3,439 research outputs found

    A taxonomy framework for unsupervised outlier detection techniques for multi-type data sets

    Get PDF
    The term "outlier" can generally be defined as an observation that is significantly different from the other values in a data set. The outliers may be instances of error or indicate events. The task of outlier detection aims at identifying such outliers in order to improve the analysis of data and further discover interesting and useful knowledge about unusual events within numerous applications domains. In this paper, we report on contemporary unsupervised outlier detection techniques for multiple types of data sets and provide a comprehensive taxonomy framework and two decision trees to select the most suitable technique based on data set. Furthermore, we highlight the advantages, disadvantages and performance issues of each class of outlier detection techniques under this taxonomy framework

    Algorithms for the Analysis of Spatio-Temporal Data from Team Sports

    Get PDF
    Modern object tracking systems are able to simultaneously record trajectories—sequences of time-stamped location points—for large numbers of objects with high frequency and accuracy. The availability of trajectory datasets has resulted in a consequent demand for algorithms and tools to extract information from these data. In this thesis, we present several contributions intended to do this, and in particular, to extract information from trajectories tracking football (soccer) players during matches. Football player trajectories have particular properties that both facilitate and present challenges for the algorithmic approaches to information extraction. The key property that we look to exploit is that the movement of the players reveals information about their objectives through cooperative and adversarial coordinated behaviour, and this, in turn, reveals the tactics and strategies employed to achieve the objectives. While the approaches presented here naturally deal with the application-specific properties of football player trajectories, they also apply to other domains where objects are tracked, for example behavioural ecology, traffic and urban planning

    Pattern mining under different conditions

    Get PDF
    New requirements and demands on pattern mining arise in modern applications, which cannot be fulfilled using conventional methods. For example, in scientific research, scientists are more interested in unknown knowledge, which usually hides in significant but not frequent patterns. However, existing itemset mining algorithms are designed for very frequent patterns. Furthermore, scientists need to repeat an experiment many times to ensure reproducibility. A series of datasets are generated at once, waiting for clustering, which can contain an unknown number of clusters with various densities and shapes. Using existing clustering algorithms is time-consuming because parameter tuning is necessary for each dataset. Many scientific datasets are extremely noisy. They contain considerably more noises than in-cluster data points. Most existing clustering algorithms can only handle noises up to a moderate level. Temporal pattern mining is also important in scientific research. Existing temporal pattern mining algorithms only consider pointbased events. However, most activities in the real-world are interval-based with a starting and an ending timestamp. This thesis developed novel pattern mining algorithms for various data mining tasks under different conditions. The first part of this thesis investigates the problem of mining less frequent itemsets in transactional datasets. In contrast to existing frequent itemset mining algorithms, this part focus on itemsets that occurred not that frequent. Algorithms NIIMiner, RaCloMiner, and LSCMiner are proposed to identify such kind of itemsets efficiently. NIIMiner utilizes the negative itemset tree to extract all patterns that occurred less than a given support threshold in a top-down depth-first manner. RaCloMiner combines existing bottom-up frequent itemset mining algorithms with a top-down itemset mining algorithm to achieve a better performance in mining less frequent patterns. LSCMiner investigates the problem of mining less frequent closed patterns. The second part of this thesis studied the problem of interval-based temporal pattern mining in the stream environment. Interval-based temporal patterns are sequential patterns in which each event is aligned with a starting and ending temporal information. The ability to handle interval-based events and stream data is lacking in existing approaches. A novel intervalbased temporal pattern mining algorithm for stream data is described in this part. The last part of this thesis studies new problems in clustering on numeric datasets. The first problem tackled in this part is shape alternation adaptivity in clustering. In applications such as scientific data analysis, scientists need to deal with a series of datasets generated from one experiment. Cluster sizes and shapes are different in those datasets. A kNN density-based clustering algorithm, kadaClus, is proposed to provide the shape alternation adaptability so that users do not need to tune parameters for each dataset. The second problem studied in this part is clustering in an extremely noisy dataset. Many real-world datasets contain considerably more noises than in-cluster data points. A novel clustering algorithm, kenClus, is proposed to identify clusters in arbitrary shapes from extremely noisy datasets. Both clustering algorithms are kNN-based, which only require one parameter k. In each part, the efficiency and effectiveness of the presented techniques are thoroughly analyzed. Intensive experiments on synthetic and real-world datasets are conducted to show the benefits of the proposed algorithms over conventional approaches

