paper makes the case for VR DES as the vehicle of choice for complex data analysis through interactive simulation models, highlighting both its advantages and current limitations. This paper reviews active research topics such as VR and DES real-time integration, communication protocols, system design considerations, model validation, and applications of VR and DES. While summarizing future research directions for this technology combination, the case is made for smart factory adoption of VR DES as a new platform for scenario testing and decision making. It is put that in order for VR DES to fully meet the visualization requirements of both Industry 4.0 and Industrial Internet visions of digital manufacturing, further research is required in the areas of lower latency image processing, DES delivery as a service, gesture recognition for VR DES interaction, and linkage of DES to real-time data streams and Big Data sets

    Recent Advancements in Augmented Reality for Robotic Applications: A Survey

    Get PDF
    Robots are expanding from industrial applications to daily life, in areas such as medical robotics, rehabilitative robotics, social robotics, and mobile/aerial robotics systems. In recent years, augmented reality (AR) has been integrated into many robotic applications, including medical, industrial, human–robot interactions, and collaboration scenarios. In this work, AR for both medical and industrial robot applications is reviewed and summarized. For medical robot applications, we investigated the integration of AR in (1) preoperative and surgical task planning; (2) image-guided robotic surgery; (3) surgical training and simulation; and (4) telesurgery. AR for industrial scenarios is reviewed in (1) human–robot interactions and collaborations; (2) path planning and task allocation; (3) training and simulation; and (4) teleoperation control/assistance. In addition, the limitations and challenges are discussed. Overall, this article serves as a valuable resource for working in the field of AR and robotic research, offering insights into the recent state of the art and prospects for improvement

    Using virtual reality and 3D industrial numerical models for immersive interactive checklists

    Get PDF
    At the different stages of the PLM, companies develop numerous checklist-based procedures involving prototype inspection and testing. Besides, techniques from CAD, 3D imaging, animation and virtual reality now form a mature set of tools for industrial applications. The work presented in this article develops a unique framework for immersive checklist-based project reviews that applies to all steps of the PLM. It combines immersive navigation in the checklist, virtual experiments when needed and multimedia update of the checklist. It provides a generic tool, independent of the considered checklist, relies on the integration of various VR tools and concepts, in a modular way, and uses an original gesture recognition. Feasibility experiments are presented, validating the benefits of the approach

    Development of an intelligent personal assistant to empower operators in industry 4.0 environments

    Get PDF
    Mestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do ParanáIndustry 4.0 brings a high level of automation to industrial environments and changes the way companies operate, both in operational aspects and in human relations. It is important to define the role of the millions of operators affected in this new socioeconomic paradigm, integrating new technologies and empowering the workforce to take advantage of aspects such as the flexibility and versatility that human operators bring to production lines. To advance the implementation of this objective, this work proposes the development of an intelligent personal assistant, using concepts of human-in-the-loop cyber-physical systems and context awareness, to assist operators during manufacturing tasks, providing the necessary information for the fulfillment of operations and verifying the accuracy to inform them about possible errors. The implementation is divided in two parts. The first part focuses on an application that supports the real-time operations that can be present in the industry, such as pick and place in warehouses and the assembly of complex equipment on an assembly line. Through an interface, the instruction is given and, using artificial vision techniques with images coming from an IntelRealsense camera, it verifies if the operation is being correctly performed. The gathering of this information occurs in a context awareness algorithm, fulfilling the requirement of intelligent personal assistant and providing feedback to the operator so that the tasks are performed with efficiency and lower incidence of errors. The second part includes the training of these operators in an immersive environment through a virtual reality equipment such as the Oculus Go. The immersive scenario, developed in Unity3D, uses as a model the real workbench, bringing the possibility of performing these trainings in any environment and excluding the need to use real equipment, which could be damaged by the user’s inexperience. The results achieved during the validation tests performed in these two parts, commenting on the strengths, challenges and failures found in the system in general. These results are also qualitatively compared with traditional applications of the proposed case studies in order to prove the fulfillment of the objectives proposed in this work. Finally, the usability test is presented, which provides data on weak points in the user experience for possible improvements in future work.A indústria 4.0 traz um nível elevado de automação a ambientes industriais e muda a forma em que empresas funcionam, tanto em aspectos operacionais quanto em relações humanas. É importante a definição do papel dos milhões de operadores afetados neste novo paradigma socioeconômico, fazendo a integração das novas tecnologias e capacitando a mão de obra para fazer proveito de aspectos como a flexibilidade e versatilidade que operadores humanos trazem às linhas de produção. Para avançar a implementação deste objetivo, este trabalho propõe o desenvolvimento de uma assistente pessoal inteligente, utilizando conceitos de human-in-the-loop cyberphysical systems e context awareness, para auxiliar operadores durante tarefas de manufatura, provendo informações necessárias para o cumprimento de operações e verificando a acurácia para informá-lo sobre possíveis erros. A implementação está dividida em duas partes. A primeira parte foca em uma aplicação de operações em tempo real que podem estar presentes na indústria como pick-andplace em armazéns e a montagem de equipamentos complexos em uma linha de montagem. Através de uma interface é dada a instrução a ser realizada e, utilizando técnicas de visão artificial, com imagens vindas de uma câmera IntelRealsense, verifica se a operação está sendo corretamente executada. A junção dessas informações ocorre em um algoritmo de context awareness, cumprindo o requisito de assistente pessoal inteligente e fornecendo o feedback ao operador para que as tarefas sejam realizadas com eficiência e menor incidência de erros. Já a segunda parte engloba o treinamento destes operadores em um ambiente imersivo através de um equipamento de realidade virtual como o Oculus Go. O cenário, desenvolvido no Unity3D, utiliza como modelo a bancada real, trazendo a possibilidade de se realizar esses treinamentos em qualquer ambiente, excluindo a necessidade da utilização de equipamentos reais e possíveis danos originados de inexperiência do usuário. Os resultados apresentam os testes de validação realizados nestas duas partes, comentando os pontos fortes, desafios e falhas encontradas no sistema em geral. Estes resultados também são comparados qualitativamente com aplicações tradicionais dos casos de estudo propostos de forma a comprovar o cumprimento dos objetivos propostos neste trabalho. Por fim, é apresentado o teste de usabilidade que fornece dados em pontos fracos na experiência de usuários para possíveis melhorias em futuros trabalhos

    Industry 4.0 enabling technologies for increasing operational flexibility in final assembly

    Get PDF
    The manufacturing industry is facing uncertainties caused by growing competition and increasing customer demands. Simultaneously, the fourth industrial revolution, commonly referred to as Industry 4.0, is helping in modernising the manufacturing industry. In the process of modernising, companies are now capable of building resilience into their systems. This resilience is in the form of higher operational flexibility, which helps cope with the growing uncertainties. The new technologies under the Industry 4.0 umbrella can be used to increase operational flexibility. This article summarises various Industry 4.0 enabling technologies that can increase operational flexibility in final assembl

    The Impacts of Using Augmented Reality to Support Aircraft Maintenance

    Get PDF
    The United States Air Force (USAF) expends significant resources to address the rise in aviation mishaps derived from an overworked, understaffed maintenance community, and high operational environment. Currently, paper-based technical orders (T.O.) are utilized by maintainers to accomplish aircraft inspections, servicing, and maintenance tasks. As technology advances, many civilian agencies have begun to leverage augmented reality (AR) to improve organizational proficiency. This research seeks to identify if the inclusion of AR within aircraft maintenance will positively or negatively affect maintenance task accuracy and completion time. A single variable randomized complete block design (RCBD), within-subject design of experiment (DOE) asses the differences between a treatment group (AR-enabled T.O.) contrary to the control group (paper-based T.O.). Results conclude AR-enabled T.O.s designed from the AF perspective will reduce simple task errors, but will not impact total task completion time. Differentiation from prior findings, application specificity, will impact AR effectiveness and utilization within the organization employed. Additionally, experimental research revealed the need to address current AF infrastructure barriers before implementation of the technology within the organization
    • …
    corecore