    A Genomic Investigation of Divergence Between Tuna Species

    Get PDF
    Effective management and conservation of marine pelagic fishes is heavily dependent on a robust understanding of their population structure, their evolutionary history, and the delineation of appropriate management units. The Yellowfin tuna (Thunnus albacares) and the Blackfin tuna (Thunnus atlanticus) are two exploited epipelagic marine species with overlapping ranges in the tropical and sub-tropical Atlantic Ocean. This work analyzed genome-wide genetic variation of both species in the Atlantic basin to investigate the occurrence of population subdivision and adaptive variation. A de novo assembly of the Blackfin tuna genome was generated using Illumina paired-end sequencing data and applied as a reference for population genomic analysis of specimens from 9 localities spanning most of the Blackfin tuna range. Analysis suggested the presence of four weakly differentiated units corresponding to the northwestern Atlantic Ocean, Gulf of Mexico, Caribbean Sea, and southwestern Atlantic Ocean, respectively. Significant spatial autocorrelation of genotypes was observed for specimens collected within 800 km of each other. A high-quality genome assembly generated for the Yellowfin tuna using PacBio and Illumina sequences was scaffolded by a linkage map developed through analysis of the segregation of genome wide Single Nucleotide Polymorphisms in 164 larvae offspring from a single pair produced by controlled breeding. The genome assembly was used as a reference for population genomic analysis of juvenile specimens from the 4 main nursery areas hypothesized in the Atlantic Ocean basin. Analyses corroborated previously reported population subdivision between the east and west Atlantic Ocean, but also suggested subdivision associated with individual nursery areas within the east and west regions. Draft reference assemblies were generated for Albacore, Bigeye and Longtail tunas and used in combination with the Yellowfin and Blackfin tuna genomes obtained in this work and existing assemblies for bluefin tunas in preliminary analyses of genome wide variation between species of the Thunnus genus. Whole-genome derived SNP-based phylogenetic analysis of the Thunnus genus suggests phylogenetic relationships may be more complex than suggested in earlier work based on Restriction-site Associated DNA sequencing or muscle transcriptome sequencing and prompt for further analysis of the genus using a more comprehensive sampling of taxa in each oceanic basin

    Graph based Anomaly Detection and Description: A Survey

    Get PDF
    Detecting anomalies in data is a vital task, with numerous high-impact applications in areas such as security, finance, health care, and law enforcement. While numerous techniques have been developed in past years for spotting outliers and anomalies in unstructured collections of multi-dimensional points, with graph data becoming ubiquitous, techniques for structured graph data have been of focus recently. As objects in graphs have long-range correlations, a suite of novel technology has been developed for anomaly detection in graph data. This survey aims to provide a general, comprehensive, and structured overview of the state-of-the-art methods for anomaly detection in data represented as graphs. As a key contribution, we give a general framework for the algorithms categorized under various settings: unsupervised vs. (semi-)supervised approaches, for static vs. dynamic graphs, for attributed vs. plain graphs. We highlight the effectiveness, scalability, generality, and robustness aspects of the methods. What is more, we stress the importance of anomaly attribution and highlight the major techniques that facilitate digging out the root cause, or the ‘why’, of the detected anomalies for further analysis and sense-making. Finally, we present several real-world applications of graph-based anomaly detection in diverse domains, including financial, auction, computer traffic, and social networks. We conclude our survey with a discussion on open theoretical and practical challenges in the field

    Techniques for automatic large scale change analysis of temporal multispectral imagery

    Get PDF
    Change detection in remotely sensed imagery is a multi-faceted problem with a wide variety of desired solutions. Automatic change detection and analysis to assist in the coverage of large areas at high resolution is a popular area of research in the remote sensing community. Beyond basic change detection, the analysis of change is essential to provide results that positively impact an image analyst\u27s job when examining potentially changed areas. Present change detection algorithms are geared toward low resolution imagery, and require analyst input to provide anything more than a simple pixel level map of the magnitude of change that has occurred. One major problem with this approach is that change occurs in such large volume at small spatial scales that a simple change map is no longer useful. This research strives to create an algorithm based on a set of metrics that performs a large area search for change in high resolution multispectral image sequences and utilizes a variety of methods to identify different types of change. Rather than simply mapping the magnitude of any change in the scene, the goal of this research is to create a useful display of the different types of change in the image. The techniques presented in this dissertation are used to interpret large area images and provide useful information to an analyst about small regions that have undergone specific types of change while retaining image context to make further manual interpretation easier. This analyst cueing to reduce information overload in a large area search environment will have an impact in the areas of disaster recovery, search and rescue situations, and land use surveys among others. By utilizing a feature based approach founded on applying existing statistical methods and new and existing topological methods to high resolution temporal multispectral imagery, a novel change detection methodology is produced that can automatically provide useful information about the change occurring in large area and high resolution image sequences. The change detection and analysis algorithm developed could be adapted to many potential image change scenarios to perform automatic large scale analysis of change

    DECODING BACTERIAL GENOME WITH HIGH-THROUGHPUT SEQUENCING: GENES AND GENETIC MARKERS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore