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Summary 

Advancement in sequencing technology, which has significantly increased the 

throughput and decreased the cost, has made sequencing accessible to more 

clinical microbiology laboratories for both infection control and public health 

purposes. Some advantages of sequencing over traditional microbiology 

methods include providing more comprehensive information at a higher 

resolution in a single procedure, ability to make quick diagnoses and save 

human labor. In the thesis, my attempt to decode bacterial genome with high-

throughput sequencing is summarized from two perspectives: genes and 

genetic markers. 

Constructing a phylogenetic tree is one of the most useful tools for 

studying the evolutionary history of bacteria, and this genetic inference can be 

adversely affected by genetic recombination. In Chapter 3, I introduce and 

describe ReRCoP, a novel method for efficient identification and removal of 

recombination in large bacterial samples for accurate phylogenetic inference. 

The global dissemination of antibiotic resistance genes has posed a significant 

public health threat. In Chapter 4, the global dissemination and local 

transmission of the blaNDM gene, which is capable of causing resistance to a 

broad range of beta-lactam antibiotics and of spreading to a wide range of 

Gram-negative bacteria, are examined at the genomic level to identify the 

means of dissemination which could provide insights for containment of its 

spread. New genes are continually emerging and discovered in bacteria, some 

offering increased fitness to survival while some causing antibiotic resistance. 

The emergence of new genes has been attributed to gene duplication and 

divergence. In Chapter 5, a new model called the IAID (Innovation-
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Amplification-Innovation-divergence) model is proposed to explain gene 

evolution via duplication. Genetic markers have been widely used for bacterial 

molecular typing. In Chapter 6, SpoTyping, a fast and accurate in silico 

spoligotyping method for Mycobacterium tuberculosis from sequencing reads 

is described that can be used for fast disease diagnosis and correlating recent 

outbreaks with historical isolates. 

In summary, the utility of high-throughput sequencing has been 

demonstrated in bacteria genomics study.  



ix 

 

List of Tables 

 

Table 1. Information of sequences used in simulation of horizontal gene transfer on E. 

coli genomes. .............................................................................................................. 34 

Table 2. Information of sequences used in simulation of homologous recombination 

on S. pneumoniae genomes. ........................................................................................ 34 

Table 3. Information of 94 diverse E. coli chromosomes used in core genome analysis 

with recombination removal. ...................................................................................... 37 

Table 4. Sensitivity and specificity of kNN outlier detection using different k and 

radius. ......................................................................................................................... 58 

Table 5. Patient demographics and sample features. .................................................. 74 

Table 6. Summary of Illumina sequencing and de novo assembly statistics. ............. 75 

Table 7. Names and accession numbers of blaNDM-positive plasmids. ....................... 83 

Table 8. Summary of complete bacterial genomes harboring two copies of LamB gene 

and the plasmid harboring LamB gene. ..................................................................... 108 

Table 9. K. pneumoniae whole genome sequencing statistics and MLST. ............... 119 

Table 10. Statistics of time and accuracy of running SpoTyping on 50 iterations each 

for various downsampling ratios of an H37Ra Mtb isolate....................................... 145 

Table 11. Statistics of time and accuracy of running SpoTyping on 50 iterations each 

for various downsampling ratios of a Beijing-genotype Mtb isolate. ....................... 145 

 

  

file:///C:/Users/a0103405/Dropbox/Thesis%20-%20Xia%20Eryu.docx%23_Toc445211365
file:///C:/Users/a0103405/Dropbox/Thesis%20-%20Xia%20Eryu.docx%23_Toc445211365
file:///C:/Users/a0103405/Dropbox/Thesis%20-%20Xia%20Eryu.docx%23_Toc445211366
file:///C:/Users/a0103405/Dropbox/Thesis%20-%20Xia%20Eryu.docx%23_Toc445211366


x 

 

List of Figures 

 

Figure 1. Comparison of outlier detection methods. ................................................... 43 

Figure 2. Performance of ReRCoP recombination detection in simulations of 

horizontal gene transfer on E. coli genomes. .............................................................. 46 

Figure 3. Performance of ReRCoP in simulations of homologous recombination on S. 

pneumoniae genomes in comparison with Gubbins. .................................................. 49 

Figure 4. Overlap of recombinant genes detected by Grubbs’, DBSCAN, and kNN. 52 

Figure 5. Phylogenetic tree change after recombination removal in 94 diverse E. coli 

isolates. ....................................................................................................................... 53 

Figure 6. Phylogenetic tree change after recombination removal in 91 ST131 E. coli 

isolates. ....................................................................................................................... 55 

Figure 7. Summary of similarity value distribution by density plot and interval 

breakdown. .................................................................................................................. 57 

Figure 8. Patient transmission dynamics of local bacterial samples. .......................... 76 

Figure 9. Read depths along the reference plasmid sequences based on Illumina 

MiSeq sequencing reads mapping............................................................................... 78 

Figure 10. Whole-genome phylogenetic tree of local blaNDM-positive bacteria. ........ 80 

Figure 11. Clustering of global plasmids in Gram-negative bacteria hosts. ............... 84 

Figure 12. Clustering of blaNDM-positive plasmids. .................................................... 86 

Figure 13. SNP-based refinement maximum likelihood trees of blaNDM plasmid 

clusters. ....................................................................................................................... 87 

Figure 14. Acquisition of blaNDM cassettes. ................................................................ 90 

Figure 15. A schematic representation of the QuasQ haplotype reconstruction. ...... 102 

Figure 16. A schematic representation of the IAID model of gene evolution by 

duplication. ............................................................................................................... 106 

Figure 17. Core genome Neighbor-Joining SNP tree of the chromosomes harboring 

two copies of the LamB gene. ................................................................................... 110 

Figure 18. Neighbor-Joining SNP tree of LamB gene sequences summarized in Table 

8. ............................................................................................................................... 111 

Figure 19. Characterization of the regions between LamB gene copies within 

chromosomes: distance and sequence similarity. ..................................................... 114 

Figure 20. Similarity of gene surrounding regions and between-gene regions. ........ 115 

Figure 21. LamB gene evolves like a cloud of similar sequences. ............................ 118 

Figure 22. Amino acid changes of LamB gene sequences in each cluster. ............... 121 

Figure 23. Positions with at least five sequences having different residuals from the 

major residual. .......................................................................................................... 122 

Figure 24. Predicted secondary structure and solvent accessibility for the two LamB 

copies in K. pneumoniae 1084 genome. ................................................................... 123 

Figure 25. Difference between gene pairs within the same chromosome. ................ 124 

Figure 26. A schematic representation of the SpoTyping workflow. ....................... 138 

file:///C:/Users/a0103405/Dropbox/Thesis%20-%20Xia%20Eryu.docx%23_Toc445211440


xi 

 

Figure 27. Prediction accuracy of Mtb isolates sequenced on Illumina MiSeq and Ion 

Torrent. ..................................................................................................................... 143 

Figure 28. Assessing the accuracy of SpoTyping across various sequencing read 

depths for H37Ra and Beijing-genotype isolates. ..................................................... 144 

Figure 29. ROC curves for the selection of hit thresholds.. ...................................... 147 

 

  



xii 

 

List of Abbreviations 

 

CPE: carbapenemase-producing Enterobacteriaceae 

CRE: carbapenem-resistant Enterobacteriaceae 

CRISPR: clustered regularly-interspaced short palindromic repeats 

DBSCAN: density-based spatial clustering of applications with noise 

DR: direct repeat 

HGT: horizontal gene transfer 

kNN: k-nearest neighbors 

MIRU-VNTR: mycobacterial interspersed repetitive units - variable numbers 

of tandem repeat 

MLST: multi-locus sequence type 

Mtb: Mycobacterium tuberculosis 

NGS: next-generation sequencing 

PCR: polymerase chain reaction 

RFLP: restriction fragment length polymorphism 

ROC: receiver operating characteristic 

SMRT: single molecule, real-time 

SNP: single-nucleotide polymorphism 

TB: tuberculosis 

  



xiii 

 

Glossary 

 

Antibiotics A type of antimicrobial for treating and preventing bacterial 

infection. 

Antimicrobial An agent that can kill microorganisms or inhibit their growth. 

Bacteria Microscopic single-celled organisms that live in enormous numbers 
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Bootstrapping A method to determine the confidence levels about the 

topology of an inferred phylogenetic tree using bootstrap resampling 

technique. 

Carbapenem A class of broad-spectrum beta-lactam antibiotics, which is 

active against many bacteria by inhibiting cell wall synthesis. 
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Core genome A concatenation of the set of genes present in all members of 
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DBSCAN A density-based clustering algorithm, which groups points in the 

high-density regions together while making points in the low-density regions 
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used in the development, functioning and reproduction of all known living 
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Homoplasy A phenomenon that identical character states (for example, the 
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PCR A technology used in molecular biology to amplify one or a few copies 

of a piece of DNA to generate thousands to millions of copies of the DNA. 

Receiver operating characteristic (ROC) A graphical plot created by 

plotting the true positive rate against the false positive rate of a binary 

classifier at various discrimination threshold settings to show the performance 

of the classifier under different thresholds. 

Sequencing A process to determine the genetic sequence of a DNA. 

Single-nucleotide polymorphism (SNP) A variation affects a single base pair 

between two DNAs. 

 

Enterobacteriaceae A family of Gram-negative bacteria that includes, along 

with many harmless symbionts, many familiar pathogens, such as Salmonella, 

Escherichia coli, Enterobacter cloacae, Klebsiella pneumonia, and Yersinia 

pestis. 

Enterobacter aerogenes A Gram-negative, rod-shaped bacterium of the 

family Enterobacteriaceae and the genus Enterobacter that causes 
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Enterobacteriaceae and the genus Enterobacter that is commonly found in the 
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Escherichia coli A Gram-negative, rod-shaped bacterium of the family 

Enterobacteriaceae and the genus Escherichia that is commonly found in the 

guts of warm-blooded organisms and can cause infections at times. 
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Enterobacteriaceae and the genus Klebsiella that can cause destructive 

changes to human lungs. 

Klebsiella variicola A Gram-negative, rod-shaped bacterium of the family 

Enterobacteriaceae and the genus Klebsiella that was previously regarded as a 
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Mycobacterium tuberculosis A pathogenic bacterium of the family 

Mycobacteriaceae and the genus Mycobacterium that is the causative agent of 

tuberculosis. 
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Chapter 1 

 

Introduction 
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1.1 Introduction to sequencing technologies 

1.1.1 First-generation sequencing 

The beginning of first-generation sequencing is marked by the chain-

termination method developed by Sanger and Coulson in 1975 [1, 2], and a 

chemical sequencing method developed by Maxam and Gilbert [3] around the 

same time. Sanger sequencing, also known as enzymatic DNA sequencing, 

has been the most prevalent method, which is still used today. Sanger 

sequencing is based on using DNA polymerase to selectively incorporate 

chain-terminating dideoxynucleotides during in vitro DNA replication. Each 

reaction in Sanger sequencing can produce a sequence read of up to 800 to 

1,000 base pairs (bp) in length. Sanger sequencing has the advantages of 

having high read accuracy and long read length, while suffering from the 

disadvantages of low throughput, high cost per base, and inefficiency in 

detecting low frequency variants compared to new generations of sequencing. 

Maxam-Gilbert sequencing is based on nucleobase-specific partial chemical 

modification of DNA followed by cleavage of the DNA backbone at sites 

adjacent to the modified nucleotides, and has become less favored due to 

technical complexity, extensive use of hazardous chemicals and difficulties to 

scale up.  

 

1.1.2 Next-generation sequencing 

Next-generation sequencing (NGS) is also known as second-generation 

sequencing and has the widest applications among all sequencing technologies 

in the current genomics study. The past 10 years have witnessed dramatic 
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improvements in NGS technology, which included the significant increase in 

sequencing throughput and the rapid drop in sequencing cost. 

The year 2004 marks the beginning of NGS by having the first NGS 

equipment available. Since then, many new sequencing platforms have been 

introduced such as the 454, SOLiD, Illumina, Ion Torrent PGM, Ion Proton, 

and so on. Different from classical sequencing methods that amplify one 

amplicon from one sample and produce a single sequence, NGS chemistries 

have the amplicons amplified clonally, separated spatially and read in cyclic 

parallel [4]. 

Several steps of DNA sequencing are shared regardless of the platform: 

library preparation, clonal amplification, and sequencing chemistry. 

The first step is library preparation. The DNA sample to be sequenced is 

first fragmented into pieces either with mechanical forces like sonication or 

nebulization or by enzymatic digestion. The target fragment size varies 

depending on the platform and chemistry and can be selected with gel or beads. 

Short adaptors, which provide priming sequences for amplification and 

sequencing, are then ligated to the ends of the fragments. If multiplexing is 

needed, barcode sequences are also ligated to provide information about the 

DNA identity. If a mate pair library is to be prepared, apart from the adaptors 

and barcodes mentioned above, an internal adaptor is used to separate two 

DNA fragments. 

The second step is clonal amplification. Each fragment in the prepared 

library needs to be amplified clonally before sequencing to enhance the signal 

in the sequencing process for accurate detection. Two approaches are available: 
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bridge PCR used by Illumina and emulsion PCR introduced by 454 Life 

Sciences and used also by SOLiD, Ion Torrent PGM and Ion Proton. 

The next step is central to sequencing: the sequencing chemistry that 

performs base interrogation on all DNA fragments in parallel and detects 

signals that are later translated into DNA bases. Different platforms have 

different sequencing chemistry. Several examples are: 454 pyrosequencing, 

Illumina sequencing by synthesis, SOLiD sequencing by ligation, and Ion 

Torrent semiconductor sequencing. Pyrosequencing determines the DNA 

sequence based on the light emitted upon incorporation of the next 

complementary nucleotide. It detects the activity of DNA polymerase with 

another chemoluminescent enzyme. Illumina sequencing by synthesis uses 

only DNA polymerase, and is based on reversible dye-terminators that enable 

the identification of single nucleotides as they are introduced into DNA 

strands. SOLiD sequencing by ligation does not use DNA polymerase but uses 

DNA ligase, whose preferential ligation for matching sequences results in a 

signal to identify the nucleotide on a given position. Ion Torrent 

semiconductor sequencing is based on the detection of pH alteration caused by 

hydrogen ions that are released during the polymerization of DNA, which is 

different from the optical methods used in other sequencing systems. 

Apart from the merits, which include high throughput, high accuracy, and 

low cost, NGS has two major weaknesses, which are: (1) the read length is 

shorter compare to Sanger sequencing; and (2) the use of PCR can introduce 

bias in the amplification process [5]. 
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1.1.3 Third-generation sequencing 

No consensus has been reached on the definition of third-generation 

sequencing (also known as next-next-generation sequencing). It has been 

suggested that single molecule sequencing without the need to halt, 

enzymatically or otherwise, between read steps should be called the third-

generation sequencing, where each read represents the sequence of a single 

molecule of DNA [6]. The technologies fall into three main categories: (1) 

sequencing by synthesis, where single molecules of DNA polymerase are 

monitored as a single molecule of DNA is synthesized; (2) sequencing with 

nanopores, where single molecules are directed through or positioned next to a 

nanopore and are sequenced base by base as they pass the nanopore; and (3) 

sequencing by direct imaging, where advanced microscopies are used to 

sequence individual DNA molecules [6]. The single-molecule real-time 

(SMRT) sequencing developed by Pacific Biosciences represents a first third-

generation technique that has been applied to genomics study. SMRT 

sequencing is marked by two key innovations: zero-mode waveguides which 

allow light to illuminate only the bottom of a well where a DNA 

polymerase/template complex is immobilized, and phospholinked nucleotides 

which allow observation of the immobilized complex when the DNA 

polymerase produces a completely natural DNA strand. While the long 

sequencing reads and rapid turnaround time attracts great attention to third-

generation sequencing, efforts are still needed to increase the throughput, 

increase the read accuracy and decrease the cost. 
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1.1.4 Next-generation sequencing, high-throughput sequencing and whole 

genome sequencing 

While the title of the thesis defines its scope to high-throughput sequencing, 

next-generation sequencing and whole genome sequencing are also terms 

frequently referred to. The three terms, while all used to describe sequencing 

technologies, view technologies from different perspectives. Next-generation 

sequencing, as elaborated above, refers to the sequencing technologies that are 

developed during a time period, and perform sequencing by having amplicons 

clonally amplified, spatially separated and read in cyclic parallel. High-

throughput sequencing was initially coined to describe the first commercial 96 

capillary sequencers, but the concept has changed as the sequencing 

throughput increases with time [7]. It is now used to refer to sequencing 

technologies that outperform Sanger sequencing in their daily throughput, 

which include both next-generation sequencing and third-generation 

sequencing. Whole genome sequencing, different from the two mentioned 

above, has little to do with the sequencing technology. Also known as full 

genome sequencing, complete genome sequencing, and entire genome 

sequencing, whole genome sequencing refers to any process that determines 

the DNA sequences of an organism’s genome in a single procedure. In 

bacteria studies, this entails sequencing of the bacterial chromosomal DNA as 

well as the extra-chromosomal DNA such as the plasmid DNA. Though not in 

itself a technical term, whole genome sequencing has been made easier as 

sequencing throughput increases, which is made possible by high-throughput 

sequencing techniques like next-generation sequencing. 
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1.2 Introduction to bacteria genomics 

1.2.1 Bacteria 

Bacteria are microscopic single-celled prokaryotic organisms, which live in 

enormous numbers and constitute a large domain of prokaryotic 

microorganisms. They are found in every habitat on Earth, and some live in 

other organisms like plants and animals including humans. There are a lot of 

bacterial cells in the human body, with the largest number in the human gut. 

While the majority of the bacteria in human body are harmless or even 

beneficial to our health, some species are pathogenic and can cause infectious 

disease. Several examples of bacteria that are found in human body are: 

Escherichia coli (E. coli), which is commonly found in the human gut and can 

cause infections at times; Klebsiella pneumoniae (K. pneumoniae), which can 

cause destructive changes to the human lung; and Mycobacterium tuberculosis 

(Mtb), which is the causative agent of tuberculosis (TB). 

 

1.2.2 Bacterial genome 

Bacteria have simple cell structures. There is neither nucleus nor membrane-

bound organelles, and the genetic information is usually carried by a single 

loop of chromosomal DNA. For some bacteria, there are extra-chromosomal 

DNAs called plasmids. Bacterial genome, defined as the complete set of 

genetic information, thus includes both chromosome(s) and plasmids. 

Unlike most eukaryotes whose DNAs are linear, most bacteria have a 

single circular chromosome, the size of which ranges from about 0.13 million 

base pairs (Mbp) as symbionts in nutrient-provisioning environment in several 

insect lineages [8] to over 14 Mbp [9] due to genome expansion in different 
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environmental conditions. The genome of E. coli is about 5.1 Mbp with about 

4,900 genes. The genome of K. pneumoniae is about 5.6 Mbp with about 

5,500 genes. The genome of Mtb is about 4.4 Mbp with about 4,000 genes. 

These bacterial genomes are only about 0.1% the size of the human genome, 

while having about 10% as many genes. This is a result of the differences 

between bacterial chromosome and human chromosome from three 

perspectives: (1) bacterial genes, on average, have fewer codons than human 

genes; (2) bacterial genes have no introns; and (3) length of non-coding DNA 

between bacterial genes is shorter. 

Plasmids are extra-chromosomal DNAs that are usually circular, self-

replicating, and play important roles in maintaining and disseminating novel 

genetic elements in the bacterial population. Plasmids carry genes encoding 

adaptive traits such as antibiotic resistance, pathogenesis, or the ability to 

exploit new environments or compounds. Bacterial chromosomes, as they 

represent features necessary for the survival of bacteria, show a relatively high 

conservation of the structure with many universally shared genes. Plasmids, on 

the other hand, are more variable in terms of the gene content and gene 

organization, even at very short genetic distances [10]. 

 

1.2.3 Genomic features of bacteria 

Horizontal gene transfer (HGT), an important mechanism for the evolution of 

microbial genomes, refers to the transfer of genetic material to a non-offspring 

cell, which is different from vertical gene transfer that passes genetic material 

from an ancestor to a descendent. Mobile genetic elements like plasmids, 

bacteriophages and pathogenicity islands can mediate HGT that transfers 
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genes often involved in infection [11]. There are different mechanisms 

explaining HGT: transformation, transduction and conjugation [11]. 

Transformation causes genetic alteration by directly uptaking and 

incorporating foreign DNA from its surroundings through the cell membrane. 

Transduction causes genetic alteration by introducing foreign DNA via a virus 

or viral vector. Bacterial conjugation causes genetic alteration by transferring 

DNA between bacterial cells via direct contact or via a bridge-like connection 

between two cells. 

Apart from the traditional view that prokaryotes evolve by clonal 

divergence and periodic selection, bacterial genome evolution is shaped by 

three main forces: gene acquisition via HGT, gene loss by deletion events and 

gene change like mutations or rearrangements [12]. Different bacterial 

pathogens adopt different scale of the forces, leading to different genomic 

dynamics. Three main genomic dynamics have been reported: (1) Some 

bacteria have genetically uniform lineages. These are usually reproductively 

isolated bacteria, for example, Mtb and Bacillus anthracis, and are thus 

“clonal” in the genome evolution. (2) Some bacteria recombine extensively 

between closely related sequences in closely related strains. These are usually 

competent mucosal pathogens by nature, for example, Haemophilus influenza 

(H. influenza) and Streptococcus pneumoniae (S. pneumoniae). (3) Some 

bacteria have widespread HGT that introduces genetic sequences into the 

genome, thus bringing in large blocks of foreign gene sequences in a single 

event. This is common in certain pathogens like many enterobacteria, some 

staphylococci and streptococci [11]. 
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1.2.4 Bacteria genomics 

NGS has become widely used for clinical microbiology research due to 

improvements that have made it faster, cheaper and more accurate, and can 

now replace many laboratory tests with a single sequencing run. Three tasks 

essentially performed by NGS are: (1) species identification of a bacterial 

isolate; (2) determination of properties such as antibiotic resistance and 

virulence; and (3) detect the emergence and control the spread of pathogens 

[13]. Various studies have been conducted, which have showcased the 

application of NGS in bacteria genomics on species like Clostridium difficile 

[14], E. coli [15–17], K. pneumoniae [18], Methicillin-resistant 

Staphylococcus aureus (MRSA) [19, 20], and so on. Some other researches 

have focused on metagenomics problems like identifying mixed infections [21, 

22], investigating intra-host bacteria diversity [23] and assembling genomic 

sequences from metagenomics data [24] , which studied the bacteria 

communities. 

Traditional laboratory tests are usually multiple-step, labor-intensive, 

complex and sometimes slow, which may take days for fast-growing bacteria 

like E. coli and months for slow-growing bacteria like Mtb. Genomics 

approaches with NGS, however, enable the results to be achieved in a single 

step after culturing and sequencing. Moreover, they can provide information 

not achievable with current molecular typing methods, which are usually of 

single-nucleotide resolution. 

 



11 

 

1.3 Introduction to basic bioinformatics approaches in bacteria genomics 

1.3.1 Sequencing data format, quality control, and pre-processing 

FASTA format is a text-based format in bioinformatics to represent nucleotide 

or peptide sequences, in which each sequence begins with a description line 

distinguished by ‘>’ at the beginning, followed by lines of sequences where 

each nucleotide or amino acid is represented by a single letter. FASTQ format 

is a text-based format that bundles a FASTA sequence with its quality data, 

which is the current standard format of raw reads in high-throughput 

sequencing. Each sequence in a FASTQ file has four lines, where: (1) the first 

line begins with '@', and bears the sequence identifier and description; (2) the 

second line is the sequence read; (3) the third line begins with '+', and is 

optionally followed by the same information as in the first line; and (4) the 

fourth line encodes the respective quality values for each character in the 

sequence read in the second line. 

Several metrics can be used for quality control of the raw sequencing reads, 

which can usually be computed with FastQC [25]. The first thing to consider 

is the quality scores in the FASTQ file, where low quality scores indicate low 

sequencing quality and less reliable reads. Another important thing to inspect 

is the presence of contamination from sequencing adapters, PCR primers, 

contaminant DNA and other artifacts. Pre-processing needs to be conducted 

when quality issues like low quality scores, adaptor contamination, or other 

contaminations occur, the first two of which can be performed using 

Trimmomatic [26]. 
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1.3.2 De novo assembly 

NGS, though having high throughput, produces sequencing reads of short 

length. Decoding bacterial genome requires the genomic sequences to be 

determined, making it necessary to assemble the sequencing reads into larger 

fragments. In sequence assembly, two methods are used: mapping assembly 

and de novo assembly. Mapping assembly uses a known sequence as the 

backbone, conventionally called the reference sequence, and assembles 

sequencing reads against the reference sequence. De novo assembly refers to 

the process of assembling short sequencing reads to create full-length 

(sometimes novel) sequences without prior knowledge about the sequence 

backbone or the reference sequence. Since bacteria have quite diverse and 

flexible genomes subject to HGT, duplication, inversion, and large scale 

structural rearrangements, using reference-based methods may cause 

inaccurate interpretation of the genomic features. Thus, de novo assembly 

approaches are favored in bacteria genomics study. Barriers, however, exist 

for such approaches, which include: (1) long repeat sequences; and (2) special 

genetic context such as extreme GC contents or palindromic sequences. Thus, 

gaps are left where the genomic sequence cannot be resolved, resulting in 

draft-quality genomes with hundreds of contigs instead of complete genomes. 

Some examples of de novo assembly tools useful in bacteria genomics are 

Velvet [27], SPAdes [28], and SOAPdenovo [29]. 

 

1.3.3 Reads mapping and variant calling 

While de novo assembly requires no additional information besides the 

sequencing reads, reference-based methods require a DNA sequence known to 
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be similar to the DNA that has been sequenced. Reference-based methods are 

most useful for studies of highly conservative bacterial genomes like Mtb, or 

studies of less conservative genomes when they are believed to be genetically 

similar such as being sampled from the same disease outbreak. Reads mapping 

is a process of aligning short sequencing reads to the reference sequence, 

which attempts to assign sequencing reads to the most likely location in the 

reference sequence. Various sequence alignment tools have been developed 

for reads mapping, some of the widely used ones include Bowtie2 [30], BWA 

[31], Novoalign, and SSAHA [32]. 

Genetic variants are differences between the studied DNA sequence and 

the reference sequence, which are genetic differences and may bring about 

phenotypic differences. Types of genetic variants include single-nucleotide 

polymorphism (SNP) that affects a single nucleotide, small-scale sequence 

variation like insertion and deletion of several consecutive bases, and large-

scale sequence variation like copy number variation and rearrangement. SNP 

is the best studied and described among the variations. SNP calling refers to 

the process of determining single-nucleotide variants from the reference 

sequence, which generally processes the sequence alignments from reads 

mapping, recalibrates the quality scores, calls and filters the variants. A 

combinatory use of SAMtools [33] and GATK [34] proves to yield higher 

accuracy in SNP calling. 

 

1.3.4 Phylogenetic tree 

Phylogeny is the evolutionary relationships exhibited by different species, 

different strains of a same species, or other entities. A phylogenetic tree is a 
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tree-like diagram whose branches show the inferred phylogeny based on 

physical or genetic distances measured by similarity and difference. Taxa 

joined in the tree have an implication of descending from a common ancestor. 

Two methods are usually used to construct phylogenetic trees from 

genetic sequences: distance-based methods like Neighbor-Joining and 

character-based methods like maximum parsimony and maximum likelihood. 

Distance-based methods first calculate the pair-wise distances from the 

sequence alignments, based on which a tree would be constructed. Character-

based methods use individual substitutions along the sequences to determine 

the most likely underlying phylogenetic relationship. While character-based 

methods are usually more accurate than distance-based methods, the 

characteristic that they are highly computationally expensive makes them hard 

to be applied to studies with more than a few dozens of sequences. 

Phylogenetic trees can also be classified based on the relative size of the 

branches: (1) additive trees are trees whose branch lengths are accurate 

representations of the accumulated differences; (2) scaled trees are trees whose 

branch lengths are not accurate, yet proportional to the differences between 

pairs of neighboring nodes; and (3) unscaled trees are trees that only convey 

kinship information. 

Phylogenetic trees can be either rooted or unrooted. In rooted trees, one 

node is designated as the common ancestor, which is often artificially assigned 

to an outgroup (a sequence that separates early from the other sequences in the 

study). In unrooted trees, only interrelations are shown without indication of 

the evolution direction. 
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Trees are often tested for their reliability with bootstrapping, which offers 

information about the stability of the tree topology. Bootstrap generally 

randomly samples the columns from the sequence alignments so that some 

columns are not used while some used more than once. The bootstrap value, 

presented as a count of how many times each branch exists in exactly the same 

topology in all the resampled trees, is used to indicate the potential bias. While 

high bootstrap values are indicative of the reliability of the constructed 

phylogeny tree, no rule of thumb exists to define a tree as reliable using a 

threshold. 

Various programs are available for constructing phylogenetic trees. Some 

of the most frequently cited programs include MrBayes [35], PAUP* [36], 

RAxML [37], Phyml [38], MEGA [39] and PHYLIP [40]. 

 

1.3.5 Core genome and pan genome 

While phylogenetic trees are widely used for sequence analysis, which can be 

used to describe non-independent sequence evolution due to a common 

ancestor, their application to plasmid study is limited mainly by two factors: (1) 

massive HGT events happen; and (2) few homologous regions exist for non-

clonal plasmids. The first factor is also applicable to some plastic bacterial 

chromosomes like the E. coli chromosome, where a substantial number of 

distinct genes exist though a set of housekeeping genes are shared. 

A bacterial core genome consists only of core genes, which refer to genes 

shared by all individual genomes in the studied population. A bacterial pan 

genome, however, is made up of all non-redundant genes present in at least 

one of the studied genomes. Phylogenetic trees constructed using core 
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genomes are called the core genome trees, which are based primarily on 

sequence alignments, while those constructed using pan genomes are called 

pan genome trees, which are based primarily on the presence and absence of 

genes and the similarity of the genes present. 

If a pan genome tree is constructed based only on the presence or absence 

of genes, the genetic information in the gene sequences are overlooked and 

hidden paralogies are ignored by using the BLAST reciprocal best hit 

definition of orthology [41]. A modified version of a pan genome tree is to 

base not only on the genes’ presence or absence among the studied genomes, 

but also on the similarity of the genes using a distance measure. This reforms 

the pan genome tree if the divergences of the genes are large and thus the 

similarity level implies phylogenetic relationship. However, when considering 

the concept of phylogenetic study as the study of evolutionary relationships, a 

pan genome tree is actually more of a distance-based clustering pattern rather 

than a phylogenetic tree. In fact, phylogenetic study is not well suited for 

plasmid relationship analysis due to the absence of universally shared genes, 

which is a prerequisite for phylogenetic analysis. 

If a core genome tree is constructed from a concatenation of all the core 

gene sequences, genes that are shared among all sequences in the studied 

population are considered. Evidence has been reported [42] that informational 

genes, in contrast to operational genes, have more macromolecule interactions 

and are less likely to be transferred, which is supported by the findings of 

Daubin, et al [41]. It is therefore possible that a set of genes are more closely 

correlated in the long run and thus may form the core genome. One study 

reported the core genome tree of E. coli correlates well with the phylotypes 
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and multi-locus sequence types (MLSTs), thus supporting the use of core 

genome tree to infer E. coli phylogeny [43]. 

In bacteria genomics, if we want to study the relatedness of different 

plasmids, a pan genome approach would be appropriate since that the 

divergence is so high that plasmids may share no genes in common and that 

the differences between genes are so large that distances calculated from the 

similarity level can well reflect the phylogenetic relationship. If, however, we 

are investigating the phylogenetic relationships of bacterial chromosomes, a 

core genome approach is preferred due to the large portion of genes shared 

and the biological explanation of the existence of a core genome. 
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Chapter 2 

 

Aims  
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2.1 Chapter 3 ReRCoP: core genome phylogeny of large bacterial 

population samples with recombination removal 

Phylogenetic study is a most useful approach for evolutionary history 

inference in bacteria genomics, which can be adversely affected by 

recombination caused by HGT or homologous recombination. In Chapter 3, I 

would describe ReRCoP, a novel method for identifying and removing 

recombination in bacterial genomes, which possesses the following features: 

(1) efficiently processes whole genome sequences of a large number of 

bacterial isolates; (2) automatically identifies and extracts the core genome; (3) 

robust to mutational hotspots and coldspots; and (4) accepts both complete and 

draft-quality assembled genomes. Simulations, comparisons, and analysis 

were conducted to assess its performance and utility. 

 

2.2 Chapter 4 Local transmission and global dissemination of New Delhi 

metallo-beta-lactamase (blaNDM): a whole genome analysis 

The New Delhi metallo-beta-lactamase (blaNDM) gene, a plasmid-borne 

carbapenemase gene that encodes an enzyme to make bacteria resistant to a 

broad range of beta-lactam antibiotics, has been found in extremely diverse 

bacterial strains globally, thus causing serious public health concerns 

worldwide. In Chapter 4, a whole genome analysis was conducted to 

investigate the local transmission and global dissemination of the blaNDM gene. 

To investigate the local transmission pattern, whole genome sequencing data 
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of 11 blaNDM-positive bacteria isolated in a local hospital was analyzed to: (1) 

identify and compare the blaNDM-positive plasmids; and (2) study the 

phylogenetic relationships of the bacterial chromosomes. The global analysis 

was conducted by analyzing 2,749 complete plasmid sequences (including 39 

blaNDM-positive plasmids) in the NCBI database, where: (1) the plasmids were 

clustered based on the gene composition similarity and clusters with blaNDM-

positive plasmids were identified to be of special concern; (2) phylogenetic 

study was conducted for each blaNDM-positive plasmid cluster to infer the 

phylogenetic relationships within each cluster; (3) gene transposition events 

introducing blaNDM into different plasmid backbones were identified; and (4) 

clustering pattern was correlated with the plasmids’ incompatibility groups 

and the geographical distribution. The analysis has revealed the complex 

genetic pathways of blaNDM spread, where the global dissemination is mainly 

by introduction into different backbones via gene transposition and the 

subsequent local transmission is a result of plasmid conjugation and bacteria 

spread. 

 

2.3 Chapter 5 Gene evolution by duplication: innovation, amplification, 

innovation and divergence 

Gene duplication is an important mechanism for gene evolution and new gene 

generation. In Chapter 5, the IAID (Innovation-Amplification-Innovation-

Divergence) model is proposed to explain the generation of new genes by 
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duplication, especially in bacteria. In this model, a gene with side functions 

generated by microevolution get amplified, after which microevolution still 

brings about innovations for each copy as they diverge from each other under 

selection pressure. One example is the LamB gene that is duplicated in 

Klebsiella pneumoniae and other related species. Using 34 complete genome 

sequences from NCBI, it is shown that the duplication arising by tandem 

duplication and passing on to different genomes is stably maintained and the 

copies are driven to diverge from each other by selection pressures. Haplotype 

reconstruction of whole genome sequences from 22 clinical isolates pictured 

the gene in each isolate as a population of similar sequences. The results 

suggest the efficacy of the IAID model in explaining gene evolution by 

duplication in bacteria. 

 

2.4 Chapter 6 SpoTyping: fast and accurate in silico Mycobacterium 

spoligotyping from sequencing reads 

Spoligotyping is a widely used genotyping method for Mycobacterium 

tuberculosis. In Chapter 6, I described SpoTyping, a fast and accurate program 

for in silico spoligotyping of Mycobacterium tuberculosis isolates from next-

generation sequencing reads. This novel method achieves high accuracy for 

reads of both uniform and varying lengths, and is about 20-40 times faster 

than SpolPred. SpoTyping also integrates the function of producing a report 
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summarizing associated epidemiological data from a global database of all 

isolates having the same spoligotype. 
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Chapter 3 

 

ReRCoP: core genome phylogeny of large 

bacterial population samples with recombination 

removal  
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3.1 Background 

Homoplasy refers to the situation where two organisms are genetically similar 

despite not descending from a common ancestor. A major reason for 

homoplasy in bacteria is genetic recombination [44], which is the exchange of 

genetic materials between two DNA molecules. While some bacterial species 

like Mtb have genetically uniform lineages [45], others can experience more 

extensive genomic changes due to recombination. Some bacterial species, H. 

influenzae and S. pneumoniae, for example, have extensive homologous 

recombination between similar sequences from closely related strains [46]. 

Some bacterial species go through widespread HGTs that introduce large 

blocks of foreign genetic sequences into the genome, which is common in 

certain pathogens like many enterobacteria, some staphylococci and 

streptococci [11, 47–49]. Three mechanisms account for bacterial genetic 

recombination: conjugation [50, 51], transformation [51, 52], and transduction 

[53]. Unlike point mutations that are inherited vertically and accumulated 

gradually, genetic recombination introduces large fragments of foreign 

sequences instantaneously. Since genetic recombination has no implication for 

common ancestry or descendant, removing recombination can help to 

eliminate any confounding effect it has on evolutionary history reconstruction 

[54–56] and molecular clock inference [56–58]. 

Many methods have been proposed to detect recombination from genomic 

sequences [59], which can be broadly classified into two categories: 

similarity-search methods and SNP density change detection methods. 

Similarity-search methods view recombination as the transmission of genetic 

material from a donor sequence to a recipient sequence and thus explicitly 
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search for high levels of similarity between genetically divergent sequences. 

These methods can be either block-based, which search for ‘mosaic structures’ 

in genomic sequences [60–62], or position-based, which search for 

homoplasmic sites [63] or incongruent phylogenetic partitions [64]. 

Homoplasy test [63], for example, describes true homoplasy as the same sites 

mutated independently in different phylogenetic tree branches. However, such 

similarity-search methods rely on the assumption that both donor and recipient 

sequences are available for analysis, and this is not always possible owing to 

the large size of bacterial populations and the limited number of sequences 

that are usually sampled. 

Methods that detect SNP density change view recombination as 

introducing genetic regions with a different density of SNPs compared to the 

background level [54]. Many of such methods detect abnormal distributions of 

discordant sites [65, 66], such as analyzing the distribution of variable sites 

and searching for clustering or non-random distributions of genetic variants 

[66]. Methods such as ClonalFrame [67], BratNextGen [68] and Gubbins [54] 

search for genomic regions with higher mutation rates than the background 

rate, or search closely related sequences for highly divergent regions. 

However, methods that rely on detecting changes in SNP density or mutation 

rates typically do not consider the possibility that mutation sites can be 

unevenly distributed across the genomes, particularly ignoring the presence of 

mutational hotspots and coldspots [69]. 

Existing methods to detect recombination thus possess the following 

limitations: (1) For bacterial species affected by HGT and with highly plastic 

genomes, rightfully the phylogenetic study should be confined to the core 
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bacterial genome rather than with genome alignments against a reference 

genome [16, 17, 43]. However, many of the existing recombination removal 

tools for analyzing whole bacterial genomes either cannot be applied to core 

genomes, or require substantial user pre-processing. (2) Advancements in 

high-throughput sequencing technologies have enabled large number of 

bacterial isolates sequenced and assembled in draft quality. Many of the 

existing analytical methodologies either cannot handle large numbers of 

bacterial samples or cannot handle draft-quality genomes in the absence of a 

highly similar complete genome as the reference sequence. (3) Mutation rates 

are assumed to be constant across the entire genome, ignoring the presence of 

mutational hotspots and coldspots. 

In this chapter, ReRCoP (Recombination Removal for Core genome 

Phylogeny), a novel method for identifying and removing recombination in 

the core genomes of bacterial isolates is described. ReRCoP relies on 

detecting changes in SNP density as an indicator of recombination, except it 

does this at the gene-level rather than at regular fixed intervals of the genomic 

sequence. This allows a different mutation rate for each gene which is 

expected to be conserved across different genomic sequences. The presence of 

abnormally high or low number of SNPs in a gene segment for a genomic 

sequence is thus an indication that recombination is likely to have occurred to 

introduce a gene segment of dissimilar SNP density. This thus changes the 

nature of identifying recombination to one of detecting outliers in SNP density. 

ReRCoP comes with three different approaches to detect outliers, and we 

benchmarked the sensitivity and specificity of ReRCoP with a series of 

simulations to detect HGT in E. coli and homologous recombination in S. 
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pneumoniae. ReRCoP performed particularly well in detecting recombination 

with inter-lineage donors in closely related bacterial strains. ReRCoP was also 

compared against Gubbins in detecting homologous recombination in S. 

pneumoniae, demonstrating that ReRCoP achieved higher sensitivity and was 

more computationally efficient in memory and time taken, albeit at lower 

specificity. A comparison of the phylogenetic trees obtained for 94 diverse E. 

coli chromosomes and 91 ST131 E. coli isolates before and after 

recombination removal revealed striking differences between the trees, 

especially for closely related strains. 

ReRCoP is written in Python which can be used on Linux, Mac OS, and 

Windows systems and is freely downloadable from 

https://github.com/xiaeryu/ReRCoP. 

 

3.2 Methods 

3.2.1 Description of algorithm 

ReRCoP requires an input file in FASTA format, where each sequence is a 

genomic sequence from the studied population. The sequences can be aligned, 

as a result of reference-based consensus sequence building, or as a result of 

multiple sequence alignment. They could also be unaligned, each of which 

could be a complete genome or a concatenation of assembled contigs. A 

GenBank file of genome information is required if extracting core genes from 

aligned sequences is required. A FASTA file of gene coding sequences is 

requited if core genome identification and extraction is required. 

ReRCoP is composed of four components: (1) pre-processing; (2) 

difference calculation; (3) recombination detection; and (4) post-processing. 
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The pre-processing step differs based on input files and user preference. If 

input genomic sequences are aligned, and phylogenetic study is to be 

conducted on core genomes, a GenBank file containing the genome 

information of the aligned sequences is required. Here, a gene is called to be 

‘present’ in a genomic sequence if the coverage of the gene in the genomic 

sequence is above a threshold (covCut, default = 0.7). A gene recorded in the 

GenBank file is a core gene if it is present in all studied genomic sequences. 

Core genes would be extracted from each genomic sequences and each 

concatenated to form core genomes, which would be used as input for 

recombination removal. If input genomic sequences are aligned, and 

phylogenetic study is to be based on complete genomes, a sliding-window 

approach would be used to divide the genomic sequences into smaller 

fragments (used in a similar manner to genes used in core genome approaches, 

and are also included in the referred ‘genes’ below) for recombination removal 

based on a window size and a step size. If input genomic sequences are not 

aligned, gene coding sequences from any one of the genomic sequences are 

required for core genome identification. Each gene coding sequence would be 

searched and located in each genomic sequence using nucleotide BLAST [70]. 

A similarity value is calculated for each gene in each sequence from BLAST 

output file as [71]: (length of the matching sequence) × (BLAST identity) / 

(length of the reference sequence). Here, a gene with a similarity value above 

0.49 is considered to be ‘present’ in the genome (similar to described in [72], 

and assessed in 3.2.8.1 and 3.3.7.1). Genes present in all genomic sequences 

would be extracted, aligned based on BLAST alignment, and further 

concatenated for each studied isolate. 
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For difference calculation, a consensus sequence is first built based on the 

resulting genomic sequences from the pre-processing step, and the number of 

SNPs compared to the consensus sequence would be calculated for each gene 

in each genomic sequence. These numbers would be scaled to make the total 

number of SNPs in each genomic sequence to be the same (the median of all 

total number SNPs), in order to better compare the number of SNPs in each 

gene. 

Three methods are available for detecting recombination in ReRCoP: 

Grubbs’ test (referred to as ‘Grubbs’’ below), k-nearest neighbors (kNN), and 

density-based spatial clustering of applications with noise (DBSCAN). 

Recombination test is conducted for each gene, where the number of scaled 

SNPs in this gene in each genomic sequence would be used as data points for 

outlier detection. If a data point is detected to be an outlier, the corresponding 

sequence would be recognized as recombinant at this gene. 

Grubb’s test [73] is a statistical test for outlier detection in univariate, 

normally-distributed datasets, which is also known as the maximum normed 

residual test, or the extreme studentized deviate test. The null hypothesis of 

Grubbs' test is no outliers in the dataset, while the alternative hypothesis is 

there being at least one outlier in the dataset. The test statistics is the largest 

absolute deviation from the sample mean in units of the sample standard 

deviation, which, for the two-sided test, can be defined as: 

𝐺 =  
𝑚𝑎𝑥𝑖=1,2,…,𝑁|𝑋𝑖−�̅�|

𝑠
     (1) 

, where �̅� and s denote the sample mean and standard deviation, respectively. 

The null hypothesis of no outliers is rejected at significance level α if: 
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, where 𝑡 𝛼

2𝑁
,𝑁−2

2  denotes the upper critical value of the t-distribution with a 

degree of freedom of N-2 and a significance level of 
𝛼

2𝑁
. For the Grubbs’ 

outlier detection in ReRCoP, the Grubbs’ statistics would be calculated for 

each data point as: 

𝐺𝑗 =  
|𝑋𝑗− �̅�|

𝑠
     (3) 

, for j in 1, 2, …, N. A data point would be detected as an outlier if it satisfies 

equation (2) at a user-specified significance level (alpha, default = 0.05). 

The kNN algorithm is a useful, non-parametric method commonly used for 

classification and regression, where k is a user-defined number and nearest 

neighbors are defined according to the closeness quantified by a similarity 

measure (distance measures, for example). It has also been proposed as a 

formulation for distance-based outlier detection, where each point is ranked 

based on its distance to its k
th

-nearest neighbor and the top n points in this 

ranking are declared to be outliers [74]. ReRCoP thereby derives its kNN 

method. Absolute difference is used to measure the distances between data 

points in this univariate dataset. Any data point whose distance to its k
th

-

nearest (k, default = 0.2 (in the unit of total number of points)) neighbor is 

larger than a distance threshold (radius, default = 1.5 (in the unit of standard 

deviation of data points)) would be detected as an outlier. 

DBSCAN is a density-based clustering algorithm, which groups points in 

the high-density regions together while making points in the low-density 

regions outliers. In DBSCAN, points are classified into core points, reachable 
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points and outliers based on the maximum distance to be called in the same 

neighborhood (eps) and the minimum number of points to form a dense region 

(minPts). A point is a core point if more than minPts points lie within its 

neighborhood. A point is a reachable point if it lies in the neighborhood of at 

least one core point. Outliers are defined as points that are not reachable from 

any other points. ReRCoP makes use of this algorithm in DBSCAN outlier 

detection method using parameters eps (default = 0.2 (in the unit of total 

number of points)) and minPts (default = 1 (in the unit of standard deviation of 

data points)). 

In the post-processing step, genes detected as recombinant in a genomic 

sequence would have all their bases in this genome set to ‘-’ and would thus 

be excluded from downstream phylogenetic analysis. 

Selection of kNN parameters is discussed in detail in 3.2.8.2 and 3.3.7.2, 

while selection of DBSCAN parameters is discussed in 3.3.7.3. 

 

3.2.2 Outlier detection method comparison 

To compare different outlier detection methods, Grubbs’, kNN, and DBSCAN 

as implemented in ReRCoP were each performed on simulated sequences. A 

typical round of simulation experiment was conducted as follows: (1) an 

ancestral sequence was defined, from which a specified number of sequences 

(nSeq) would be generated; (2) non-recombinant sequences were generated 

from the ancestral sequence by mutating each base at a specified probability 

(base rate); (3) a recombinant sequence generated from the ancestral sequence 

by mutating each base at a specified probability (special rate) would replace a 

non-recombinant sequence at a specified probability (rec rate = 0.05); and (4) 
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Grubbs’, kNN, and DBSCAN were each used to detect recombination using 

default parameters in ReRCoP. 

Different simulation scenarios were proposed using different base rate, 

special rate, and nSeq. Closely related bacterial strains were simulated by 

setting base rate to 0.002, with the special rate 2X, 5X, and 10X the base rate 

(0.004, 0.01, and 0.02, respectively). Diverse bacterial strains were simulated 

by setting base rate to 0.01, with special rate set to 0.1X, 0.2X, 0.5X, 2X, 5X, 

and 10X the base rate (0.001, 0.002, 0.005, 0.02, 0.05, and 0.1, respectively). 

These, altogether, added up to 9 pairs of mutating rates. For each pair of 

mutating rates, different numbers of sequences (nSeq = 10, 30, 50, 75, 100, 

150, and 200) were simulated to evaluate the effect of sample size on outlier 

detection, leading to altogether 63 simulation scenarios. For each scenario, 50 

iterations were conducted using different gene coding sequences as the 

ancestral sequence, each randomly selected from E. coli NA114 genome 

[GenBank:CP002797.2]. 

Outliers detected by each of the three algorithms were compared with the 

simulated recombination to assess the sensitivity and specificity. 

 

3.2.3 Simulation of horizontal gene transfer on E. coli genomes 

The ancestral genome was ST131 E. coli NA114 genome. Eighteen donor 

genomes were used in this study (Table 1). Among the 18 donor genomes, 9 

are inter-lineage donors, which are complete E. coli genomes archived in 

NCBI that are different from the NA114 genome. The other 9 are intra-lineage 

donor genomes, each of which is a concatenation of assembled contigs from 

sequencing reads of an ST131 E. coli isolate randomly selected from an ENA 
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study [ENA:ERP001354]. Core genes were identified and extracted using 

ReRCoP with the 18 donor genomes and the ancestral genome as the input 

genomic sequences, and the gene coding sequences of the NA114 genome as 

the input gene sequences, resulting in 3,366 core genes. Core genes in the 

ancestral genome and donor genomes were each concatenated into an 

ancestral sequence and 18 donor sequences. 

Each simulated sequence had a specific mutating rate which was1 

randomly sampled from a uniform distribution on the interval of [0, 2*base 

rate), and was generated from the ancestral sequence by creating point 

mutations at this mutating rate. The parameter base rate was set to 0.002 for 

simulation of closely related strains and 0.01 for simulation of diverse strains. 

For each gene in each simulated sequence, there is a probability of 0.01 that 

the gene was selected to be a recombinant gene, where the sequence was 

replaced by the corresponding gene sequence from a randomly selected donor. 

One hundred sequences were simulated in each iteration, and 100 iterations 

were each generated for base rate of 0.002 and 0.01. 

Recombination detection was conducted with ReRCoP using Grubbs’, 

kNN, and DBSCAN as outlier detection methods using default parameters. 

Sensitivity was calculated as the percentage of SNPs brought in by 

simulated recombination that were captured by ReRCoP. False positive rate 

was calculated as the number of bases falsely detected as recombination 

compared to the total number of bases that were not simulated to be 

recombination. Specificity was calculated as one minus the respective false 

positive rate. 
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Table 1. Information of sequences used in simulation of horizontal gene 

transfer on E. coli genomes. 

Accession Name Instance 

CP002797.2 E. coli NA114 Ancestor 

CP000802.1 E. coli HS Inter-host donor 

AP009240.1 E. coli SE11 DNA Inter-host donor 

CU928163.2 E. coli UMN026 Inter-host donor 

AP010958.1 E. coli O103:H2 str. 12009 Inter-host donor 

FN649414.1 E. coli ETEC H10407 Inter-host donor 

CP002729.1 E. coli UMNK88 Inter-host donor 

CP003289.1 E. coli O104:H4 str. 2011C-3493 Inter-host donor 

BA000007.2 E. coli O157:H7 str. Sakai Inter-host donor 

U00096.3 E. coli str. K-12 substr. MG1655 Inter-host donor 

ERR161234 E. coli ST131 lineage Intra-host donor 

ERR161235 E. coli ST131 lineage Intra-host donor 

ERR161236 E. coli ST131 lineage Intra-host donor 

ERR161237 E. coli ST131 lineage Intra-host donor 

ERR161238 E. coli ST131 lineage Intra-host donor 

ERR161239 E. coli ST131 lineage Intra-host donor 

ERR161240 E. coli ST131 lineage Intra-host donor 

ERR161241 E. coli ST131 lineage Intra-host donor 

ERR161242 E. coli ST131 lineage Intra-host donor 

 

Table 2. Information of sequences used in simulation of homologous 

recombination on S. pneumoniae genomes. 

Accession Name Instance 

FM211187.1 S. pneumoniae ATCC 700669 Ancestor 

FQ312029.1 S. pneumoniae INV200 Inter-host donor 

AE005672.3 S. pneumoniae TIGR4 Inter-host donor 

AE007317.1 S. pneumoniae R6 Inter-host donor 

CP003357.2 S. pneumoniae ST556 Inter-host donor 

CP001993.1 S. pneumoniae TCH8431/19A Inter-host donor 

CP000921.1 S. pneumoniae Taiwan19F-14 Inter-host donor 

CP001015.1 S. pneumoniae G54 Inter-host donor 

CP000919.1 S. pneumoniae JJA Inter-host donor 

CP000410.1 S. pneumoniae D39 Inter-host donor 

ERR023428 S. pneumoniae clone PMEN1 Intra-host donor 

ERR023430 S. pneumoniae clone PMEN1 Intra-host donor 

ERR023432 S. pneumoniae clone PMEN1 Intra-host donor 

ERR023434 S. pneumoniae clone PMEN1 Intra-host donor 

ERR023436 S. pneumoniae clone PMEN1 Intra-host donor 

ERR023438 S. pneumoniae clone PMEN1 Intra-host donor 

ERR023451 S. pneumoniae clone PMEN1 Intra-host donor 

ERR023453 S. pneumoniae clone PMEN1 Intra-host donor 

ERR023455 S. pneumoniae clone PMEN1 Intra-host donor 
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3.2.4 Simulation of homologous recombination on S. pneumoniae genomes 

The ancestral sequence was S. pneumoniae ATCC 700669 genome 

[GenBank:FM211187.1]. Eighteen donor sequences were used in the 

simulation (Table 2) with half inter-lineage donors and half intra-lineage 

donors, whose sequence alignments were generated as described before [54]. 

Point mutations were created similarly as described in ‘Simulation of 

horizontal gene transfer on E. coli genomes’ to generate simulated sequences 

from the ancestral sequence. Closely related strains were simulated with base 

rate of 0.002 while diverse strains were simulated with base rate of 0.01. For 

each simulated sequence, recombination was simulated to replace a part of the 

original sequence at a specified probability (rec rate, set to 0.3, 0.6, and 0.9, 

respectively) with a randomly selected donor, a random start position, and a 

per-base probability of 0.00016 to stop recombination as suggested before [54]. 

One hundred sequences were simulated in each iteration, and 100 iterations 

were each generated for base rate of 0.002 and 0.01 at rec rate of 0.3, 0.6, and 

0.9. Recombination detection was conducted using ReRCoP with Grubbs’, 

kNN, and DBSCAN as outlier detection methods using default parameters in a 

sliding-window manner. Sensitivity and specificity were calculated the same 

as described above. 

 

3.2.5 Performance comparison of ReRCoP and Gubbins 

Recombination detection was conducted using Gubbins in comparison with 

ReRCoP using the simulated dataset described in the section ‘Simulation of 

homologous recombination on S. pneumoniae genomes’. Both programs were 

run on a 64-bit Fedora Linux server workstation having a 2.0GHz quad 
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processor and 32GB RAM. Gubbins crashed due to insufficient free memory 

while processing 100 simulated sequences, each 2,221,315 bp in length. As a 

compromise, 60 simulated sequences were used as the input sequences at base 

rate of 0.002, and 20 simulated sequences were used at a base rate of 0.01, 

both of which were the maximum number of sequences that did not cause 

crash. Default parameters were used. Sensitivity and specificity were 

calculated the same as using ReRCoP and were compared correspondingly. 

 

3.2.6 Core genome analysis with recombination removal of 94 diverse E. 

coli chromosomes 

Ninety-four complete E. coli chromosomes were downloaded from GenBank, 

which are diverse in phylotype (determined in silico based on [75]) and MLST 

(determined in silico based on [76]) (Table 3). They were used as input 

genomes for ReRCoP, with gene coding sequences from E. coli str. K-12 

substr MG1655 [GenBank:U00096.3], after removing duplication, as input 

gene coding sequences. 

ReRCoP was conducted with default parameters using Grubbs’, kNN, and 

DBSCAN as outlier detection methods. Maximum-likelihood phylogenetic 

trees were constructed using RAxML [37] using ‘GTRCAT’ model each for 

the core genomes without outlier removal, after Grubbs’, kNN, or DBSCAN 

outlier removal. Consensus networks [77] were constructed using SplitsTree 

[78] to compare phylogenetic trees before and after outlier removal, where 

incompatible splits were highlighted in red. 
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Table 3. Information of 94 diverse E. coli chromosomes used in core genome 

analysis with recombination removal. 

Accession Name MLST Phylotype 

AGTD01000001.1 E. coli UMNF18  10 A 

AKBV01000001.1 E. coli str. K-12 substr. MG1655  10 A 

AKVX01000001.1 E. coli str. K-12 substr. MG1655  10 A 

AP009048.1 E. coli str. K12 substr. W3110  10 A 

AP012306.1 E. coli str. K-12 substr. MDS42  10 A 

CM000960.1 E. coli str. K-12 substr. MG1655star  10 A 

CP001396.1 E. coli BW2952 10 A 

CP002291.1 E. coli P12b 10 A 

CP006698.1 E. coli C321.deltaA 10 A 

CP008801.1 E. coli KLY 10 A 

CP009273.1 E. coli BW25113 10 A 

CP009644.1 E. coli ER2796 10 A 

CP009685.1 E. coli str. K-12 substr. MG1655 10 A 

CP009789.1 E. coli K-12 strain ER3413 10 A 

HG738867.1 E. coli str. K-12 substr. MC4100 10 A 

U00096.3 E. coli str. K-12 substr. MG1655 10 A 

CP004009.1 E. coli APEC O78 23 A 

CP000802.1 E. coli HS 46 A 

FN649414.1 E. coli ETEC H10407 48 A 

AM946981.2 E. coli BL21(DE3) 93 A 

CP000819.1 E. coli B str. REL606 93 A 

CP001509.3 E. coli BL21(DE3) 93 A 

CP001665.1 E. coli 'BL21-Gold(DE3)pLysS AG' 93 A 

CP002729.1 E. coli UMNK88 100 A 

CP007265.1 E. coli strain ST540 540 A 

CP007390.1 E. coli strain ST540 540 A 

CP007391.1 E. coli strain ST540 540 A 

AP012030.1 E. coli DH1 (ME8569)  1060 A 

CP000948.1 E. coli str. K12 substr. DH10B 1060 A 

CP001637.1 E. coli DH1 1060 A 

CP000946.1 E. coli ATCC 8739 3021 A 

AP010960.1 E. coli O111:H- str. 11128  16 B1 

AP010958.1 E. coli O103:H2 str. 12009  17 B1 

AP010953.1 E. coli O26:H11 str. 11368  21 B1 

CP005998.1 E. coli B7A 94* B1 

AP009240.1 E. coli SE11  156 B1 

CP009578.1 E. coli FAP1 453 B1 

CP009106.1 E. coli strain 94-3024 672 B1 

CP003289.1 E. coli O104:H4 str. 2011C-3493 678 B1 

CP003297.1 E. coli O104:H4 str. 2009EL-2050 678 B1 

CP003301.1 E. coli O104:H4 str. 2009EL-2071 678 B1 

CU928145.2 E. coli 55989  678 B1 

CP002185.1 E. coli W 1079 B1 

CP002516.1 E. coli KO11 1079 B1 

CP002967.1 E. coli W 1079 B1 

CP002970.1 E. coli KO11FL 1079 B1 

CP006584.1 E. coli LY180 1079 B1 

CU928160.2 E. coli IAI1  1128 B1 

CP000800.1 E. coli E24377A 1132 B1 
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CP009104.1 E. coli strain RM9387 2773 B1 

AE014075.1 E. coli CFT073 73 B2 

CP001671.1 E. coli ABU 83972 73 B2 

CP002211.1 E. coli str. 'clone D i2' 73 B2 

CP002212.1 E. coli str. 'clone D i14' 73 B2 

CP007799.1 E. coli Nissle 1917 73 B2 

CP009072.1 E. coli ATCC 25922 73 B2 

CP000243.1 E. coli UTI89 95 B2 

CP000468.1 E. coli APEC O1 95 B2 

CP001969.1 E. coli IHE3034 95 B2 

CU928161.2 E. coli S88  95 B2 

NZ_HG428755.1 E. coli PMV-1 95* B2 

AP009378.1 E. coli SE15  131 B2 

CP002797.2 E. coli NA114 131 B2 

CP006784.1 E. coli JJ1886 131 B2 

CP001855.1 E. coli O83:H1 str. NRG 857C 135 B2 

CU651637.1 E. coli LF82  135 B2 

CP002167.1 E. coli UM146 643 B2 

CP000247.1 E. coli 536 4727* B2 

FM180568.1 E. coli 0127:H6 E2348/69 4728* B2 

CU928162.2 E. coli ED1a  4731* B2 

AE005174.2 E. coli O157:H7 EDL933 11* D 

BA000007.2 E. coli O157:H7 str. Sakai  11 D 

CM000662.1 E. coli O157:H7 str. TW14588  11 D 

CP001164.1 E. coli O157:H7 str. EC4115 11 D 

CP001368.1 E. coli O157:H7 str. TW14359 11 D 

CP001925.1 E. coli Xuzhou21 11 D 

CP008805.1 E. coli O157:H7 str. SS17 11 D 

CP008957.1 E. coli O157:H7 str. EDL933 11 D 

CP010304.1 E. coli O157:H7 str. SS52 11 D 

CP006027.1 E. coli O145:H28 str. RM13514 32 D 

CP007136.1 E. coli O145:H28 str. RM12581 32 D 

CP003034.1 E. coli O7:K1 str. CE10 62 D 

CU928164.2 E. coli IAI39  62 D 

CP001846.1 E. coli O55:H7 str. CB9615 335 D 

CP003109.1 E. coli O55:H7 str. RM12579 335 D 

CP000970.1 E. coli SMS-3-5 354 D 

FN554766.1 E. coli 042 414 D 

CU928163.2 E. coli UMN026  597 D 

CP009859.1 E. coli strain ECONIH1 648 D 

CP006262.1 E. coli O145:H28 str. RM13516 4729 D 

CP007133.1 E. coli O145:H28 str. RM12761 4729 D 

CP007392.1 E. coli strain ST2747 4730 D 

CP007393.1 E. coli strain ST2747 4730 D 

CP007394.1 E. coli strain ST2747 4730 D 
 

* The most similar sequence type. No matching sequence type with 100% identity. 
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3.2.7 Recombination removal using a sliding-window approach of 

Illumina sequencing reads of 91 ST131 E. coli isolates 

Sequencing reads of 91 ST131 E. coli isolates [ENA:ERP001354] were 

included in the analysis. Complete genomic sequence of ST131 E. coli NA114 

[GenBank:CP002797.2] was used as the reference genome, against which 

sequencing reads were mapped using BWA [31] and consensus sequences 

were built using SAMtools [33]. The constructed consensus sequences were 

used as input genomes for ReRCoP. Recombination removal was conducted 

with default parameters using Grubbs’, kNN, and DBSCAN in a sliding-

window manner. Maximum-likelihood phylogenetic trees were constructed 

and compared, in the same manner as in the 94 diverse E. coli chromosomes. 

 

3.2.8 Choice of parameters 

3.2.8.1 Choice of parameter in core gene identification 

One parameter needs to be optimized in core gene identification, which is the 

similarity value threshold to classify a gene as ‘present’ or ‘absent’ in the 

genome. A similarity value is calculated from nucleotide BLAST output file 

as: (length of the matching sequence) × (BLAST identity) / (length of the 

reference sequence). The choice of the similarity value threshold was thus 

assessed in the following experiment. All gene coding sequences of the 94 

diverse E. coli isolates (Table 3) were downloaded from NCBI (438,159 genes 

in total). Each gene coding sequence was compared with every other gene 

coding sequence using nucleotide BLAST, from which a similarity value was 

calculated as described above. The threshold was selected within the region 

that has the lowest number of gene pairs having such similarity values.  
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3.2.8.2 Choice of parameters in kNN outlier detection 

Simulations were conducted to evaluate selection of parameters in kNN (k: 

number of nearest neighbors to consider, and radius: distance threshold). The 

simulations were conducted on a dataset composed of: (1) 10,000 non-outliers 

that were randomly generated from the standard normal distribution (mean = 0, 

standard deviation = 1); and (2) 10,000 outliers that were randomly generate 

from uniform distributions (half on the interval of [-4, -2], the other half on the 

interval of [2, 4]). Eight distance thresholds (dthresh) were considered in the 

simulation: 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4 (all in the unit of the standard 

deviation of the data points). Respective simulation was conducted using each 

of the distance thresholds (dthresh) as such: (1) For each data point labeled as 

either ‘non-outlier’ or ‘outlier’ in the dataset, the percentage of data points 

having an absolute distance smaller than the distance threshold was calculated 

(pneighbor); and (2) A set of different percentages (pthresh) was used in an attempt 

to predict the label of the data point (non-outlier if pneighbor > pthresh, and outlier 

otherwise), where the sensitivity and specificity of prediction were calculated 

for each pthresh. Here, distance thresholds dthresh represent radius in kNN outlier 

detection in the unit of standard deviation, and the percentages pthresh represent 

k in kNN outlier detection in the unit of total number of points. 

 

3.3 Results 

3.3.1 Comparison of outlier detection methods in ReRCoP 

Simulations were conducted to assess and compare performance of Grubbs’ 

test (referred to as Grubbs’ below), kNN, and DBSCAN outlier detection 
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under different circumstances. After formulating recombination detection into 

an outlier detection problem, factors potentially affecting detection 

performance were varied, which include the mutating rate from the ancestral 

sequence in non-recombinant sequences (base rate), the mutating rate from 

the ancestral sequence in recombinant sequences (special rate), and the 

number of sequences in the simulation (nSeq). Program parameters in 

ReRCoP were optimized separately, thus were not varied in this simulation 

and default settings were used. Two different base rates were used: 0.002 to 

simulate closely related strains, and 0.01 to simulate diverse strains. For 

closely related strains, special rate was set to 2X, 5X, and 10X of the base 

rate (0.004, 0.01, and 0.02, respectively) to simulate recombination that brings 

in more SNPs compared to the background level. It is not surprising that 

recombination can not only lead to more SNPs but also fewer SNPs from the 

ancestral sequence. This is not discriminatory in closely related strains due to 

the already limited number of SNPs in non-recombinant sequences, but it is 

discriminatory in diverse strains. As a result, for simulation of diverse strains, 

special rate was set to 0.1X, 0.2X, 0.5X, 2X, 5X, and 10X of the base rate 

(0.001, 0.002, 0.005, 0.02, 0.05, and 0.1, respectively). For each pair of 

mutating rates (base rate and special rate), nSeq was set to 10, 30, 50, 75, 100, 

150, and 200 to simulate different number of studied isolates. Fifty iterations 

were conducted in each scenario, each using a different ancestral sequence. 

For simulation of closely related strains (base rate = 0.002; results 

summarized in Figure 1), the overall detection sensitivity increased with the 

increase of special rate. Both kNN and DBSCAN had similar sensitivity, 

while Grubbs’ had a relatively lower sensitivity. Number of sequences (nSeq) 
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was not consequential to the sensitivity. The specificity was mostly above 0.95, 

which increased with special rate and nSeq. Grubbs’ had the highest 

specificity, with kNN second to it, and DBSCAN the lowest. 

For simulations of diverse strains (base rate = 0.01; results summarized in 

Figure 1), when special rate is larger than 1, the overall sensitivity increased 

with special rate. Similarly, kNN and DBSCAN had higher sensitivity 

compared to Grubbs’. Again, nSeq was not consequential to the sensitivity. 

The sensitivity was always about 1 with nSeq larger than 30. However, when 

special rate is smaller than 1, although having high specificity, the sensitivity 

was low, which is a result of the relatively smaller SNP number differences. 

In summary, DBSCAN and kNN had relatively higher sensitivity and 

lower specificity, while Grubbs’ did the opposite. The performance increased 

when recombination brought a greater increase in the number of SNPs. 
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Figure 1. Comparison of outlier detection methods. Different scenarios were 

simulated to compare sensitivity and specificity of Grubbs’ (green), kNN (blue), and 

DBSCAN (pink) outlier detection under different circumstances (base rate: mutating 

rate in non-recombinant sequences, special rate: mutating rate in recombinant 

sequences, and nSeq: number of simulated sequences). The x-axis indicates the 

number of sequences while the y-axis indicates the respective sensitivity or 

specificity. In simulation of closely related strains (base rate = 0.002), detection 
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sensitivity increased with the increase of special rate. Both kNN and DBSCAN had 

similar sensitivity, while Grubbs’ had a relatively lower sensitivity. Detection 

specificity was mostly above 0.95, which increased with special rate. Grubbs’ had 

the highest specificity, with kNN second to it, and DBSCAN the lowest. In 

simulation of diverse strains (base rate = 0.01), when special rate is larger than 1, the 

overall sensitivity increased with special rate. Similarly, kNN and DBSCAN had 

higher sensitivity compared to Grubbs’. However, when special rate is smaller than 1, 

the detection sensitivity was low for all three methods. Detection specificity was 

mostly about 1. In simulations of both close and diverse bacterial strains, increase in 

the number of sequences (nSeq) was not consequential to the sensitivity, but helped to 

increase detection specificity. In summary, DBSCAN and kNN had relatively high 

sensitivity and low specificity, while Grubbs’ did the opposite. 

 

 

3.3.2 Simulation of horizontal gene transfer on E. coli genomes 

Genetic sequences were generated from an ancestral sequence with a mutating 

rate (base rate). HGT was simulated by replacing certain simulated gene 

sequences with foreign gene sequences from either intra-host donors, which 

are sequences having the same sequence type as the ancestral sequence, or 

inter-host donors, which are sequences quite different from the ancestral 

sequence. 

ReRCoP was run on a 64-bit Fedora Linux server workstation having a 

2.0GHz quad processor and 32GB RAM in all experiments. It took an average 

of 6.02 min (standard deviation = 0.37 min) to complete running an analysis 

of 100 sequences, each of 3,119,466 bp in length. Sensitivity and specificity 

were summarized in Figure 2. For simulations of closely related strains (base 

rate = 0.002), ReRCoP detected recombination with intra-lineage donors at a 

sensitivity around 5% whichever method was used. For recombination with 

inter-lineage donors, the sensitivity differed with the method used, where 

DBSCAN had the highest average sensitivity of 89.01%, kNN followed with 

an average sensitivity of 84.56%, and Grubbs’ the lowest of 75.61%. All 
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methods had specificity above 97%, where DBSCAN had an average 

specificity of 97.27%, kNN of 98.15%, and Grubbs’ of 99.33%. For 

simulations of diverse strains (base rate = 0.01), ReRCoP detected 

recombination with intra-lineage donors better than it did in closely related 

strains though having a larger variation, with an average sensitivity of 27.27% 

while using kNN, 20.42% while using DBSCAN, and 3.42% while using 

Grubbs’. Detection sensitivity of recombination with inter-lineage donors, 

however, was lower than in closely related strains, where kNN and DBSCAN 

performed similarly with a sensitivity of about 53%, while Grubbs’ did 

relatively lower at 40.84%. Grubbs’ had an average specificity of 99.32%, 

DBSCAN had a specificity of 97.52%, while kNN had the lowest specificity 

of 96.81%. 

In summary, detection sensitivity for recombination with intra-lineage 

donors was not high due to the limited number of SNPs brought in by the 

recombinant sequence. Detection sensitivity for recombination with inter-

lineage donors was higher, especially in closely related strains. Specificity was 

consistently above 96%. In terms of methods, Grubbs’ had lower sensitivity 

and higher specificity, while kNN and DBSCAN had higher sensitivity and 

lower specificity. 
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Figure 2. Performance of ReRCoP recombination detection in simulations of 

horizontal gene transfer on E. coli genomes. Simulations of HGT were conducted 

on E. coli genomes to assess the detection sensitivity and specificity of ReRCoP 

under different circumstances (base rate: mutating rate in non-recombinant sequences, 

and donor sequences: either inter-host donor or intra-host donor). The y-axis indicates 

the respective sensitivity and specificity indicated as the column names. For 

simulations of closely related strains (base rate = 0.002), ReRCoP detected 

recombination with intra-lineage donors at low sensitivity, while for recombination 

with inter-lineage donors, the sensitivity was much higher, where DBSCAN had the 

highest sensitivity, followed by kNN and Grubbs’. Contrary to the sensitivity, 

DBSCAN, kNN, and Grubbs’ had decreasing specificity. For simulations of diverse 

strains (base rate = 0.01), ReRCoP detected recombination with intra-lineage donors 

better than it did in closely related strains though less consistent. Detection of 

recombination with inter-lineage donors, however, was lower than in close strains, 

where kNN and DBSCAN performed similarly, while Grubbs’ did relatively lower. 

Grubbs’ had the highest specificity, followed by DBSCAN and kNN. In terms of 

methods, Grubbs’ had the lowest sensitivity and the highest specificity, while kNN 

and DBSCAN had higher sensitivity and lower specificity. 
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3.3.3 Simulation of homologous recombination on S. pneumoniae genomes 

After generating genetic sequences from an ancestral sequence with a 

mutating rate (base rate), homologous recombination was simulated in a 

certain percentage (rec rate) of the sequences by replacing random regions of 

genetic sequences with corresponding foreign sequences from either intra-host 

donors or inter-host donors. 

It took an average of 5.64 min (standard deviation = 0.83 min) to complete 

an analysis of 100 sequences, each of 2,221,315 bp in length. Sensitivity and 

specificity were summarized in Figure 3. The overall performance of ReRCoP 

was better on simulated datasets of closely related strains in terms of 

sensitivity, specificity and consistency. For simulated datasets of closely 

related strains (base rate = 0.002), the performance was consistent regardless 

of rec rate. Grubbs’ had lower sensitivity and higher specificity compared to 

kNN and DBSCAN, both of which had similar sensitivity while DBSCAN had 

slightly higher specificity. The average sensitivity was always around 15% 

using all three methods in detecting recombination from intra-lineage donors, 

and was around 70% using Grubbs’, 78% using kNN and DBSCAN in 

detecting recombination from inter-lineage donors. The average specificity 

was around 98% using Grubbs’, over 95% using kNN and DBSCAN. When 

considering simulated datasets of diverse strains (base rate = 0.01), using a 

rec rate of 0.9 would slightly decrease the sensitivity and increase the 

specificity, while results using 0.3 and 0.6 were very similar and are used in 

the following description of performance. Grubbs’ still had the lowest average 

sensitivity (7% for intra-lineage donors, and 46% for inter-host donors), the 

highest average specificity (above 98%) and the most consistent performance. 
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DBSCAN had medium average sensitivity (22% for intra-lineage donors, and 

48% for inter-host donors) and medium average specificity (above 95%). kNN 

exhibited the best average sensitivity (46% for intra-lineage donors, and 51% 

for inter-host donors), especially a much better average sensitivity in detecting 

recombinant genes from intra-host donors with a wider range of sensitivity 

values in different iterations, though it has the lowest specificity (above 93%). 

In summary, rec rate did not have a large effect on detection performance. 

Detection sensitivity was higher for recombination with inter-lineage donors, 

especially in closely related strains. Sensitivity was lower for recombination 

with intra-lineage donors due to the limited number of SNP change. When 

comparing the three methods, Grubbs’ had the highest specificity, with 

DBSCAN second to it, and kNN the lowest. 
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Figure 3. Performance of ReRCoP in simulations of homologous recombination 

on S. pneumoniae genomes in comparison with Gubbins. Simulations of 

homologous recombination were conducted on S. pneumoniae genomes to assess the 
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detection sensitivity and specificity of ReRCoP in comparison with Gubbins under 

different circumstances (base rate: mutating rate in non-recombinant sequences, rec 

rate: percentage of sequences with homologous recombination, and donor sequences: 

either inter-host donor or intra-host donor). The overall performance of ReRCoP and 

Gubbins was better on simulated datasets of closely related bacteria in terms of 

sensitivity, specificity and consistency. Detection of recombination with inter-host 

donors was more sensitive than intra-host donors due to the less number of SNPs 

brought in. Generally, rec rate did not have a large effect on the detection 

performance. When comparing different methods in ReRCoP, Grubbs’ had relatively 

lower sensitivity and higher specificity. kNN and DBSCAN had similar sensitivity 

while DBSCAN had slightly higher specificity. When comparing ReRCoP and 

Gubbins, ReRCoP was more memory and time efficient, more sensitive, and less 

specific than Gubbins. 

 

3.3.4 Performance comparison of ReRCoP and Gubbins 

Since Gubbins was mostly described to be used for detecting homologous 

recombination, performance comparison of ReRCoP and Gubbins was 

conducted on the datasets used in the simulation of homologous 

recombination on S. pneumoniae genomes described above. Gubbins returned 

an error message indicating insufficient free memory when processing 100 

sequences. I thus decided on using 60 sequences in simulations of closely 

related strains and 20 sequences in simulation of diverse strains instead of 100 

sequences to guarantee successful execution and the most number of 

sequences used. Gubbins required both much free memory and time to run. 

For simulation of closely related strains (base rate = 0.002), Gubbins took an 

average of 312.04 min to process 60 sequences (standard deviation = 196.41 

min). For simulation of diverse strains (base rate = 0.01), Gubbins took an 

average of 14.05 min to process 20 sequences (standard deviation = 3.76 min). 

Sensitivity and specificity were plotted on Figure 3 next to ReRCoP. Gubbins 

showed lower sensitivity and higher specificity than any of the three methods 

used in ReRCoP in all simulation scenarios. Gubbins performed its own best 

in detecting recombination with inter-lineage donor in closely related strains, 
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where the sensitivity was close to, though still lower than, Grubbs’ outlier 

detection in ReRCoP with a larger variation. The sensitivity decreased much 

in diverse strains with an even larger variation. Both Gubbins and ReRCoP 

showed significantly lower sensitivity in detecting recombination from intra-

lineage donors. While ReRCoP still detected some recombination, Gubbins 

was almost not detecting any such recombination. Coming along with the 

lower sensitivity was the higher specificity of Gubbins, where nearly no false 

positive hits were identified. In summary, ReRCoP was more memory and 

time efficient, more sensitive, and less specific than Gubbins. 

 

3.3.5 Core genome analysis with recombination removal of 94 diverse E. 

coli chromosomes 

In this analysis, input genomes were 94 complete E. coli genomes with 

different phylotypes and MLSTs, thus representing a diverse collection of 

bacterial chromosomes. A core genome approach was applied based on the 

facts that: (1) the sequences were not aligned, and (2) gene composition and 

organization were different. Gene coding sequences from E. coli str. K-12 

substr MG1655 [GenBank:U00096.3] were used as input gene sequences for 

identifying core genes to comprise the core genome. Among the 3,769 input 

genes, 2,720 were identified as core genes, adding up to a core genome size of 

2,618,529 bp. The three methods in ReRCoP were each used for 

recombination removal. The running time was 97 min, the majority of which 

was spent on core genome identification and alignment. The number of genes 

identified (out of the total of 255,680 genes) as recombinant was 1,181 for 

Grubbs’, 5,103 for kNN, and 5,186 for DBSCAN. Number of overlapped 
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genes identified is shown in Figure 4A, showing that genes identified by 

Grubbs’ was a subset of genes identified by kNN or DBSCAN, and that kNN 

and DBSCAN had more than 80% of the identified genes in common, which 

was consistent with the simulation result that Grubbs’ is a more conservative 

method. Maximum-likelihood trees were constructed using sequences before 

and after recombination removal. Phylogenetic trees built from sequences 

after using the three recombination removal methods were each compared 

with the tree built from the sequence before recombination removal by 

constructing a consensus network, where incompatible splits were highlighted 

in red to show the difference. Consensus networks showed that recombination 

removal did not affect the major branching of the phylogenetic tree, but had an 

impact on the topology within branches (Figure 5). 

 

Figure 4. Overlap of recombinant genes detected by Grubbs’, DBSCAN, and 

kNN. Overlap of recombinant genes detected by Grubbs’ test, DBSCAN, and kNN 

were summarized in recombination removal of 94 diverse E. coli chromosomes (A) 

and recombination removal of 91 ST131 E. coli isolates (B). In A, genes identified by 

Grubbs’ were a subset of genes identified by kNN or DBSCAN, and that kNN and 

DBSCAN had more than 80% of the identified genes in common. In B, the results 

showed that Grubbs’ identified a subset of genes of kNN or DBSCAN, that 96.5% of 

genes identified by kNN were also identified by DBSCAN, and that DBSCAN 

identified the largest number of genes. 

Color Method Total 
Overlap with 

Grubbs kNN DBSCAN 

  Grubb's     1,181      1,181      1,181      1,181  

  kNN     5,103      1,181      5,103      4,131  

  DBSCAN     5,186      1,181      4,131      5,186  

Color Method Total 
Overlap with 

Grubbs kNN DBSCAN 

  Grubb's   12,091    12,091    12,091    12,091  

  kNN   36,576    12,091    36,576    35,302  

  DBSCAN   43,195    12,091    35,302    43,195  

Diverse E.coli genomes ST131 E.coli genomes A B 
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3.3.6 Recombination removal using a sliding-window approach of 

Illumina sequencing reads of 91 ST131 E. coli isolates 

The 91 ST131 E. coli isolates represent closely related bacteria: of the same 

sequence type and some may be belong to one or more outbreaks, and can use 

complete genomes instead of the core genomes due to their similar gene 

composition and organization. Consensus sequence for each isolate was 

constructed against the ST131 E. coli NA114 genome. A sliding-window 

approach was used for recombination removal using all three outlier detection 

methods in ReRCoP. The job finished within 11 min. ReRCoP identified (out 

of the total of 904,722 genes) more recombinant genes than in diverse 

bacterial genomes: 12,091 for Grubbs’, 36,576 for kNN, and 43,195 for 

DBSCAN, which was consistent with the observed higher detection sensitivity 

in closely related bacterial populations in the simulations. Number of 

overlapped genes identified (Figure 4B) showed that Grubbs’ identified a 

subset of genes of kNN or DBSCAN, that 96.5% of genes identified by kNN 

were also identified by DBSCAN, and that DBSCAN identified the largest 

number of genes. The results are consistent with the simulation results that in 

closely related bacterial strains, Grubbs’, kNN, and DBSCAN had increasing 

sensitivity and decreasing specificity. Consensus networks were built on 

maximum-likelihood trees to visualize the differences generated by 

recombination removal (Figure 6). More extensive differences were observed 

compared to diverse bacterial strains. This is a result of more significant 

changes in the relative distances, which can be due to the larger number of 

recombinant genes detected and removed, and the smaller differences between 

closely related strains before removal.  
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3.3.7 Choice of program parameters 

3.3.7.1 Choice of parameter in core gene identification 

In core gene identification, a gene coding sequence would be searched in each 

genomic sequence using nucleotide BLAST, where a similarity value would 

be calculated from the BLAST output file. Based on the experiment, 438,159 

genes were compared with each other using nucleotide BLAST, after which 

similarity values would be calculated from the output. Of the 191,982,871,122 

similarity values, 191,894,214,080 (99.95%) were 0. Distribution of the non-

zero similarity values was summarized with a density plot in Figure 7, 

showing two clear peaks of similarity values, one suggesting potentially same 

gene, and the other potentially different genes. When breaking down the 

similarity values into intervals, the interval (0.45, 0.5] had the least number of 

similarity values. The default threshold was thus set to be 0.49, a value within 

this interval. 

While we do BLAST in ReRCoP, one gene is taken as the query sequence, 

while the other as the reference sequence. Which is used as the reference 

sequence affects the similarity value by affecting the length of the reference 

sequence, whose effect is thus assessed. For each pair of gene coding 

sequences, two similarity values were calculated, using either member as the 

reference sequence, respectively. Only 0.00089% of the pairs had one 

similarity value larger than 0.49, while the other smaller than 0.49, which is a 

strong indication that under this similarity value threshold, which sequences is 

used as the query sequence does not have a large effect on core gene 

identification. 
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Figure 7. Summary of similarity value distribution by density plot and interval 

breakdown. Non-zero similarity values were summarized with a density plot and 

statistics of the values. Two clear peaks of similarity values were observed, one 

suggesting potentially same gene, and the other potentially different genes. When 

breaking down the similarity values into intervals, the interval (0.45, 0.5] had the 

least number of similarity values. 

 

3.3.7.2 Choice of parameters in kNN outlier detection 

In kNN outlier detection in ReRCoP, absolute difference is used to measure 

the distances between data points in the univariate dataset. Any data point 

whose distance to its k
th

-nearest neighbor is larger than a distance threshold 

(radius) would be detected as an outlier. Simulations were conducted to 

evaluate selection of parameters (k: number of nearest neighbors to consider, 

and radius: distance threshold). The simulation results were summarized in 

Table 4. Here, distance thresholds (dthresh) represent radius, and the 

percentages (pthresh) represent k. By default, kNN outlier removal in ReRCoP 

uses parameters of 0.2 for k (in the unit of total data points) and 1.5 for radius 

(in the unit of standard deviation of data points), which, based on the 

simulation, gives sensitivity of 0.89 and specificity of 0.98. Though similar 

performance can also be achieved by using larger k and radius, a smaller k 

was chosen to allow non-outliers to be in more than one tight cluster while 

only one was simulated. 
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Table 4. Sensitivity and specificity of kNN outlier detection using different k and 

radius. 

pthresh 
dthresh: 0.5 dthresh: 1 dthresh: 1.5 dthresh: 2 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

0.05 0.9678 0.9646 0.7886 0.9919 0.6202 0.9983 0.4529 0.9997 

0.1 1.0000 0.9129 0.9094 0.9778 0.7425 0.9947 0.5747 0.9989 

0.15 1.0000 0.8470 0.9903 0.9579 0.8227 0.9890 0.6562 0.9976 

0.2 1.0000 0.7661 1.0000 0.9339 0.8873 0.9813 0.7214 0.9957 

0.25 1.0000 0.6638 1.0000 0.9042 0.9427 0.9706 0.7772 0.9927 

0.3 1.0000 0.5341 1.0000 0.8687 0.9921 0.9574 0.8265 0.9887 

0.35 1.0000 0.3390 1.0000 0.8264 1.0000 0.9406 0.8734 0.9835 

0.4 1.0000 0.0000 1.0000 0.7775 1.0000 0.9208 0.9167 0.9763 

0.45 NA NA 1.0000 0.7188 1.0000 0.8956 0.9597 0.9667 

0.5 NA NA 1.0000 0.6490 1.0000 0.8656 0.9972 0.9548 

0.55 NA NA 1.0000 0.5623 1.0000 0.8283 1.0000 0.9389 

0.6 NA NA 1.0000 0.4499 1.0000 0.7849 1.0000 0.9195 

0.65 NA NA 1.0000 0.2857 1.0000 0.7283 1.0000 0.8932 

0.7 NA NA 1.0000 0.0001 1.0000 0.6593 1.0000 0.8593 

0.75 NA NA NA NA 1.0000 0.5685 1.0000 0.8138 

0.8 NA NA NA NA 1.0000 0.4439 1.0000 0.7511 

0.85 NA NA NA NA 1.0000 0.2271 1.0000 0.6603 

0.9 NA NA NA NA 1.0000 0.0001 1.0000 0.5132 

0.95 NA NA NA NA NA NA 1.0000 0.1669 

1 NA NA NA NA NA NA 1.0000 0.0002 

  

pthresh 
dthresh: 2.5 dthresh: 3 dthresh: 3.5 dthresh: 4 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

0.05 0.2859 1.0000 0.1193 1.0000 0.0000 1.0000 0.0000 1.0000 

0.1 0.4072 0.9998 0.2398 1.0000 0.0747 1.0000 0.0000 1.0000 

0.15 0.4884 0.9995 0.3216 0.9999 0.1554 1.0000 0.0011 1.0000 

0.2 0.5535 0.9992 0.3865 0.9999 0.2189 1.0000 0.0542 1.0000 

0.25 0.6094 0.9985 0.4425 0.9997 0.2750 1.0000 0.1090 1.0000 

0.3 0.6597 0.9975 0.4920 0.9995 0.3253 0.9999 0.1592 1.0000 

0.35 0.7071 0.9962 0.5399 0.9993 0.3725 0.9999 0.2055 1.0000 

0.4 0.7511 0.9942 0.5842 0.9988 0.4163 0.9998 0.2489 1.0000 

0.45 0.7938 0.9914 0.6257 0.9982 0.4589 0.9997 0.2921 1.0000 

0.5 0.8350 0.9879 0.6692 0.9973 0.5011 0.9994 0.3344 0.9999 

0.55 0.8773 0.9829 0.7113 0.9960 0.5438 0.9992 0.3764 0.9999 

0.6 0.9194 0.9756 0.7536 0.9941 0.5870 0.9988 0.4189 0.9998 

0.65 0.9636 0.9657 0.7976 0.9911 0.6294 0.9981 0.4628 0.9997 

0.7 0.9995 0.9521 0.8437 0.9871 0.6779 0.9971 0.5098 0.9994 

0.75 1.0000 0.9323 0.8936 0.9802 0.7279 0.9955 0.5604 0.9991 

0.8 1.0000 0.9024 0.9495 0.9690 0.7841 0.9922 0.6160 0.9984 

0.85 1.0000 0.8564 1.0000 0.9505 0.8475 0.9868 0.6816 0.9970 

0.9 1.0000 0.7765 1.0000 0.9146 0.9284 0.9740 0.7628 0.9935 

0.95 1.0000 0.6035 1.0000 0.8238 1.0000 0.9368 0.8834 0.9820 

1 1.0000 0.0005 1.0000 0.0012 1.0000 0.0025 1.0000 0.0972 

 

- dthresh corresponds to k, and is in the unit of standard deviation of the data points 

- pthresh corresponds to radius, and is in the unit of total number of data points 
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3.3.7.3 Choice of parameters in DBSCAN outlier detection 

Parameter selection in DBSCAN can be based on simulations in the kNN 

outlier detection with the aim that non-outliers are either core points or 

reachable points and outliers are neither core points nor reachable points. The 

probability of every non-outlier point to be identified as a core point with 

parameters minPts and eps is the same as the specificity of kNN outlier 

detection with parameters k=minPts, radius=eps, thus can be figured out from 

Figure 7, from which the minPts and eps can be selected based on the desired 

specificity. To allow some non-outlier points to be reachable points, we can 

also use larger minPts. The probability of an outlier point to be taken as a core 

point with parameters minPts and eps is the same as 1-sensitivity of kNN 

outlier detection with parameters k=minPts, radius=eps, thus can be figured 

out from Figure 7. However, we should also exclude the cases where outliers 

are reachable points, thus we should decrease eps in order to increase outlier 

detection sensitivity. As a result, DBSCAN outlier removal in ReRCoP uses 

parameters of 0.2 for minPts (in the unit of total data points) and 1 for eps (in 

the unit of standard deviation of data points) by default. 

 

3.4 Discussion 

ReRCoP is a novel method for detecting and removing recombination from 

core genomes of large bacterial population samples for phylogenetic study. 

ReRCoP specifically aims to address the limitations of existing methods, and 

thus possesses the following four features that are distinct from other 

recombination detection methods: (1) ReRCoP can process whole genome 

sequences of a large number of bacterial isolates in a fast and computationally 
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efficient manner; (2) ReRCoP accepts both aligned genomic sequences, where 

sequences can be processed either gene by gene, or window by window, and 

unaligned genomics sequences, where core genomes would be identified, 

extracted, and processed gene by gene; (3) ReRCoP is robust to mutational 

hotspots and coldspots; and (4) ReRCoP can deal with both complete genomes 

and draft-quality assembled genomes. 

Three recombination removal methods are implemented in ReRCoP: 

Grubbs’ test, kNN, and DBSCAN. Grubbs’ test is a statistical test, where a 

significance level is specified. The default value was set to 0.05 as usually 

used in statistical tests. When using default parameters, Grubbs’ test has the 

lowest sensitivity and highest specificity. Though not as sensitive, Grubbs’ 

test showed the best consistency and a balance between sensitivity and 

specificity when the sample size is small (10, for example), and is thus the 

best choice for studies of small sample sizes. For kNN and DBSCAN, 

simulations were conducted to assess the effect of parameters on detection 

sensitivity and specificity. Default parameters were set to balance the 

sensitivity and specificity, which can be adjusted based on the simulation 

results. Both kNN and DBSCAN have higher sensitivity and lower specificity 

than Grubbs’ test and Gubbins. When the studied bacterial samples are closely 

related, DBSCAN has slightly higher sensitivity and comparable specificity 

when compared to kNN and is thus recommended to be used. However, when 

the studied bacterial samples are diverse, kNN performs better in detecting 

recombination that introduces a lower SNP density compared to the 

background level at a cost of slight decrease in the specificity, and is thus 

recommended for use. 
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ReRCoP adopts the strict criteria that genes present in all studied isolates 

are called core genes. For core genome identification, ReRCoP uses a 

simplified approach that core genomes are considered as composed by core 

genes without consideration of gene order or organization. More complex 

methods exist for core genome identification, which includes attempts to 

uncover the scaffolds of the genome, gene orders and gene adjacency [79, 80]. 

These are not as important for ReRCoP since it detects recombination gene by 

gene without using information of the surroundings. 

Gene duplication is a common phenomenon in bacterial genomes [81] and 

is potentially problematic for recombination detection both using the core 

genome approach and the reference mapping approach. For ReRCoP, it is 

suggested to pre-process the input gene coding sequences by removing 

duplicated genes to avoid the likely overrepresentation of the duplicated genes 

in genomes containing single copies of the genes. When extracting the gene 

sequences, if more than one copy is identified, the one with the highest 

similarity would be chosen and extracted. Even by these measures, there is 

still no guarantee that the genes extracted are the same copy derived from a 

common ancestor. After all, it is hard to infer ancestry from duplicated genes. 

One feature of ReRCoP is the capability of dealing with draft-quality 

genomes without a reference genome. In most cases, bacterial sequencing is 

conducted without purification to isolate the chromosome, making the 

sequencing reads a mixture of genetic sequences from chromosomes and 

various plasmids. As a result, many of the contigs have plasmid origins and 

should not be included in the phylogenetic analysis. This can however be 

resolved by first pre-processing the sequencing reads or assembled contigs to 
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exclude those belonging to plasmids. It is also possible to retain all sequencing 

reads for the analysis on the basis that genes on plasmids are neither conserved 

nor essential, and are thus unlikely to be shared by a diverse bacterial 

population and be featured as core genes. It is also probable that plasmids can 

be shared among outbreak isolates and bacteria are ‘clonal’ in the transmission, 

where the variations on the plasmids can bear useful information on the 

phylogenetic relationships as well. 

As ReRCoP processes the sequences gene by gene, it is possible that 

ReRCoP fails to detect recombination events that either affect only a small 

fraction of a gene, or affect only several positions. Also, even when the entire 

gene in a sequence is the result of recombination, ReRCoP can fail to 

recognize a recombination event if the degree of variation between sequences 

at this gene is similar. ReRCoP fundamentally identifies recombinant genes 

that possess a significant degree of SNP density change. 

In the simulations to assess the performance of ReRCoP and to compare 

with Gubbins, uniform mutation rates were used for the non-recombinant 

sequences without intentional introduction of mutational hotspots and 

coldspots. The fact that ReRCoP adopts a vertical comparison instead of a 

horizontal comparison as adopted by other methods like Gubbins makes 

ReRCoP more robust to uneven mutation rate, particularly in the presence of 

mutational hotspots and cold spots. 

It can be inferred from the analysis of diverse E. coli chromosomes and 

ST131 E. coli isolates that removing recombination does not have a significant 

impact on the phylogeny of diverse strains, but can greatly influence the 

inferred relationships of closely related strains. This is consistent with the 
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results of the simulations that ReRCoP is less sensitive in detecting 

recombination in diverse bacterial strains but possesses much higher power in 

detecting recombination in closely related bacterial strains. 

 

3.5 Conclusion 

In this chapter, I introduced ReRCoP, a novel method for detecting 

recombination that is useful in bacterial genomes with the following features: 

(1) ReRCoP is able to efficiently process whole genome sequences of a large 

number of bacterial isolates; (2) ReRCoP is able to automatically identify and 

extract the core genomes; (3) ReRCoP is robust to mutational hotspots and 

coldspots; and (4) ReRCoP can deal with draft-quality assembled genomes. 

Simulations were conducted to show that ReRCoP is useful for detecting 

recombination caused by both HGT and homologous recombination. 

Comparison with Gubbins showed that ReRCoP is more time and memory 

efficient, more sensitive while less specific. ReRCoP was applied in analysis 

of both diverse and closely related bacterial strains, showing that 

recombination removal has a larger effect on closely related strains. ReRCoP 

would be a useful tool in bacterial phylogenetic study by eliminating the 

adverse effects of recombination. 
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Chapter 4 

 

Local transmission and global dissemination of 

New Delhi metallo-beta-lactamase (blaNDM): a 

whole genome analysis 

 

 

 

 

The content of this chapter has been published as [82]. Reproduction of 

figures and tables is permitted by the publisher.  
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4.1 Background 

The emergence of carbapenem-resistant Enterobacteriaceae (CRE) has 

become an important global health threat. CRE are primarily recognized in 

health care settings [83], with the prevalence in clinical samples increasing 

globally [84–88]. Outcomes of CRE infections are poor, where mortality 

associated with infections can reach over 40% [89, 90]. With the widespread 

dissemination of extended-spectrum beta-lactamases, carbapenems are the last 

class of safe and effective antimicrobials for treating multidrug-resistant 

Gram-negative bacterial infections, the effectiveness of which has been 

greatly undermined by CRE [91]. As a result, there is a pressing need to 

understand the transmission pathways of carbapenemases to inform infection 

control, which remains the main intervention to face the challenge of CRE. 

New Delhi metallo-beta-lactamase (blaNDM) was first detected in 2008 in a 

K. pneumoniae isolate from a Swedish traveler returning from the Indian 

subcontinent [92]. Since then, blaNDM has been documented in all continents, 

with the earliest archived blaNDM-positive sample from 2005 [93]. Two 

identical blaNDM-positive plasmids (pTR3 and pTR4) have been reported in 

Singapore in unrelated K. pneumoniae isolates [94]. Compared with other 

carbapenemases, the spread of blaNDM is characterized by alarming public 

health features: (1) broad Gram-negative bacterial host range, including highly 

virulent bacteria such as Vibrio cholera and Shigella boydii [95]; (2) frequent 

acquisition among E. coli and K. pneumoniae, which are Gram-negative 

species carried as gut flora and able to survive in inanimate environments; (3) 

widespread presence in the Indian subcontinent, Southeast and East Asia, 
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home to the largest human populations globally; and (4) co-carriage with other 

resistance genes on the blaNDM-bearing plasmids [96]. 

Multiple seminal investigations have focused on determining the 

international and local transmission patterns of chromosome-mediated 

antimicrobial resistance [97–100]. However, there remained many unanswered 

questions about the spread of plasmid-borne antimicrobial resistant genes. 

While mass global travel and widespread antibiotic use have been widely 

recognized as population risk factors associated with the dispersal of blaNDM 

[96], investigation is still needed regarding the genomic factors associated 

with its rapid spread [101]. Antimicrobial resistance genes are often carried by 

mobile genetic elements like plasmids and transposons [102], which may also 

carry integrons or other gene mobilization elements [103, 104]. A key 

biological challenge in understanding plasmid-borne gene molecular 

epidemiology is the capability to exploit three tiers of gene spread: (1) inter-

plasmid gene module transposition; (2) inter-bacteria plasmid conjugation; 

and (3) bacteria spread among humans, animals and the environment [96]. 

While SNP-based phylogenetic methods are proven to be successful in 

understanding transmission of chromosome-mediated antimicrobial resistance, 

these methods are ill-suited to determining the dynamics of multi-tiered gene 

flow of plasmid-mediated antimicrobial resistance due to the lack of 

conserved genomic regions in diverse plasmids. 

By moving beyond conventional SNP-based phylogenetic study to a 

plasmid clustering approach based on distances measured by the degree of 

gene sharing and the similarity of shared genes between different plasmids, I 

analyzed a combined collection of all GenBank complete plasmid sequences 
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within Gram-negative bacterial hosts to date, thus having an unprecedented 

opportunity to profile the global dissemination of this important resistance 

gene. A total of 2,749 complete plasmid sequences from NCBI GenBank 

database were included in this study, of which 39 are blaNDM-positive. This 

enabled an analysis of the largest collection of sequences to date, providing a 

comprehensive description on the distribution and genetic movement of 

blaNDM. Moreover, in order to investigate the local transmission of blaNDM to 

compare with its global dissemination, 11 blaNDM-positive CRE isolates in a 

local hospital were sequenced [105], from which the transmission pattern was 

inferred based on the identity of blaNDM-positive plasmids and phylogenetic 

study of the chromosomes, in combination with the patients’ records. In 

summary, this study suggested that blaNDM-positive plasmid diversity is very 

low in a local transmission setting characterized by plasmid conjugation and 

bacteria spread, while the global blaNDM-positive plasmids, due to the 

transposition of the blaNDM gene cassette into different plasmids, are highly 

variable, which can be clustered into 7 distinct clusters correlated with 

plasmid incompatibility group and geographical distribution. These findings 

advance understanding of plasmid-mediated antimicrobial resistance spread 

both locally and globally. 

 

4.2 Methods 

4.2.1 Clinical isolates 

Tan Tock Seng Hospital (TTSH) is Singapore’s second largest acute-care 

hospital with 36 clinical and allied health departments and more than 1400 

beds. The first case of carbapenemase-producing Enterobacteriaceae (CPE) in 
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TTSH was detected in September 2010 (subject 16). From September 2010 to 

October 2011, a further 7 patients with CPE were detected, of which 2 were 

detected based on screening cultures. The infection control response to a new 

blaNDM-positive patient detected in the course of routine testing included strict 

isolation of the patient, contact tracing within the same ward and in previously 

admitted wards, and screening of these contacts with rectal swabs for CPE 

carriage using draft guidelines issued by CDC [106]. Age, gender, travel 

history, history of ward locations and clinical diagnoses were collected by 

retrospective case-chart review. 

 

4.2.2 Genome assembly 

Sequencing reads have been submitted to the European Nucleotide Archive 

(ENA) under accession PRJEB13304. De novo assembly was performed using 

Velvet [27], parameters of which were optimized by VelvetOptimiser with k-

mer lengths ranging from 55 to 63. For all the 11 isolates, VelvetOptimizer 

achieved the best assembly at the k-mer length of 63.  

The bacterial species were identified by searching the assembled contigs in 

the NCBI ‘nt’ database. If the top five hits for a contig are all chromosomal 

DNA, this contig is assigned to the chromosome and the hits are taken as 

candidate chromosomes. For each isolate, candidate chromosomes of at least 

one contig would each be used as the reference sequence, against which all the 

contigs would be aligned. The genome coverage by the contigs would then be 

calculated, where the candidate chromosome with the highest genome 

coverage would be taken as the most similar bacterial strain and its species 

would be identified as the bacterial species of the isolate. MLST of E. coli and 
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K. pneumoniae isolates was inferred using MLST 1.8 provided by the CGE 

server [107]. 

 

4.2.3 Molecular epidemiology 

Sequencing reads were aligned to the reference genome (JJ1886 

[GenBank:CP006784.1] for E. coli, and HS11286 [GenBank:CP003200.1] for 

K. pneumoniae) using BWA-MEM [31]. Single-nucleotide variants were 

called using SAMtools [33]. Positions with less than 10 reads or with a minor 

allele frequency between 0.25 and 0.75 would be marked as ‘unknown’ data. 

Variants would then be called if the alternate allele frequency is above 0.75. 

Maximum likelihood phylogenetic trees were constructed using RAxML [37], 

where a substitution model of GTRGAMMA was used and rapid bootstrap 

analysis was conducted on 500 runs.  

 

4.2.4 blaNDM-positive plasmid identification 

For each isolate, the contig with the blaNDM gene was first identified and 

extracted, after which the contig sequence was searched in the NCBI ‘nt’ 

database for complete plasmid sequences with more than 2000 bp identity. 

The similar complete plasmid sequences were then each used as the reference 

sequence, against which all the contigs were aligned to calculate the sequence 

coverage by the contigs. Complete sequences with the highest sequence 

coverage would then be taken as the most similar plasmids. 
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4.2.5 Plasmid mapping, genome coverage calculation and variant calling 

Novoalign was used for read mapping against a reference plasmid sequence, 

after which realignment was conducted with GATK IndelRealigner [34], and 

the coverage was calculated with GATK DepthOfCoverage. Variants were 

called with UnifiedGenotyper in GATK, with filtering criteria: “MQ < 40.0, 

QD < 2.0, FS > 60.0, HaplotypeScore > 13.0”. 

 

4.2.6 Complete plasmid sequences 

All the 2,749 available complete plasmid sequences within Gram-negative 

bacterial host in the NCBI plasmid database (April 2014) were downloaded 

for analysis, of which 39 are blaNDM-positive. Information on sampling 

location and date, sample source, subject’s travel history, host bacterial 

species and bacterial antimicrobial resistance phenotypes were obtained from 

GenBank entries or accompanying references. 

 

4.2.7 Plasmid clustering 

Plasmid clustering was conducted based on the virtual hybridization method 

as described by Zhou et. al. [71] to investigate the similarity of the diverse 

complete plasmid sequences. 

For each plasmid, all coding sequences, as determined by their original 

investigators, were downloaded from NCBI. Duplicate genes on the same 

plasmid, defined as coding DNA sequences having similarity value (length of 

matching sequences * BLAST identity / length of reference sequence) above 

0.45, were removed. This resulted in a set of 234,450 genes. Additionally, 

insertion sequences within each plasmid were detected using IS Finder 
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(https://www-is.biotoul.fr/) with default parameters at a cut-off e-value of 1e
-20

, 

which identified 1,496 unique insertion sequences. 

For genetic sequence comparison, a similarity score is calculated as 

2*(length of matching sequences)*(BLAST identity)/ (length of reference 

sequence + length of matching sequences). The 2,749 complete plasmid 

sequences were then compared using nucleotide BLAST algorithm against 

each of the 234,450 genes and 1,496 insertion sequences to calculate a 

similarity score, which resulted in a 2,749 by 235,946 matrix of similarity 

scores. A hypothetical plasmid sequence with all similarity scores set to zero 

was used as outgroup. 

To achieve computational tractability, 1,000 random matrices were 

generated, each of which was composed of 20% of the similarity score 

matrix’s columns that were randomly selected without replacement, showing 

the similarity scores represented by 20% randomly selected genes. For each 

matrix of similarity scores, pair-wise Euclidean distances between plasmid 

sequences were calculated and formulated into a distance matrix, after which a 

Neighbor-Joining tree was constructed with the ‘neighbor’ program in 

PHYLIP [40]. A consensus tree was constructed using the ‘consense’ program 

in PHYLIP with the majority rule as the consensus type. 

Clusters of blaNDM-positive plasmid based on the consensus tree were 

defined using a stringent criterion of having at least 2 unique blaNDM-positive 

plasmids, with all internal nodes having ≥99% support at 1000 bootstraps. 
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4.2.8 Phylogenetic tree for cluster refinement 

Cluster refinement was conducted for each cluster respectively. For each 

cluster, coding DNA sequences present in all plasmid sequences with a 

nucleotide BLAST e-value less than 1e
-5 

and an identity above 80% were 

extracted, aligned, and concatenated. Maximum likelihood phylogenetic trees 

were constructed using RAxML [37], where a substitution model of 

GTRGAMMA was used and rapid bootstrap analysis was conducted on 500 

runs. 

 

4.2.9 Incompatibility groups of plasmids 

To determine the incompatibility (Inc) groups of plasmids, nucleotide BLAST 

was used to find sequences for specific Inc groups that would produce 

theoretical PCR amplicons for known Inc group sequences [108]. 

 

4.2.10 Comparative genomics 

Plasmid sequences were compared and visualized with the Artemis 

comparison tool ACT [109]. 

 

4.3 Results 

4.3.1 Local blaNDM-positive plasmid diversity in a single hospital 

The first 11 CPE isolates from 8 patients in a single Singapore hospital were 

isolated, of which the patient demographics and sample features were 

summarized in Table 5 and Figure 8. The median duration of hospitalization to 

positive CPE culture was 3 days (range: 1 to 153 days). Six patients (subjects 

16, 11, 1, 41, 51 and 53) had blaNDM detected on clinical cultures. One patient 
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(subject 21) was co-infected with 4 CPE isolates, where 2 different strains of 

Enterobacteriaceae were isolated from the patient’s stool and urine samples, 

respectively. Of the 8 patients, only two had travelled out of Singapore in the 

past 2 years, including subject 21, who had travelled to Australia and subject 

41, who had travelled to Malaysia. Whole genome sequencing was conducted 

on Illumina MiSeq, with the sequencing statistics summarized in Table 6. 
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Table 5. Patient demographics and sample features. 

Subject 

ID 

Travel 

History 
Clinical Diagnosis Sample ID 

16 NA Colonization EN-M80M-U-060910 

11 NA Disease KP-F78C-U-090910 

1 NA Colonization EC-M94C-U-220910 

21 Australia 

Colonization KP-F86E-U-141010 

Colonization KP-F86E-R-141010 

Colonization EC-F86E-U-141010 

Colonization EC-F86E-R-141010 

41 Malaysia Colonization EC-M59C-U-101210 

46 NA Colonization EC-M28M-R-141210 

51 NA Disease EC-F76C-B-220911 

53 NA Disease EC-F60C-U-191011 
 

Subject 

ID 
MLST 

Identity of blaNDM-

encoding plasmid 
Rationale for sample 

16 NA pTR3 Clinical Sample 

11 437 pNDM-KN* Clinical Sample 

1 410 pTR3 Clinical Sample 

21 

48 pTR3 Clinical Sample 

48 pTR3 Clinical Sample 

69 NA Clinical Sample 

69 pTR3 Clinical Sample 

41 131 pTR3 Clinical Sample 

46 131 pTR3 Contact Screening for Index Subject 

41  

51 205 pNDM_MGR194* Clinical Sample 

53 131 pTR3  Clinical Sample 

 
Sample ID format: Organism-Gender/Age/Race-Specimen site-Date of Isolation 

(DD/MM/YY) 

Organism: EC = Escherichia coli, KP = Klebsiella pneumoniae, EN = Enterobacter cloacae. 

Gender: F = Female, M = Male. 

Race: C = Chinese, E = Eurasian, M = Malay. 

Specimen site: U = Urine, R = Rectal swab, B = Bile. 

 
* Closest reference plasmid identified based on minimum 75% reference sequence coverage.  
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Table 6. Summary of Illumina sequencing and de novo assembly statistics. 

Sample ID 
Illumina sequencing statistics 

# Reads Reads per 

pair 
# Bases Estimated 

coverage* 

EC-M94C-U-220910 4,638,924  2,319,462  1,159,731,000  ~230X 

KP-F78C-U-090910 4,993,178  2,496,589  1,248,294,500  ~250X 
EN-M80M-U-060910 2,551,658  1,275,829  637,914,500  ~125X 
KP-F86E-U-141010 5,481,114  2,740,557  1,370,278,500  ~275X 
KP-F86E-R-141010 5,971,648  2,985,824  1,492,912,000  ~300X 
EC-F86E-U-141010 4,020,020  2,010,010  1,005,005,000  ~200X 
EC-F86E-R-141010 4,866,162  2,433,081  1,216,540,500  ~245X 
EC-M59C-U-101210 3,610,924  1,805,462  902,731,000  ~180X 
EC-M28M-R-141210 3,531,240  1,765,620  882,810,000  ~175X 
EC-F76C-B-220911 3,694,724  1,847,362  923,681,000  ~185X 
EC-F60C-U-191011 5,358,750  2,679,375  1,339,687,500  ~270X 
* Coverage is estimated by Total number of bases (bp)/5,000,000 (bp/genome) 

Sample ID 
De novo assembly statistics 

# Contigs 
Total 

length (bp) 

Maximum 

length (bp) 
N50 N90 

EC-M94C-U-220910 283  4,924,755  311,367  119,021  28,367  
KP-F78C-U-090910 153  5,517,983  679,086  269,381  86,172  
EN-M80M-U-060910 250  5,360,533  262,681  143,510  35,933  
KP-F86E-U-141010 145  5,628,326  718,541  370,983  84,568  
KP-F86E-R-141010 360  5,847,032  540,865  221,458  27,866  
EC-F86E-U-141010 281  5,471,732  428,602  161,290  30,311  
EC-F86E-R-141010 301  5,515,296  381,553  131,304  26,186  
EC-M59C-U-101210 248  5,278,528  529,288  172,834  31,299  
EC-M28M-R-141210 171  5,267,509  452,523  173,849  41,299  
EC-F76C-B-220911 530  5,238,278  498,227  116,800  22,645  
EC-F60C-U-191011 236  5,314,797  411,061  177,269  25,869  
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Plasmid identification was conducted with de novo assembly in 

combination with candidate plasmid identification, plasmid mapping and 

genome coverage calculation as elaborated in the Methods. The de novo 

assembly statistics was summarized in Table 6. Among the 11 samples, 10 

blaNDM-positive plasmids were identified, of which 8 were identified as pTR3 

[GenBank:JQ349086.2], 1 was identified as pNDM-KN 

[GenBank:NC_019153.1] with the last being identified as pNDM_MGR194 

[GenBank:NC_022740.1] (Table 5). Plasmid identification was most 

confident for the 41,187 bp plasmid pTR3 (100% genome coverage in all the 8 

identified samples at very high read depths) and the 46,253 bp plasmid 

pNDM_MGR194 (100% genome coverage in sample EC-F76C-B-220911 at 

reasonable read depths). The 162,746 bp plasmid pNDM-KN was identified in 

sample KP-F78C-U-090910 with 76.3% genome coverage at very high read 

depths. No blaNDM-positive plasmid was detected in sample EC-F86E-U-

141010. The genome coverage and read depths were summarized in Figure 9. 

Variant calling was performed for the 8 samples containing pTR3, the 

most prevalent blaNDM-positive plasmid, to compare the pTR3 plasmid 

sequences in respective samples with the reference pTR3 sequence 

[GenBank:JQ349086.2]. Inspection of the variants revealed that 7 pTR3 

plasmid sequences were identical to the reference pTR3 sequence, while one 

pTR3 plasmid sequence had only one SNP compared to the reference pTR3 

sequence. In EN-M80M-U-060910 (isolated from subject 16), the pTR3 

sequence had one synonymous mutation at the coding region of a putative 

transposase (position 22107), resulting in a codon change of GCCGCT. 
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These results showed that local blaNDM-positive plasmids had limited 

diversity with the majority of the plasmids being identical copies of pTR3, 

which is a strong indication of clonal plasmid spread. The other two blaNDM-

positive plasmids had identities of pNDM-KN and pNDM_MGR194. The 

major differences between the three plasmids (pTR3, pNDM-KN, and 

pNDM_MGR194) strongly indicated independent plasmid introductions into 

the hospital ecology. 

 

 

Figure 9. Read depths along the reference plasmid sequences based on Illumina 

MiSeq sequencing reads mapping. Sequencing reads were mapped to the plasmid 

sequences to calculate the read depths along the reference sequences of: pTR3 (A), 

pNDMKN (B), and pNDM_MGR194 (C). In A, the read depths are reasonable for 

all samples along the complete pTR3 sequence, which strongly supports the presence 

of pTR3 in the samples. In B, 76% of pNDM-KN has been covered by the sample at 

reasonable read depths with major absences of genomic sequences. In C, the full 

length of pNDM_MGR194 is covered at reasonable read depths, strongly suggests its 

presence in the sample. 
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4.3.2 Bacterial host range at the local level 

The bacterial species harboring blaNDM-positive plasmids were: E. coli (7/11), 

K. pneumoniae (3/11) and Enterobacter cloacae (E. cloacae, 1/11) (Table 5). 

Of the 7 E. coli isolates, 3 were most similar to ST131 E. coli strain NA114 

[GenBank:NC_017644.2], while the remaining isolates were most similar to 

ST23 E. coli strain APEC O78 [GenBank:NC_020163.1], ST597 strain 

UMN026 [GenBank:NC_011751.1] and ST1128 strain IAI1 

[GenBank:NC_011741.1]. For the K. pneumoniae isolates, three K. 

pneumoniae strains was identified to be similar, including: ST11strain 

HS11286 [GenBank:NC_016845.1], ST23 strain NTUH-K2044 

[GenBank:NC_012731.1], and ST23 strain 1084 [GenBank:NC_018522.1]. 

Consistent with previous report [110], there appeared to be no evidence of 

association between Enterobacteriaceae host species and specific plasmid 

identities. 

Maximum likelihood phylogenetic trees were constructed for the bacterial 

chromosomes respectively for E. coli (Figure 10A) and K. pneumoniae 

(Figure 10B), both of which showed great diversity. The diversity of bacterial 

strains harboring pTR3 highlighted the propensity of blaNDM-positive plasmids 

to spread via inter-bacteria plasmid conjugation, and would explain a key 

challenge in relying upon phylogenetic analysis alone to understand blaNDM 

dissemination. 
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Figure 10. Whole-genome phylogenetic tree of local blaNDM-positive bacteria. 

Maximum likelihood trees were constructed based on sequence alignments of E. coli 

(A) and K. pneumoniae (B). JJ1886 and HS11286 are the reference genomes for E. 

coli and K. pneumoniae, respectively. The branch lengths were calculated by RAxML 

and reflect the number of expected mutations per site. Bootstrap values are in a scale 

of 0 to 100, and are shown at each node in grey. 
 

 

4.3.3 Inter- and intra- patient bacteria spread at the local level 

Phylogenetic trees of the bacterial chromosomes in Figure 10 suggested clonal 

bacteria spread in 3 instances. The first instance involved ST131 E. coli 

detected in 2 patients – subjects 41 and 46, which clustered tightly as EC-

M59C-U-101210 and EC-M28M-R-141210 in Figure 10A and differs by only 

4 SNPs. The limited number of SNPs thereby suggested potential inter-patient 

bacteria spread between subject 41 and subject 46. 



81 

 

The other two instances involved bacteria with identical sequence types 

isolated from different body sites in the same patient (subject 21). KP-F86E-

U-141010 (isolated from urine) and KP-F86E-R-141010 (isolated from rectal 

swab) are both ST48 K. pneumoniae that harbored the pTR3 plasmid, which 

clustered tightly in Figure 10B with 25 SNPs. EC-F86E-U-141010 (isolated 

from urine) and EC-F86E-R-141010 (isolated from rectal swab) are both ST69 

E. coli that clustered tightly in Figure 10A with 58 SNPs. Sample EC-F86E-

U-141010 was blaNDM-negative and positive for blaIMP-1, a class B 

carbapenemase. Subject 21 here represents a possible case of intra-host 

conjugation. 

As discussed, the pTR3 plasmids remained 100% identical in all but 1 

isolate at the nucleotide level in scenarios of inter- and intra-patient bacteria 

transfer, and inter-bacteria plasmid conjugation within the same host. These 

results suggested early spread of endemic plasmids at the local level was 

predominantly clonal. 

 

4.3.4 Clustering of global plasmids from Gram-negative bacterial host 

Complete genomic sequences of 2,749 plasmids within Gram-negative 

bacterial hosts were downloaded from the NCBI database. The median 

plasmid sequence length is 30,949 bp (range: 744 to 2,580,084), with the 

median number of genes annotated per plasmid being 36 (range: 1 to 2,235). 

Out of the 2,749 plasmids, the majority belong to the Enterobacteriaceae 

family (n=877, 31.9%), followed by Spirochaetaceae (n=405, 14.7%), 

Rhodobacteraceae (n=85, 3.1%), Moraxellaceae (n=81, 2.9%), and others 

(n=1301, 47.3%). Amongst, 39 plasmid sequences are blaNDM-positive (Table 
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7). These plasmids were sampled from all continents except Antarctica over 

an 8 year period (2005 – 2013). Thirty-eight of the 39 blaNDM-positive plasmid 

samples have a human origin, while one sample has an animal origin (pig). 

The median plasmid sequence length for blaNDM-positive plasmids is 73,209 

bp (range: 35,947 to 288,920), with the median number of genes annotated per 

plasmid being 89 (range: 31 to 372). 

While construction of a SNP-based phylogenetic tree is the most common 

method to investigate evolutionary relationships among groups of organisms 

or strains, it is not applicable to plasmid phylogenetic study as there is no 

common genomic region shared among all the 2,749 complete plasmid 

sequences. An alternative approach based on the relative distances measured 

by the degree of gene sharing and the similarity of shared genes was applied to 

cluster the plasmids. The pair-wise distances based on a total of 234,450 genes 

and 1,496 insertion sequences were calculated as elaborated in the Methods, 

resulting in a Euclidean-distance derived distance matrix. A Neighbor-Joining 

tree was constructed with the distance matrix, upon which clustering analysis 

was based (Figure 11). The clustering of global plasmid showed high global 

plasmid diversity with blaNDM-positive plasmids located in different clusters. 
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Table 7. Names and accession numbers of blaNDM-positive plasmids. 

Name Accession 

p271A JF785549.1 

pAB_D499 NZ_AGFH01000030.1 

pAbNDM-1 JN377410.2 

pGUE-NDM JQ364967.1 

pKOX_NDM1 JQ314407.1 

pKp11-42 KF295829.1 

pKPN5047 KC311431.1 

pKPX-1 AP012055.1 

pM131_NDM1 JX072963.1 

pMC-NDM HG003695.1 

pMR0211 JN687470.1 

pNDM102337 JF714412.2 

pNDM10469 JN861072.1 

pNDM10505 JF503991.1 

pNDM-1_Dok01 AP012208.1 

pNDM-1saitama01 AB759690.1 

pNDM-AB KC503911.1 

pNDM-BJ01_1 JQ001791.1 

pNDM-BJ01 KF702385.1 

pNDM-BJ02 JQ060896.1 

pNDM-BTR KF534788.1 

pNDMCFuy HG428757.1 

pNDM-CIT JX182975.1 

pNDM-HK HQ451074.1 

pNDM-HN380 JX104760.1 

pNDM-KN JN157804.1 

pNDM-MAR JN420336.1 

pNDM-OM JX988621.1 

pNDM-US CP006661.1 

pPrY2001 KF295828.1 

pRJA274 KF877335.1 

pRJF866 KF732966.1 

pTR3 JQ349086.2 

pYE315203 JX254913.2 

pABCA95 NC_019322.1 

pEcNDM NC_023909.1 

pKpNDM1 NC_023911.1 

pNDM-HF727 NC_023914.1 

pNDM_MGR194 NC_022740.1 
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Figure 11. Clustering of global plasmids in Gram-negative bacteria hosts. The 

Neighbor-Joining tree consisting of 2,749 Gram-negative plasmid genomes was 

constructed to reflect the gene composition similarity of the plasmids. Seven blaNDM-

positive plasmid phylogenetic clusters were identified using stringent criteria (all 

internal nodes ≥99% bootstrap support, minimum 2 unique blaNDM-positive plasmids). 

Clusters with blaNDM-positive plasmids are indicated with dots and labeled C1-C7. 
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4.3.5 Clustering and phylogenetic study of blaNDM-positive plasmids 

Seven distinct clusters (represented by red dots in Figure 11) were identified 

to contain blaNDM-positive plasmids, which range in size from 2 to 10 

plasmids. For better clarity, the plasmids within the seven clusters were 

extracted and a new Neighbor-Joining tree was constructed, which is 

presented as Figure 12 with the plasmids’ information. 

The number of shared genes increased markedly for plasmids within the 

same cluster, allowing for the construction of a phylogenetic tree based on 

nucleotide sequence alignment within the shared regions. For clusters with 

more than three sequences, a concatenated alignment of the homologous genes 

was generated, after which a phylogenetic tree would be constructed to study 

the phylogenetic relationship (Figure 13). The concatenated sequences within 

each cluster showed great similarity to each other, as can be identified by the 

short branch lengths. 

While the distance-based clustering method provided a tree based on the 

gene composition similarity, the cluster refinement phylogenetic tree used 

SNPs to investigate the evolutionary relationship within each cluster, which 

were similar in topology with the clustering method. 
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Figure 12. Clustering of blaNDM-positive plasmids. (A) Neighbor-Joining tree of 

plasmids in the 7 blaNDM clusters. Branches of each cluster are colored distinctively 

with blue (C1), purple (C2), green (C3), magenta (C4), orange (C5), grey (C6), and 

red (C7). The tree is rooted using an outgroup in black. Branch lengths were 

Euclidean distances calculated from similarity scores and are reflective of the 

similarity of plasmid gene composition and the similarity of shared genes. (B) Table 

showing the identity (PLASMID), bacterial host (HOST), specimen type 

(SPECIMEN), date of collection (DOC), geographical sampling location (LOC), 

travel history (HISTORY) and incompatibility group (INC) for each plasmid. 

Abbreviations: AB, Acinetobacter baumannii; AI, Acinetobacter iwoffii; AP, 

Acinetobacter pittii; AS, Acinetobacter soli; CF, Citrobacter freundii; EN, 

Enterobacter cloacae; EC, Escherichia coli; KP, Klebsiella pneumoniae; and RP, 

Roultella planticola. (C) The matrix displays the resistance genetic determinants 

identified in the corresponding plasmid genome. A black-shaded box indicates a 

positive genotypic trait conferring resistances, the antibiotic classes of which are 

indicated by the text at the top of the column. Resistance determinants against the 

following antibiotics were identified: beta-lactam, BETA; aminoglycoside, AMINO; 

tetracycline, TET; sulphonamide, SUL; and phenicol, PHE. Abbreviations: A, APH; 

C, AAC; D, AAD; K, KPC; M, CMY; O, OXA; S, SHV; R, RMT; and X, CTX. 

Presence of blaNDM-1 was shaded red and blaNDM-5 shaded green. 
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pNDM-AB AB   2011-12 China - -   A 

pNDM-BJ01 AI   Nov-10 China - -   A 

pM131-NDM1 AS   May-12 Taiwan - -   A 

pAB-D499 AP Sept-11 China - -   A 

pNDM-BJ01-1 AB     2005 India - -   A 

pAbNDM-1 AB July-11 China - -   A 

pNDM-BJ02 AI   Dec-10 China - -   A 

pNDM-HN380 KP   Aug-11 China - -   S         

pNDM-HF727 EN - Feb-12 China - -   S 

pKPN5047 KP   Aug-12 China  -     S 

p315203 CF   Jun-12 China  -   S 

pRJA274 RP - Nov-13 China - -   S 

pNDM_MGR194 KP -    June-2013 India - -   S         

pNDM-HK EC   Mar-2009 Hong Kong         C   

pNDM-OM KP   Mar-2009 Oman       O C   

pCTX-M3 CF   Jul-96 Poland       C   

pEl1573 EC   2004 Australia       C   

pNDM10505 EC   Feb-10 Canada     M A       

pNDM102337 EC   Mar-11 Canada -     M A       

pNDM-US KP - Mar-10 USA -   M A       

pNDM10469 EC - Feb-10 Canada     M A       

pNDM-KN KP   Nov-09 Kenya -     M         

pNDM-1 Dok01 EC   Apr-09 Japan     M A       
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pFOS-HK151325 EC   1996-2008 Hong Kong -     X   
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pChi7122-2 EC Apr-11 - -     D       
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pGUE-NDM EC   Apr-09 France         D     
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Figure 13. SNP-based refinement maximum likelihood trees of blaNDM plasmid 

clusters. For each cluster, sequences of all plasmids within this cluster were extracted, 

whose shared regions were aligned and concatenated for the construction of the 

maximum likelihood trees shown above. The results for C6 and C7 were not shown 

as the clusters only consist of 2 isolates each. The branch lengths were calculated by 

RAxML and reflect the number of expected mutations per site. Bootstrap values are 

in a scale of 0 to 100, and are shown at each node in grey. 
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4.3.6 Global blaNDM-positive plasmid diversity: gene transposition 

At least 6 events in the 7 clusters (C1 to C7) of blaNDM-positive plasmids have 

been observed to indicate independent recombination events introducing 

blaNDM into different plasmid backbones of blaNDM-negative plasmids (Figure 

14). 

In the process of adaptive evolution, diversity of microbial genomes is 

primarily driven by recombination or point mutation [111, 112]. As the 

clustering approach makes use of plasmid gene composition diversity arising 

through recombination rather than point mutations, these findings suggested 

the blaNDM-positive plasmids have undergone extensive mobile genetic 

element transposition to adapt to varying environmental niches. As mentioned 

earlier, there was minimal intra-cluster SNP difference, suggesting that 

polymorphisms due to point mutation play minimal role to account for the 

diversity of the plasmids. 

Transpositions facilitated by transposons (Tn), insertion sequences (IS) 

elements and IS common region (ISCR) are detected frequently in plasmids 

that involve antimicrobial genes, non-antimicrobial genes and transposable 

genetic elements. With respect to the blaNDM gene, transposition mechanism 

involving blaNDM was discernible by comparative genomics in 4 instances: 

pNDM_HN380 [GenBank: JX104760.1] (C2, ISAba125-mediated 

transposition, Figure 14A), pNDM-OM [GenBank: JX988621.1] (C3, 

recombination into Tn1548-borne class I integrin, Figure 14B), pEcNDM 

[GenBank: NC_023909.1] (unclustered, ISCR1-mediated transposition, Figure 

14C), and pNDM-BTR [GenBank: KF534788.1] (unclustered, fipA gene 

hotspot recombination, Figure 14D). The Tn125 composite transposon 
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platform has been theorized to be the original vehicle to mobilize blaNDM 

among Acinetobacter species. The results reveal that blaNDM introductions also 

occurred in the context of ISCR1-mediated transposition, fipA gene hotspot 

recombination and Tn1548-borne class I integron recombination. Larger 

datasets of genomic sequences involving blaNDM-positive plasmids and nearest 

neighbors will enhance the understanding of blaNDM transposition globally. 

 

4.3.7 Global blaNDM-positive plasmid diversity: incompatibility group and 

geographical distribution 

The plasmid clustering based on gene composition diversity tends to cluster 

the plasmids with the same backbone together, thus showing a clear clustering 

of the plasmid Inc groups for Enterobacteriaceae plasmids: plasmids in C2 are 

all Inc X plasmids, plasmids in C3 are Inc L/M, plasmids in C4 are Inc A/C, 

plasmids in C5 and C6 are Inc F, while plasmids in C7 are Inc NII (Figure 12). 

The plasmid clusters also showed some association with geographical 

distributions. Some clusters were spreading mainly via regional transmission 

to date: (1) C1, a cluster of plasmids Acinetobacter sp. host, is limited to South 

Asia and East Asia; (2) C2 and C6 are limited to South and East Asia; and (3) 

C7 was found in Southeast Asia and Oceania. Other clusters (C3, C4, and C5) 

had wider geographic dispersion involving South Asia, East Asia, Middle East, 

North America, Africa and Europe. 



90 

 

Figure 14. Acquisition of blaNDM cassettes. A1, B1, C1, and D1: A comparison of 

the blaNDM-positive plasmid genomes with their putative backbone plasmids as 

identified in the plasmid clustering. The corresponding backbone plasmids are placed 

at the top of each column. Blue bands between panels indicate nucleotide BLAST 

matches with more than 99% sequence similarity. A2, B2, C2, and D2: Schematic 

representations of insertions in the blaNDM-positive plasmids (shaded in light blue) 

corresponding to A1, B1, C1, and D1. Annotated genes in these regions are colour 

coded. Arrows indicate predicted open-read frames, genes with known functions 

(maroon), antimicrobial resistance genes (magenta), transpositional genetic elements 

(grey) and hypothetical proteins (white). Genes from the blaNDM cassette are indicated 

by arrows coloured as follows: red, blaNDM; green, bleMBL; orange, trpF; yellow, tat; 

light blue, dct; and dark blue, the groES- groEL cluster. Plasmid pECNDM0 

represents an blaNDM-negative laboratory-derived plasmid, where the blaNDM cassette 

was mobilized from pECNDM1-4 as a free form. 
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4.3.8 Local blaNDM-positive plasmid in the global context 

As detailed in the global analysis, pTR3 clustered tightly with p271A 

[GenBank: JF785549.1], a plasmid described in Australia (Figure 12, C7). The 

other two plasmids were located in different plasmid clusters: pNDM-KN in 

C4 and pNDM_MGR194 in C2. In contrast to global plasmid diversity, the 

presence of near identical pTR3 plasmids in 8 out of 11 local samples 

suggested the blaNDM-positive plasmid diversity at the local level to be very 

low. On the other hand, the 2 non-pTR3 plasmids, which were related to 

different plasmid clusters in the global plasmid phylogeny, were detected each 

in only one patient, which suggested independent plasmid introductions into 

the hospital ecology. 

 

4.4 Discussion 

By analyzing whole genome sequences of 11 blaNDM-positive CPE isolated in 

a local hospital and 2,749 complete plasmid sequences (including 39 blaNDM-

positive plasmids) in the NCBI database, I investigated the local transmission 

and global dissemination of the blaNDM gene. This analysis has highlighted the 

complex genetic pathways of blaNDM spread. Globally, blaNDM spread involved 

marked plasmid diversity with no predominant bacterial clone. The blaNDM-

positive plasmids were carried by multiple species of Acinetobacter and 

Enterobacteriaceae, thereby highlighting the propensity for conjugation of 

blaNDM-positive plasmids among different bacterial species. The blaNDM gene 

module mobilized between different plasmid backbones on at least 6 

independent occasions. In contrast to the global plasmid diversity, early local 

spread of blaNDM-positive plasmids in a single Singapore hospital was 
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characterized by clonal spread of a predominant plasmid pTR3 with 2 sporadic 

instances of plasmid introduction (pNDM-KN and pNDM_MGR194). 

The plasmid clustering approach is crucial to the current analysis as it 

allows quantitative analyses of plasmid molecular epidemiology involving a 

large number of diverse plasmids as a tool in analyzing global spread of 

plasmid-borne genes. Prior genomic investigations of blaNDM spread have been 

mainly restricted to comparisons of less than 10 closely related plasmids due 

to the lack of phylogenetic congruence, and hence have not been able to 

discern the patterns of blaNDM-positive plasmid clustering at a global level. 

Establishment of nearest-neighbor relationships facilitated the determination 

of transposition events involving genomic regions (genes and insertion 

sequences). Determination of cluster relationships subsequently opened the 

ability to correlate clusters with specific properties (for example, extent of 

global spread or plasmid Inc groups). 

Whole genome studies of successful bacterial clones have been used to 

understand transmission of chromosomally-mediated antimicrobial resistant 

bacteria, MRSA for example. However, prior studies relying upon bacterial 

chromosomes to understand blaNDM transmission have been hindered by the 

diversity of bacterial species and strains harboring blaNDM, even in a single 

geographic locale [113]. The current study highlighted three vital evolutionary 

mechanisms underlying blaNDM-positive bacteria diversity: (1) blaNDM-gene 

module transposition, (2) blaNDM-positive plasmid conjugation, and (3) 

blaNDM-positive bacteria spread. Future studies of blaNDM transmission would 

have to take into account these three levels of gene spread. 



93 

 

Gene module transposition was a vital factor in the successful spread of 

blaNDM for at least three reasons: (1) mobilization of blaNDM from 

Acinetobacter sp. plasmids to Enterobacteriaceae plasmids as has been 

recognized before; (2) mobilization of blaNDM among Enterobacteriaceae 

plasmids of differing Inc groups; and (3) non-blaNDM gene movement 

facilitating adaptation of plasmids to differing selection pressures. 

Local blaNDM spread in a single Singapore hospital context was 

characterized predominantly by conjugation of a clonal plasmid (pTR3) 

between Enterobacteriaceae (inter-bacteria plasmid conjugation), and inter-

human host blaNDM-positive bacteria transmission (bacteria spread). The 

finding of the pTR3 plasmid in 2 distinct K. pneumoniae strains in another 

Singapore hospital further supported a significant role of inter-human host 

transmission and clonal plasmid conjugation in local spread. Three recent 

publications using whole genome sequencing also reported the predominant 

role of inter-human host transmission (via the inanimate environment in some 

cases) and HGT in local hospital spread of carbapenemases [113–115]. 

One potential reason for the difference in the local and the global plasmid 

diversity is the sampling and the time period. While the 39 global complete 

blaNDM-positive plasmid sequences has a long time range of eight years, the 11 

local isolates were isolated within a one-year period. 

The current analysis offers a glimpse of the genetic armamentarium 

available to blaNDM for dissemination to multiple environments. The limited 

data available for understanding transmission of this important resistance gene 

is highlighted by availability of only approximately 39 blaNDM-positive and 

2,749 Gram-negative whole plasmid sequences globally. Whole genome 
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sequencing of blaNDM-positive isolates from diverse geographies on a much 

larger scale will increase the understanding of blaNDM evolution and spread, 

and may prove crucial to long-term control of blaNDM. 

Since this study was conducted (April 2014), more bacterial isolates have 

been sequenced and more plasmid sequences have been archived in the NCBI 

database. Till the time of this thesis (March 2016), the number of blaNDM-

positive complete plasmid sequences has increased to 98. Though the number 

is still limited, including more plasmid sequences in the analysis could 

potentially provide more insights into the transmission pattern of the blaNDM 

gene and the control of its spread. 

Also, a 41,190 bp plasmid pNDM-ECS01 [GenBank:KJ413946.1] in 

ST131 E. coli was later reported in Thailand as a blaNDM-positive plasmid 

highly similar to pTR3, differing only by three nucleotide insertions [116]. 

However, the isolate was reported to be sequenced by Illumina MiSeq, the 

mere use of which can hardly generate complete plasmid sequences. Thus no 

inferences about the spread of pTR3-like plasmids were made based on this 

plasmid. 

Assembly error is a common problem for de novo assembly, which may 

result in relocations, translocations, inversions and local errors of misjoins 

[117]. Assemblies of Velvet has also been reported to contain these errors 

[117]. Thus, in order to avoid false inference on the global structure, 

downstream analysis using assembled contigs mainly made use of local 

sequences, whether by means of using BLAST for local sequence alignment, 

MuMMer [118] to get local hits, or  reference-based mapping and calling to 

determine variants. 
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4.5 Conclusions 

The analysis has revealed the complex genetic pathways of blaNDM spread, 

where the global dissemination is mainly characterized by transposition of the 

blaNDM gene cassette into different plasmids while early local transmission is 

mainly a result of plasmid conjugation and bacteria spread. These findings 

advance understanding of plasmid-mediated antimicrobial resistance spread 

both locally and globally. 
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Chapter 5 

 

Gene evolution by duplication: innovation, 

amplification, innovation and divergence  
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5.1 Background 

Gene duplication is regarded as a major force for genome evolution [119] and 

is prevalent in genomes of all three domains of life [81]. While the generation 

of gene duplication can be attributed to unequal crossing over, retroposition, 

or chromosomal duplication in Eukaryotes [81], in bacteria, however, two 

important forces are causing gene duplication. One is HGT that copies a gene 

into another genome. The other is homologous recombination between 

identical sequences that can cause gene duplication by generating tandem 

repeats. 

Originating from an individual, a duplicated gene would either get 

removed for the extra burden and functional redundancy it costs to the genome 

or it get fixed in the population. The fate of duplicated genes raises the Ohno’s 

dilemma [120], which states that the duplicated gene should be allowed 

sufficient time to accumulate mutations for new functionalities to arise, and 

that selection as a most probable force for the maintenance of the new copy 

would actually limit the loss of old functions and the generation of new 

functions. 

Attempts have been made to account for the mechanism for the 

maintenance of gene duplicates in the genome, and can be summarized into 

the following models: (1) Neofunctionalization. This model states that one of 

the copies is maintained by purifying selection, thus retaining the original 

function, while the other can evolve freely to acquire mutations for new gene 

functions [119, 121, 122] . One of the predictions of this model is that since 

purification selection exerts different pressure on the copies, they have 

different mutation rates. Once the accumulated mutations lead to new 
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functions, they are enhanced by positive selection [123]. (2) 

Subfunctionalization, also known as the complementation-degeneration model. 

This model proposes that each of the copies adopts different aspects of the 

original functions of the gene, which predicts symmetry in evolutionary rates 

between the two copies due to the same mechanism of mutation accumulation 

[122–125]. One form of subfunctionalization is differential expression, which 

can either be different expression in different organs [122] or different 

expression in adaptation to environmental changes [126]. (3) Increased-dosage 

advantage. In this model, the mere increase in the amount of gene product is 

an advantage, fixing the duplicates rapidly and maintained thus. However, this 

is more often than not a reversible process that once the selection pressure 

relieves, the augmented gene would be removed for its obvious fitness cost 

[127]. (4) IAD model. According to this model, a side functional trait arises by 

innovation before dene duplication, after which environmental changes value 

the new trait and select for its increase in level via amplification. The increase 

in copy number enables more beneficial mutations and compensates for the 

potential negative effects of a new mutation. Then selection further favors the 

mutations, thus facilitating their divergence [120, 128]. 

Microevolution is referred to as the changes in one or a few loci within a 

clonal population [129], which is regarded as a major evolution method for 

clonal populations. It has been used to explain biological phenomenon such as 

the immune escape during clonal spread of Neisseria meningitides and host 

specificity in Campylobacter jejuni [130]. Bacterial populations are shaped 

strongly by microevolution, and thus are stably polymorphic in certain sites. 
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After long time culturing, the genome is polymorphic for duplications, thus 

enabling the rapid adaptation and divergence under selection pressures [131]. 

Porins are bacterial pores located on the outer membrane of Gram-negative 

bacteria. Maltoporins, also known as the LamB porins because they are coded 

by the LamB gene, are a family of outer membrane proteins that specifically 

transport maltose and maltodextrins. Maltoporin is also a lambda phage 

receptor. Active maltoporin is a trimer [132]. Each monomer contains an 

independent channel, but all three monomers of a trimer are needed for phage 

adsorption. While the phage receptor site is exposed on the surface, the sugar 

binding site potentially resides within the channel [132]. Porins, as channels 

for molecules to diffuse, are always produced in large amounts. 

 

5.2 Methods 

5.2.1 Haplotype reconstruction with QuasQ 

QuasQ is a software for reconstructing haplotypes from fragmented next-

generation sequencing reads, which is written in Perl and is freely available at: 

http://www.statgen.nus.edu.sg/~software/quasq.html. This software is 

published on BMC Bioinformatics with the title “Viral quasispecies inference 

from 454 pyrosequencing” [133], where a detailed description of the algorithm 

and evaluation of the performance can be found. 

Initially designed for 454 sequencers, QuasQ is capable of handling 

sequencing reads having an average length of several hundred base pairs and a 

quality score for each sequenced base, which cat be translated to the 

probability that the base call is correct. QuasQ consists of four parts: (1) 

mapping the reliable sequencing reads to a reference sequence after pre-



100 

 

processing and quality filtering; (2) local error correction; (3) haplotype 

reconstruction and collapsing; and (4) frequency estimation. 

 

5.2.1.1 Pre-processing 

Low quality reads with sequencing errors would affect haplotype 

reconstruction by inflating the estimated number of haplotypes and affect the 

population size estimation, and thus should be eliminated. Two kinds of 454 

reads are supposed to harbor more errors than others: reads with at least one 

‘N’ call and reads of extreme lengths [134]. In the pre-processing step, reads 

having at least one ‘N’ call or reads of extreme lengths (defined as reads with 

lengths beyond the 1% extremes on either side of the read length distribution) 

would be removed. 

 

5.2.1.2 Mapping 

Reads that passed the quality filtering would be aligned against a user-

specified reference sequence with Bowtie2 [30]. Reads uniquely aligned with 

alignment length and identity both above 80% are retained for downstream 

processing. The homopolymer problem, which is a misrepresentation of the 

number of bases when faced with a stretch of identical bases, is well addressed 

by Bowtie2. 

 

5.2.1.3 Local error correction 

An issue with haplotype reconstruction is that point mutations in a sequencing 

read can either be real variants harbored by a haplotype or a sequencing error. 

To reduce the possible inflation of the haplotype number caused by 
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sequencing error, local error correction is conducted in a sliding-window 

manner. Within each window, all allele combinations whose frequencies are 

below 0.5% are corrected to be the combination with the shortest hamming 

distance. By doing this, sequencing errors are being corrected at the cost of 

sacrificing the haplotypes whose frequencies are below 0.5%. 

 

5.2.1.4 Haplotype reconstruction 

The method for haplotype reconstruction is shown below in Figure 15. 

Polymorphic sites refer to sites with more than one allele supported by 

sequencing reads. QuasQ first identifies the polymorphic sites (Figure 15A), 

which are used for haplotype reconstruction. After reducing sequencing reads 

to only polymorphic sites (Figure 15B), the reads are grouped into sets based 

on the starting position (Figure 15C). Within each set, reads that are subsets of 

other reads in the same set are filtered out (Figure 15C). A read graph method 

is used with each graph node to be the combination of alleles at the 

polymorphic sites within each corrected read, and each directed edge 

connecting two nodes if the postfix of the first node is a prefix of the second 

node (Figure 15D). To rid the possibility of the overlapping polymorphic sites 

being in vitro artifacts, at least one sequencing read that spans the 

polymorphic site as well as the immediate neighboring polymorphic sites is 

needed to support the join (Figure 15E). A gap is left when such supporting 

reads cannot be found. Parts before and after a gap would be assembled 

separately and joined in all possible ways. 
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Figure 15. A schematic representation of the QuasQ haplotype reconstruction 

workflow. Sequencing reads that have passed the quality filtering at the pre-

processing step with sequencing errors corrected locally are (A) piled up to identify 

all polymorphic sites (PS), defined as sites with two or more alleles. (B) Non-

polymorphic sites are removed from the sequencing reads, with only PS for 

downstream reconstruction. (C) The processed reads are then grouped into sets based 

on their starting positions. Within each set, reads that are subsets of other reads in the 

same set are removed (R3 removed as a subset of R4). (D) Haplotypes are 

constructed with a read-graph method. Nodes are read sequences, with directed edges 

connecting two nodes if a postfix of the first node is a prefix of the second one. Solid 

arrows such as E(ii) represent possible directed edges, while non-probable edges such 

as E(iii) and E(iv), shown with dotted arrows, are due to non-identical node 

sequences overlap. In E(i), nodes with identical overlap like R1 + R2 and R5 are 

considered probable only if there are sequencing reads spanning the nodes and the 

immediate neighboring PS. For pairs of reads with identical overlap E(i), if the allele 

combination in the defined region is not the same as that of any other read in that 

region, the two nodes are not joined. In this figure, the only constructed haplotype is 

thus R3 + R4 + R6 + R7. (This figure is modified from Figure 7 in the original article 

[133].) 

 

5.2.1.5 Sequence collapsing 

The constructed haplotypes with an identity over 90% are collapse to a single 

sequence as a representative of the highly similar sequences. 

 

A B PS 1 2 3 4 5 6 7

R1 C A A G A C A G R1 A C

R2 C A A G A C A G T R2 A C

R3 T A G A G A G T T T R3 T G T T

R4 T A G A G A G T T T C A R4 T G T T A

R5 G A C A G T A A R5 C A A

R6 G A G A G T T T C A R6 G T T A

R7 A G A G T T T C A A A T A G T R7 G T T A A T

R8 G T T T C C A A T C G G R8 T T C C G

R9 G T A A C G A A T C G T R9 A A G C T

R10 G T A A C G A A T A G G R10 A A G A G

R11 T C A A A T A G G R11 T A A G

C D
PS 1 2 3 4 5 6 7 1 2 3 4 5 6 7

R1 A C

R2 A C A C

R3 T G T T T G T T A

R4 T G T T A

R5 C A A C A A

R6 G T T A G T T A A T E(iv)

R7 G T T A A T

R8 T T C C G T T C C G

R9 A A G C T A A G C T

R10 A A G A G A A G A G

R11 T A A G T A A G

E
(i) 1 2 3 4 (ii) 1 2 3 4 5 6 7 (iii) 1 2 3 4 5 6 7

A C

A C T G T T A G T T A A T

C A A G T T A A T

T G T T A A (iv) 1 2 3 4 5 6 7

T G T T A

T G T T A A T C A A

PS

R3+R4

R5

R5

R3+R4

R6+R7

PS PS

R1+R2

R6+R7

E(i)

E(ii)

E(iii)

R1+R2

PS

AAGAG

R9

R10

R11

TAAG

R5

CAA

R6+R7

GTTAAT

R8

TTCCG

AAGCT

R9

R10

R11

AC

R3+R4

R1+R2

TGTTA

R1+R2

PS

R3+R4

R5

R6+R7

R8
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5.2.1.6 Frequency estimation 

Frequency for the constructed haplotypes is estimated with the freqEst 

program [135] implemented within the ShoRAH [136] package, which is 

based on an EM algorithm. 

 

5.2.2 Identification of LamB gene sequences 

LamB gene sequence (corresponding protein ID: AFQ63346.1) was extracted 

from K. pneumoniae 1084 genome [GenBank:CP003785.1] and was used as a 

query sequence to search for similar sequences in the NCBI ‘nt’ database 

using nucleotide BLAST. A similarity score is calculated for each of the hit as: 

length of matching sequence * BLAST identity / length of the reference 

sequence. An similarity score cut-off is set at 0.45 [71] to define the gene as 

‘present’ in the genome. 

 

5.2.3 Construction of Neighbor-Joining SNP tree 

Genetic sequences were aligned with ClustalW [137], after which the 

evolutionary history was inferred with MEGA6 [138] using the Neighbor-

Joining method [139] with a bootstrap test of 1000 replicates. The distances 

are calculated as the number of differences with all ambiguous positions 

removed for each sequence pair and are in the unit of number of base 

differences per sequence. 

 

5.2.4 Haplotype reconstruction and minimum spanning tree construction 

QuasQ v1.2 was used for haplotype reconstruction using LamB gene sequence 

extracted from K. pneumoniae 1084 genome [GenBank:CP003785.1] as the 
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reference sequence at similarity level of 0.95 and the rest of the parameters 

were set to default. The resulting base counts for each position were used to 

calculate major allele frequency. The reconstructed haplotypes were used for 

minimum spanning tree construction and phylogenetic study. Minimum 

spanning trees were constructed with the function ‘spantree’ implemented in 

the R package ‘vegan’. 

 

5.2.5 Variant calling for heterogeneity from sequencing reads 

Sequencing reads were aligned using Novoalign with default parameters, 

taking K. pneumoniae 1084 genome [GenBank:CP003785.1] as the reference 

genome. After indel realignment with GATK IndelRealigner [140] and 

duplicate removal with Picard Tools 1.100, heterogeneous variants were called 

with LoFreq [141] with default parameters. Variant sites were extracted with 

the respective allele frequencies. Shannon entropy was calculated as: 

                                       for i in A, T, C, and G 

 

5.2.6 Core genome tree of chromosomes of K. pneumoniae and related 

species 

Annotated coding sequences of K. pneumoniae 1084 [GenBank:CP003785.1] 

were taken from NCBI. Sequences containing any of the following features: (1) 

phage sequences; (2) CRISPR region; and (3) tandem repeats were removed, 

resulting in a total of 4,919 coding sequences as candidate sequences. Those 

candidate sequences present in all the chromosomes were taken as the core 

genes for those chromosomes, which contains 2,945 gene sequences. After 

extracting these gene sequences in each chromosome and aligning properly, 
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they were concatenated into core genomes for building Neighbor-Joining SNP 

tree. 

 

5.2.7 Protein structure prediction 

Protein structures were predicted with I-TASSER server v4.2 [142–144] with 

default parameters. 

 

5.3 Results 

5.3.1 IAID model for gene evolution by duplication 

In the IAID (Innovation-Amplification-Innovation-Divergence) model for 

gene evolution by duplication can be divided into four stages (Figure 16). 

Firstly, the gene is present in the form of a cloud of similar sequences in the 

population, generated by microevolution. Mutations can be beneficial, neutral 

or deleterious and some are preserved in the population with secondary 

activities. This stage, characterized by microevolution, is called innovation. 

Secondly, amplification takes place. In Eukaryotes, this can be achieved by 

unequal crossing over, retroposition, or chromosomal duplication. In bacteria, 

this can be attributed to tandem duplication or HGT. Thirdly, after the 

amplification, both of the amplified genes are still existent as sequence clouds 

in the population, experiencing the same innovation process as in the first 

stage. The evolution rates may differ given different selection forces. Lastly, 

advantaged sequences for each copy would then prevail under selection 

pressure, facilitating the divergence of the gene copies. 
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Figure 16. A schematic representation of the IAID model of gene evolution by 

duplication. First, the gene (A) is present in the population as a cloud of similar 

sequences, some of which have minor functional changes (m1, m2) generated by 

microevolution. This is a step called innovation. Then, there is an amplification of the 

gene. In bacteria, for example, the amplification can be generated by tandem 

duplication or imported via horizontal gene transfer. After the amplification, both of 

the amplified gene copies are still existent as sequence clouds in the population, 

produced by microevolution while selected by similar or different pressures. 

Advantaged sequences would then prevail under selection pressure, facilitating the 

divergence of the copies into A’ and A’’ with functional improvements or new 

functions. 

 

 

The IAID model is a derivative of the IAD model. It differs from the IAD 

model in two aspects: (1) In the IAID model, point mutation is an important 

source of mutation for the divergence of the genes both before and after 

duplication. Considering the population instead of focusing on individuals, 

Innovation 

Innovation 

Amplification 

Divergence 

A+m1 

A+m1 

A 

A 

A+m2 

A & A+m2 

A & A+m3 

A & A+m4 

A+m5 & A+m6 

A+m7 & A+m8 

A+m7 & A+m9 

A’  &  A’’ 

Fig. 1 Schematic representation of the IAID model of gene 

evolution by duplication. First, the gene (A) is present in the 

population as a cloud of similar sequences, some of which have 

minor functional changes (m1, m2) generated by microevolution. 

This is a step called innovation. Then, there is an amplification 

of the gene. In bacteria, for example, the amplification is 

generated by tandem duplication or imported via horizontal gene 

transfer. After the amplification, both of the amplified gene 

copies are still existent as sequence clouds in the population, 

produced by microevolution while selected by similar or 

different pressures. Advantaged sequences will then prevail 

under selection pressure, facilitating the divergence of the copies 

into  A’  and  A’’  with  f

u

nc tional  improvements  or  ne w  functions.     
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point mutations, even at low mutation rate, can accumulate to a big pool in the 

population. (2) For bacteria specifically, HGT is regarded as a means by which 

amplification can take, as a stage of the gene evolution, rather than an 

independent way of gene revolution by duplication. Thus, HGT is within the 

range of the IAID model. 

 

5.3.2 LamB gene is duplicated in K. pneumoniae and other related species 

One copy of the LamB gene sequence was taken from K.pneumonia 1084 

genome [GenBank:CP003785.1], with its translated protein ID being 

AFQ63346.1, and was queried in the NCBI ‘nt’ database for genomes 

harboring similar sequences. Altogether 83 hits were identified with a 

similarity score above 0.45. Interestingly, in all the bacterial chromosomes 

picked up by BLAST as having similar genes, all the K. pneumoniae, 

Klebsiella variicola (K. variicloa), Enterobacter aerogenes (E. aerogenes), 

Klebsiella oxytoca (K. oxytoca) and Raoultella ornithinolytica (R. 

ornithinolytica) chromosomes have 2 hits as summarized in Table 8. This 

illustrates that this copy of the LamB gene is widely duplicated in K. 

pneumoniae and other related strains (core genome SNP tree of the 

chromosomes is presented in Figure 17). 

A Neighbor-Joining SNP tree was constructed to uncover the phylogenetic 

structure of these duplicate genes, in which six distinct clusters were defined 

(Figure 18). Cluster1 and Cluster2 contain sequences only from K. 

pneumoniae. Cluster3 has one K. variicola strain and two K. pneumoniae 

strains isolated from plants. Cluster4, Cluster5 and Cluster6 correspond 

respectively to E. aerogenes, K. oxytoca and R. ornithinolytica. The gene 
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sequences cluster primarily based on their species, probably as a reflection of 

their diverse environmental niches, life style, as well as selection pressures. 

Within each species, the two copies from the same chromosome fall into 

different branches, leading to a bifurcating topology within each species 

branch. This clearly shows that in all the chromosomes, there are two copies 

of LamB that are similar yet stably maintaining their differences. 

 

Table 8. Summary of complete bacterial genomes harboring two copies of LamB 

gene and the plasmid harboring LamB gene. 

Accession Name Length 

(bp) CP006923.1 K. pneumoniae 30660/NJST258_1 5,263,229 

CP006918.1 K. pneumoniae 30684/NJST258_2 5,293,301 

CP000964.1 K. pneumoniae 342 5,641,239 

CP006659.1 K. pneumoniae ATCC BAA-2146 5,435,369 

CP006648.1 K. pneumoniae CG43 5,166,857 

CP006656.1 K. pneumoniae JM45 5,273,813 

CP002910.1 K. pneumoniae KCTC 2242 5,259,571 

FO834906.1 K. pneumoniae str. Kp52.145 5,438,894 

CP009114.1 K. pneumoniae strain blaNDM-1 5,297,511 

CP008929.1 K. pneumoniae strain PMK1 5,317,001 

CP003785.1 K. pneumoniae subsp. pneumoniae 1084 5,386,705 

CP003200.1 K. pneumoniae subsp. pneumoniae HS11286 5,333,942 

CP003999.1 K. pneumoniae subsp. pneumoniae Kp13 5,307,003 

CP008700.1 K. pneumoniae subsp. pneumoniae KP5-1 5,365,144 

CP008827.1 K. pneumoniae subsp. pneumoniae KPNIH1 5,394,056 

CP007727.1 K. pneumoniae subsp. pneumoniae KPNIH10 5,395,263 

CP008797.1 K. pneumoniae subsp. pneumoniae KPNIH24 5,396,164 

CP007731.1 K. pneumoniae subsp. pneumoniae KPNIH27 5,241,638 

CP008831.1 K. pneumoniae subsp. pneumoniae KPR0928 5,309,305 

CP000647.1 K. pneumoniae subsp. pneumoniae MGH 78578 5,315,120 

AP006725.1 K. pneumoniae subsp. pneumoniae NTUH-K2044 5,248,520 

CP006798.1 K. pneumoniae subsp. pneumoniae PittNDM01 5,348,284 

CP009208.1 K. pneumoniae ATCC 43816 KPPR1 5,374,834 

FO203501.1 K. pneumoniae subsp. rhinoscleromatis strain SB3432 5,270,770 

CP001891.1 K. variicola At-22 5,458,505 

CP004142.1 R. ornithinolytica B6 5,398,151 

FO203355.1 E. aerogenes EA1509E 5,419,609 

CP002824.1 E. aerogenes KCTC 2190 5,280,350 

CP003683.1 K. oxytoca E718 6,097,032 
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CP004887.1 K. oxytoca HKOPL1 5,914,407 

CP003218.1 K. oxytoca KCTC 1686 5,974,109 

CP008788.1 K. oxytoca KONIH1 6,152,190 

CP008841.1 K .oxytoca strain M1 5,865,090 

CP007734.1 K. pneumoniae KPNIH27 plasmid pKPN-262* 338,850 

 

* This plasmid has only one copy of the LamB gene. 

 

 

Accession 
Copy 1 

start 

Copy 1 

end 

Copy 2 

start 

Copy 2 

end 

Distance 

(bp) ** 

CP006923.1 50,239  51,618  4,680,991  4,682,373  631,094  

CP006918.1 50,239  51,618  4,694,482  4,695,864  647,675  

CP000964.1 37,297  38,676  4,966,471  4,967,853  710,682  

CP006659.1 5,346,148  5,347,527  627,268  628,650  715,109  

CP006648.1 4,317,374  4,318,753  5,020,657  5,022,039  701,905  

CP006656.1 86,356  87,735  4,668,822  4,670,204  689,964  

CP002910.1 4,911,094  4,912,473  376,166  377,548  723,263  

FO834906.1 50,383  51,762  5,024,511  5,025,893  463,383  

CP009114.1 3,422,696  3,424,075  4,140,502  4,141,884  716,428  

CP008929.1 1,670,727  1,672,106  2,345,217  2,346,599  673,112  

CP003785.1 50,159  51,538  4,693,016  4,694,398  742,465  

CP003200.1 5,248,017  5,249,396  605,527  606,909  690,072  

CP003999.1 50,015  51,394  4,653,313  4,654,695  702,322  

CP008700.1 2,157,244  2,158,623  2,820,988  2,822,370  662,366  

CP008827.1 5,308,012  5,309,391  608,652  610,034  693,316  

CP007727.1 5,309,219  5,310,598  608,652  610,034  693,316  

CP008797.1 5,310,120  5,311,499  608,652  610,034  693,316  

CP007731.1 5,154,246  5,155,625  594,963  596,345  680,975  

CP008831.1 5,223,261  5,224,640  608,653  610,035  693,317  

CP000647.1 4,445,232  4,446,611  5,176,653  5,178,035  730,043  

AP006725.1 5,162,537  5,163,916  659,151  660,533  743,754  

CP006798.1 3,647,566  3,648,945  2,944,639  2,946,021  701,544  

CP009208.1 3,500,129  3,501,508  2,771,545  2,772,927  727,201  

FO203501.1 49,674  51,053  822,558  823,940  771,504  

CP001891.1 40,331  41,710  4,829,455  4,830,837  667,998  

CP004142.1 4,199,789  4,201,174  3,510,203  3,511,591  688,199  

FO203355.1 985,271  986,639  4,001,763  4,003,152  2,401,727  

CP002824.1 1,411,129  1,412,508  4,450,454  4,451,832  2,239,646  

CP003683.1 5,983,739  5,985,116  2,810,230  2,811,610  2,922,145  

CP004887.1 755,685  757,062  3,933,001  3,934,379  2,735,712  

CP003218.1 1,321,363  1,322,741  4,085,470  4,086,850  2,762,730  

CP008788.1 6,037,418  6,038,795  2,731,493  2,732,873  2,844,887  

CP008841.1 996,088  997,465  3,677,470  3,678,850  2,680,006  

CP007734.1 187,727  189,099  NA  NA  NA 
 

** The distances are between the CP1 3’-end and the CP2 5’-end except for FO203501.1, 

FO203355.1 and CP002824.1 whose gene copies are in different directions, where the 

distance is the shorter distance between the copies considering that the genome is circular. 
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5.3.3 Amplification of LamB gene by tandem duplication 

A walkthrough of the genetic distances between the gene copies in all the 

chromosomes show that there are differences across species while the within-

species difference is much smaller (Figure 19A). While K. pneumoniae, R. 

ornithinolytica and K. variicola show similar between-copy distances, E. 

aerogenes and K. oxytoca chromosomes have much larger distances. 

In Figure 19A, the large diamond on the left represents the K. pneumoniae 

str. Kp52.145 chromosome [GenBank:FO834906.1], which was isolated 

before 1935 in Indonesia, Java from a human host [145]. Compared to the 

more recent K. pneumoniae isolates, it has a much shorter distance. With the 

genome size stable, this increase in the between-copy distance is an 

implication that the initial gene was amplified by tandem duplication and the 

distance increases as there are introductions of new genes and genomic islands. 

An inspection of the surrounding regions of the gene duplicates compared 

to the K. pneumoniae 1084 genome (Figure 20A) shows that the surrounding 

regions share a great sequence similarity across all species (the plasmid 

excluded) with the implication that the duplications may be traced to the same 

amplification event and passed to the rest of the genomes. Apart from the 

sequence similarity in the gene surrounding regions, the region between the 

copies were also examined for similarity. The region between LamB gene 

copies for the K. pneumoniae 1084 genome is similar to that of K. variicola 

At-22 (Figure 20C) and R. ornithinolytica B6 (Figure 20D), and is similar to K. 

pneumoniae Kp52.145 with more insertions in beween (Figure 20B). Similarly, 

K. oxytoca genomes share sequence content with K. pneumoniae 1084, but 

with major insertions taken place (Figure 19B). Apart from the similarities, E. 
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aerogenes chromosomes have different sequence content from the rest of the 

genomes. Given the similarity of the regions adjacent to the genes, it is 

supposed that E. aerogenes got introduced the LamB gene pairs at an early 

stage without the region between the gene pairs stably established. 

Amplification via HGT, an important driving force for gene duplication in 

bacteria, still preserves its possibility here since a plasmid 

[GenBank:CP007734.1] was identified as harboring LamB gene, though the 

transfer of the gene copy by this plasmid is not firmly corroborated with the 

experimental data. 
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Figure 19. Characterization of the regions between LamB gene copies within 

chromosomes: distance (A) and sequence similarity (B). In A, for each 

chromosome, the distance between the LamB copies was plotted against the 

chromosome size and was labeled according to its species. While K. pneumoniae, R. 

ornithinolytica and K. variicola share similar between-copy distance except for the 

historical sample K. pneumoniae Kp52.145, E. aerogenes and K. oxytoca samples 

have different between-copy distances from other species. In B, the sequence 

similarities were examined for each chromosome compared to the between-pair 

sequence of K. oxytoca E718. K. oxytoca HKOPL1, shown here as a representative of 

other K. oxytoca, has a great sequence similarity with the reference. K. variicola At-

22, R. ornithinolytica B6 and K. pneumoniae 1084 (a representative of the majority of 

K. pneumoniae samples) have shorter distances similar to a part of the reference. K. 

pneumoniae Kp52.145, with an even shorter distance, is also similar to the part of the 

reference. This reflects multiple insertions of gene elements between the gene pairs. 

Apart from the similarities, E. aerogenes, represented by E. aerogenes EA1509E, has 

quite different sequence content from all the other species. 
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Figure 20. Similarity of gene surrounding regions (A) and between-gene regions 

(B, C, D, E). LamB gene sequences on the K. pneumoniae 1084 genome were 

extracted with their surrounding regions and searched for similarities in other 

chromosomes (A). Similarities were shared in all the chromosomes but not the LamB-

bearing plasmid, suggesting the possibility that the duplications originate from a 

single amplification event and passed to other chromosomes. Examination of the 

similarity of the between-gene sequences shows that recent K. pneumoniae 

chromosomes differ from historical sample by a number of insertions (B), that K. 

variicola and R. ornithinolytica share a great similarity with recent K. pneumoniae 

chromosomes (C, D), and that E. aerogenes has few in common with the rest of the 

chromosomes (E).  
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5.3.4 LamB gene innovation via microevolution 

Colonies of cultured clinical isolates were combined for whole genome 

sequencing with Ion Proton Sequencer and independent experiments with 

different isolates were conducted with Illumina HiSeq Sequencer for the 

purpose of verification, giving sequencing statistics summarized in Table 9. 

Shannon entropy distribution across the complete genome of called variant 

sites with LoFreq [141] using K. pneumoniae 1084 as the reference genome 

demonstrated a great degree of polymorphism, as a result either of repeat 

regions or real polymorphism shaped by microevolution. To uncover the 

microevolution of the LamB gene, haplotypes were reconstructed with QuasQ, 

using the gene sequence coding the protein AFQ63346.1 as the reference for 

isolates sequenced with Ion Proton. The isolates sequenced with Illumina were 

not included in haplotype reconstruction since read length is not long enough. 

Summary of the read depth proves it reasonable for haplotype reconstruction. 

Major allele frequencies were calculated based on the reconstruction results, 

showing multiple polymorphic sites along the gene sequences (Figure 21A as 

a representative). Haplotypes for each isolate were taken to build minimum 

spanning tree (Figure 21B as a representative). According to the minimum 

spanning tree in Figure 21B, LamB gene sequence evolves like a cloud of 

sequences similar to each other. A Neighbor-Joining SNP tree constructed 

with high-frequency haplotypes (haplotypes with a frequency larger than 1%) 

(Figure 21C as a representative) splits into two distinct clusters, each of which 

may represent one copy of the gene, with the frequency summed up to next to 

50%. It can be seen from the tree that both of the gene copies are evolving by 

forming a cloud of closely related sequences, which is a result of 
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microevolution. Other isolates show similar figures as in Figure 21 and are 

thus not included here for brevity. 

In bacterial population, LamB gene copies differ from one another by some 

point mutations, due to which the innovation and generation of new side 

functions of the gene is possible. This is a constant process, providing a large 

gene pool from which to acquire new functions or on which a bacterial 

population can bank to survive new selection pressures. Unlike in the IAD 

model where constant duplication of genes is regarded as the major force for 

innovation, it is posed here that point mutation is a driving force for gene 

innovation before or after gene duplication. 
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Figure 21. LamB gene evolves like a cloud of similar sequences. Colonies of a 

cultured clinical K. pneumoniae isolate were collected, combined and sequenced with 

Ion Proton Sequencer. Sequencing reads were reconstructed with QuasQ to derive the 

haplotypes within the LamB gene region. Based on the QuasQ output, the major allele 

frequencies along the complete gene sequence were plotted (A), proving the existence 

of polymorphic sites within the gene with differing minor allele frequencies. A 

minimum spanning tree (B) was built to illustrate that the LamB gene copies, as a 

pool, evolve like a sequence cloud. In B, larger dots are haplotypes with a frequency 

larger than 1%. Those haplotypes were extracted to build a Neighbor-Joining SNP 

tree (C). The tree splits into to two parts, both of which have their frequencies added 

up to around 50%. The two parts are supposed to be the two copies of the LamB gene, 

each with their neighbors similar yet with point mutations generated by 

microevolution. 
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Table 9. K. pneumoniae whole genome sequencing statistics and MLST. 

Name # Reads # Bases Estimated coverage* MLST 

iso_1 5,902,846 863,934,298 172.79 ST-231 

iso_2 6,236,046 907,137,765 181.43 ST-231 

iso_3 5,959,694 869,656,713 173.93 ST-231 

iso_4 5,570,416 816,925,942 163.39 ST-231 

iso_5 5,784,574 850,574,891 170.11 ST-231 

iso_6 6,042,300 881,048,927 176.21 ST-231 

iso_7 6,301,109 913,693,564 182.74 ST-231 

iso_8 5,566,986 814,096,617 162.82 ST-231 

iso_9 5,128,619 742,056,540 148.41 ST-231 

iso_10 6,374,614 935,483,828 187.1 ST-231 

iso_11 5,546,520 763,132,383 152.63 ST-231 

iso_12 4,669,240 646,232,907 129.25 ST-231 

iso_13 5,210,950 768,238,739 153.65 ST-11 

iso_14 5,222,167 764,019,341 152.8 ST-273 

iso_15 7,046,688 971,676,087 194.34 ST-14 

iso_16 6,227,353 865,715,146 173.14 ST-16 

iso_17 5,308,787 735,601,857 147.12 Unknown 

illumina_1 1,313,970 394,191,000 78.84 ST-231 

illumina_2 1,372,709 411,812,700 82.36 ST-231 

illumina_3 1,240,225 372,067,500 74.41 ST-231 

illumina_4 1,191,909 357,572,700 71.51 ST-231 

illumina_5 1,502,732 450,819,600 90.16 ST-231 
 

* The coverage is estimated by  # bases/5,000,000 

 

 

5.3.5 Divergence after gene duplication 

For each chromosome, the number of amino acid changes from the historical 

sample, K. pneumoniae str. Kp52.145, was counted for each copy. When 

taking all chromosomes into consideration, the number of changes for the two 

copies regressed to the line y = 0.9927x+2.3242 with a R
2
 of 0.9786 (Figure 

22A). With the slope next to 1, this result suggests that when passing from 

species to species, the two copies evolve at a similar pace. When, however, 

looking into only the K. pneumoniae chromosomes, the two copies exhibit 

different patterns and are badly correlated (Figure 22B), denying the 

possibility that they are under the same selection pressure. An examination of 

the pair-wise amino acid difference within each cluster showed a significantly 
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(p-value = 1.215e-09) different mean values of difference for the two clusters, 

suggesting that Cluster1 copies, though forming a distinct cluster, have a 

larger variation that Cluster2 copies. This, again, suggests that the two copies 

are under different selection pressure in K. pneumoniae isolates. The same 

experiments were done with nucleotide differences and showed similar results, 

supporting the divergence driven by different selection pressures. This uneven 

evolution rate was also reported in rodent genes that there is an increased 

divergence in the novel daughter copies after duplication, which can be 

attributed to positive selection [146]. 

Amino acid sequences of all LamB gene copies in Figure 18 were aligned 

and compared with a number of amino acid differences observed. Positions 

with at least five sequences having differing residuals from the majority were 

plotted in Figure 23. While some of these differences feature a specific species, 

some residuals, like those of Positions 2, 3, 4, 10, 14, 17, 18, 20, and 21 at the 

N-terminus, are different in the two copies, which means that the two copies 

within the same chromosome differ at these residuals from one another. It is 

noteworthy that at position 21 of the aligned sequences, one copy has a 

deletion compared to the other which has a threonine. 

Structures for the two LamB copies on K. pneumoniae 1084 were 

predicted with I-TASSER server. Predicted secondary structures both have 18 

strands, which is true for LamB as a specific porin (Figure 24A). For the initial 

60 amino acid residuals, however, there is a difference in the predicted helices. 

The predicted solvent accessibility (Figure 24B), at the same time, shows 

various regions of difference across the gene region. 



121 

 

 

 

F
ig

u
re

 2
2
. A

m
in

o
 a

cid
 ch

a
n

g
es o

f L
a
m

B
 g

en
e se

q
u

en
ces in

 ea
ch

 clu
ster. U

sin
g
 th

e L
a
m

B
 g

en
e co

p
ies in

 th
e h

isto
rical sam

p
le 

K
. p

n
eu

m
o

n
ia

e K
p

5
2

.1
4

5
 as th

e referen
ces, th

e n
u

m
b
er o

f am
in

o
 acid

 ch
an

g
es w

as calcu
lated

 fo
r each

 g
en

e co
p

y
 in

 each
 

ch
ro

m
o

so
m

e. In
 A

 an
d

 B
, each

 d
o
t rep

resen
ts o

n
e ch

ro
m

o
so

m
e, w

ith
 th

e x
-ax

is v
alu

e its d
ifferen

ce fro
m

 th
e C

lu
ster2

 L
a

m
B

 o
f 

th
e K

. p
n
eu

m
o

n
ia

e K
p

5
2

.1
4

5
 an

d
 th

e y
-ax

is v
alu

e its d
ifferen

ce fro
m

 th
e C

lu
ster1

 co
p
y
. W

h
en

 tak
in

g
 all sp

ecies in
to

 

co
n

sid
eratio

n
 (A

), th
e d

o
ts fit w

ell to
 th

e lin
ear tren

d
 lin

e w
ith

 a slo
p
e o

f 0
.9

9
2
7
, m

an
ifestin

g
 th

at th
e ev

o
lu

tio
n

 rates are sim
ilar 

fo
r th

e tw
o

 g
en

e co
p

ies w
h

ile p
assin

g
 fro

m
 sp

ecies to
 sp

ecies. W
h
en

 o
n
ly

 th
e clu

stered
 K

. p
n
eu

m
o

n
ia

e ch
ro

m
o
so

m
es w

ere 

co
n

sid
ered

 (B
), h

o
w

ev
er, th

e tw
o

 co
p

ies sh
o

w
 d

ifferen
t d

eg
rees o

f v
ariatio

n
 th

at th
e co

p
ies in

 C
lu

ster2
 v

aries in
 a ran

g
e o

f 0
-5

 

w
h

ile th
e co

p
ies in

 C
lu

ster1
 v

aries b
y

 4
-8

 am
in

o
 acid

s. T
h
e in

tra-clu
ster p

air-w
ise am

in
o
 acid

 d
ifferen

ces w
ere also

 calcu
lated

 fo
r 

b
o

th
 clu

sters an
d

 w
ere p

lo
tted

 in
 C

. C
lu

ster1
, co

m
p

ared
 to

 C
lu

ster2
, h

as a h
ig

h
er p

air-w
ise d

ifferen
ce, w

h
ich

 w
as tested

 

sig
n
ifican

t w
ith

 a t-test p
-v

alu
e o

f 1
.2

1
5

e-0
9

. 
 



122 

 

 

 

F
ig

u
re

 2
3

. P
o
sitio

n
s w

ith
 a

t 

lea
st fiv

e se
q

u
en

ces h
a
v

in
g

 

d
ifferen

t resid
u

a
ls fro

m
 th

e 

m
a

jo
r resid

u
a
l. A

 n
u
m

b
er o

f 

am
in

o
 acid

 d
ifferen

ces w
ere 

o
b

serv
ed

 fo
r all L

a
m

B
 

seq
u

en
ces su

m
m

arized
 in

 T
ab

le 

8
. W

h
ile so

m
e o

f th
ese are 

sp
ecies-sp

ecific, th
ere are so

m
e 

resid
u
als (P

o
sitio

n
s 2

, 3
, 4

, 1
0

, 

1
4

, 1
7
, 1

8
, 2

0
, an

d
 2

1
, fo

r 

ex
am

p
le) at th

e N
-term

in
u
s th

at 

are co
p

y
-sp

ecific, w
h

ich
 

su
g

g
ests th

e tw
o

 co
p

ies w
ith

in
 

th
e sam

e ch
ro

m
o

so
m

e d
iffer at 

th
ese resid

u
als. 



123 

 

 

S
u
p
p
lem

e
n
tary

 F
ig

.1
1
 P

red
icted

 seco
n
d
ary

 stru
ctu

re (A
) an

d
 so

lv
en

t a
ccessib

ility
 (B

) fo
r th

e tw
o
 L

a
m

B
 co

p
ies fo

r K
.p

n
eu

m
o
n
ia

e
 1

0
8
4
 

g
en

o
m

e. I-T
A

S
S

E
R

 serv
er, a p

latfo
rm

 fo
r p

ro
te

in
 stru

ctu
re an

d
 fu

n
ctio

n
 p

red
ictio

n
s w

as u
sed

. T
h
e p

red
icted

 seco
n
d
ary

 stru
ctu

res fo
r th

e 

C
lu

ster1
 co

p
y
 an

d
 th

e C
lu

ster2
 co

p
y
 h

av
e sim

ilar stru
ctu

res in
 th

at th
ey

 b
o
th

 sh
o

w
 th

e ty
p
ical 1

8
 stran

d
s o

f m
alto

p
o
rin

, b
u
t h

av
e d

ifferen
t 

h
elix

 co
m

p
o
sitio

n
s fo

r th
e first 6

0
 resid

u
als. P

red
ictio

n
 o

f so
lv

en
t a

ccessib
ility

 g
iv

es v
alu

es ran
g
in

g
 fro

m
 0

 (b
u
ried

 resid
u
e) to

 1
0
 (h

ig
h
ly

 

ex
p
o
sed

 resid
u
e
). T

h
e p

red
ictio

n
 resu

lts fo
r th

e tw
o
 co

p
ies w

ere p
lo

tted
 in

 B
.     

A
 

C
lu

ster
1

 
 C

lu
ster

2
 

B
 

C
lu

ster
1

 

 C
lu

ster
2

 

F
ig

u
re

 2
4
. P

red
icted

 se
co

n
d

a
ry

 stru
ctu

re (A
) a

n
d

 so
lv

en
t a

ccessib
ility

 (B
) fo

r th
e tw

o
 L

a
m

B
 co

p
ies in

 K
. p

n
eu

m
o

n
ia

e
 1

0
8

4
 g

en
o
m

e. I-T
A

S
S

E
R

 

serv
er, a p

latfo
rm

 fo
r p

ro
tein

 stru
ctu

re an
d

 fu
n

ctio
n

 p
red

ictio
n
s w

as u
sed

. T
h
e p

red
icted

 seco
n
d
ary

 stru
ctu

res fo
r th

e C
lu

ste
r1

 co
p

y
 an

d
 th

e C
lu

ster2
 

co
p

y
 h

av
e sim

ilar stru
ctu

res in
 th

at th
ey

 b
o
th

 sh
o

w
 th

e ty
p
ical 1

8
 stran

d
s o

f m
alto

p
o
rin

, b
u
t h

a
v
e d

ifferen
t h

elix
 co

m
p
o

sitio
n

s fo
r th

e first 6
0

 resid
u

als. 

P
red

ictio
n

 o
f so

lv
en

t accessib
ility

 g
av

e
 v

alu
es ran

g
in

g
 fro

m
 0

 (b
u
ried

 resid
u
e) to

 1
0
 (h

ig
h
ly

 ex
p
o
sed

 resid
u
e). T

h
e p

red
ictio

n
 resu

lts fo
r th

e tw
o
 co

p
ies 

w
ere p

lo
tted

 in
 B

. 

 



124 

 

Different selection pressures as the two gene copies are potentially under, 

they are not diverging unboundedly from each other according to the samples 

available (Figure 25). There is a range of around 19-51 nucleotide differences 

between the gene pairs resulting in only 8-15 amino acid changes, especially 

for K. pneumoniae, which has only 8-12 amino acid differences within pairs. 

This, in its implications, states the potentially overlapping functions in certain 

regions of the gene given the difference in selection pressure the pairs are 

under. 

 

 

 

Figure 25. Difference between gene pairs within the same chromosome. Each 

chromosome is represented by a dot with the amino acid difference between the two 

LamB copies shown in the x-axis, the nucleotide difference in the y-axis, and the 

species denoted by the shape. Regardless of the number of nucleotide differences, the 

number of amino acid change is bounded, especially for K. pneumoniae samples, with 

a range of 7 to 12. This reflects that while the copies are evolving with their own 

selection pressures, the pressure may not be independent and it maintains a bounded 

level of amino acid difference. Another explanation may be that part of the proteins 

serves the same functionality that is too conservative to allow for amino acid changes. 
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5.4 Discussion 

In summary, LamB gene duplication in K. pneumoniae and other related 

species was investigated using 34 complete genomes available in NCBI, 

together with whole genome sequencing data of 22 cultured clinical isolates. 

LamB gene duplication is found in K. pneumoniae, K. oxytoca, K. variicola, E. 

aerogenes, and R. ornithinolytica and is maintained in K. pneumoniae as two 

distinct copies lying from each other at a narrow range of genetic distances. 

During bacteria growth as a population, LamB gene copies are stably 

polymorphic for single-nucleotide variations, evolving like a cloud of similar 

sequences, providing the gene pool with more mutations for emergence of new 

functions. Under selection pressure, genes with survival advantages are 

preserved. When selection pressures are different for the two copies, they 

evolve at different rates. In this case, the two copies are evolving at different 

rates, while the potential overlap in functions limits their unbounded 

divergence from one another. 

Based on this example, the IAID (Innovation-Amplification-Innovation-

Divergence) model for genome evolution via gene duplication is proposed as 

comprised of the following four steps: (1) the gene in the population is 

undergoing constant microevolution to introduce mutations for innovation; (2) 

the gene is amplified; (3) innovation continues to take place after duplication; 

and (4) selection pressure drives the divergence of the gene copies. 

While the fate of the majority of the duplicated genes is to be removed due 

to fitness cost, some are preserved in the genome, stably or temporarily. 

Various models have been proposed to explain the maintenance of duplicated 

genes in the genome. In the increased-dosage advantage model, the 
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duplication itself is an advantage. This model also features the instability of 

the duplication since once the selection pressure is removed so that the 

increased dosage is no longer an advantage, the duplication would be removed 

as well. In the neofunctionalization or subfunctionalization models, the 

functional divergence emerges after the duplication, which contradicts the 

Ohno’s dilemma. The IAD model, however, proposes new side functions 

preceding the gene duplication. This is especially probable for bacteria, which 

live together in large amounts as colonies and are under constant 

microevolution. The IAID model is different from the IAD model in that 

microevolution is raised as a major resource for innovation, which is 

illustrated with whole genome sequencing data of K. pneumoniae. This 

microevolution happens before and after the duplication, providing source for 

divergence. Also, HGT is not taken as another different way of getting new 

genes but as a means of the amplification step. Although no evidence of HGT 

was discovered in this study, one plasmid harbors this LamB gene, making it 

potentially possible to be passed to other genomes. 

Maltoporin, coded by the LamB gene, was first identified as a lambda 

phage receptor and later proved to be a channel for sugar transportation. 

Various hypotheses can be made to explain the duplication and microevolution 

of the LamB gene. It is true that porins, as channels for molecules to diffuse, 

abound in the cell surface. As a result, it is likely that the increased dosage 

may be an advantage for survival. In the case of maltoporin, the duplicated 

copy may be needed for elevated expression of the maltose system during 

glucose starvation. At the same time, cell surface proteins are subject to strong 

selection due to immune pressure from the host [147], thus making fast 
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mutation and evolution necessary. This may also be true for maltoporin, which, 

on the one hand, functions as a transporter, and on the other hand, has to 

escape the immune system. Given the obvious difference in K. pneumoniae 

LamB gene copies from human host and those isolated from plants, this may 

be a proper explanation. Some studies correlate maltoporins with antibiotic 

resistance. Maltoporin is reported to be a negative regulator for antibiotic 

resistance in E. coli, which functions to influx CTC (an antibiotic) in complex 

with Odp1 [148]. Another study showed that in two clinical multidrug-

resistant E. aerogenes strains, the expression of major porins is reduced while 

LamB is overexpressed [149]. It is true that the hypotheses need further 

experiments to validate. 

Microevolution is used to refer to the accumulation of genetic changes in a 

few loci. Based on the different ratios of recombination to spread, populations 

undergoing microevolution can be divided to three structures [129]: (1) clonal 

structure; (2) panmictic structure, in which genetic recombination causes 

random association of loci; and (3) appear to be clonal because of the rapid 

epidemic spread of panmictic bacteria. Though there are differences between 

the three structures and the two sources of genetic mutation (point mutation 

and recombination), no attempts have been made to make a distinction 

whether the cloud-like population of the LamB gene is shaped primarily by 

point mutation or recombination, or which structure it really takes. 

Microevolution, as a force creating genetic changes, is the source of 

innovation for new gene functions to evolve. 

The IAID model proposed, although illustrated only with an example for 

bacteria, can also be extended to other organisms. Even though the mutation 
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rate and population size may vary from case to case, the accumulation of 

mutations for innovation works for other organisms. The amplification step 

may vary in its mechanisms, but produces the same result of gene duplication. 

With the constant accumulation of mutations after gene duplication, 

divergence can be driven by selection pressures to produce new genes or novel 

functions of the gene. 

While LamB gene serves as a good example illustrating the IAID model, 

there is no denying the possibility that other genes cannot be explained by this 

model or that other models can account for gene evolution via duplication. 

Since different genes differ in their functions, mutation rates, and the selection 

pressures they are under, they may have different mechanism to generate 

variations and may be driven by different forces to diverge once duplicated, 

thus allowing for the existence of different models addressing the same 

phenomenon. 

Haplotype reconstruction methods are designed for reconstructing highly 

similar sequences in a single sequencing experiment and estimating the 

relative frequency. This is most often used for inferring intra-host genetic 

variation when multiple genomes are sequenced together in a single 

sequencing experiment. Haplotype reconstruction methods are most widely 

used for sequencing experiments of RNA virus due to the error-prone nature 

of RNA viruses and thus the high intra-host diversity. Such methods include 

ShoRAH [136], ViSpA [150], QuRe [151], all of which implements a pre-

processing step designed for quality filtering and sequencing error correction, 

a reconstruction step making use of overlap graph, and a frequency estimation 

step after inferring the sequences. QuasQ differs from existing software by 
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putting more efforts on the error correction step, which thus reduces 

sequencing errors and solves in part the inflation of population size in 

haplotype inference. 

 

5.5 Conclusion 

The IAID (Innovation-Amplification-Innovation-Divergence) model was 

described to explain the generation of new genes by duplication, especially in 

bacteria. In this model, a gene with side functions generated by 

microevolution is amplified, after which microevolution still brings about 

innovations for each copy as they diverge from each other under selection 

pressure. One example is LamB gene that is duplicated in K. pneumoniae and 

other related species. With 34 complete genome sequences from NCBI, I 

showed that the duplication arising by tandem duplication and passing on to 

different genomes is stably maintained and the copies are driven to diverge 

from each other by different selection pressures. Haplotype reconstruction of 

whole genome sequences from 22 clinical isolates pictured the gene in each 

isolate as a population of similar sequences. These results suggest the efficacy 

of the IAID model in explaining the gene evolution by duplication in bacteria. 
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Chapter 6 

 

SpoTyping: fast and accurate in silico Mycobacterium 

spoligotyping from sequencing reads 

 

 

 

 

The content of this chapter has been published as [152]. Reproduction of figures and 

tables is permitted by the publisher. 
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6.1 Background 

TB is an infectious disease caused mainly by Mtb. It is a top infectious disease killer 

around the world and remains an acute international health problem, resulting in an 

estimated 9.6 million new cases and 1.5 million deaths globally in 2014 [153]. 

Though TB burdens have decreased by nearly a half in the past 20 years, the global 

emergence and spread of drug-resistant TB have compounded the difficulty of 

treating and eradicating this disease. 

Spoligotyping (spacer oligonucleotide typing) is a widely used genotyping method 

for Mtb, which exploits the genetic diversity in the clustered regularly interspersed 

short palindromic repeats (CRISPR) locus, which is also known as the direct repeat 

(DR) locus in Mtb genome [154]. Each DR region consists of several copies of the 36 

bp DR sequence, which are interspersed with 34 bp to 41 bp non-repetitive spacers 

[155]. A set of 43 unique spacer sequences is used to classify Mtb strains based on 

their presence or absence. The patterns of presence and absence in each of the 43 

spacer sequences can be summarized with a 43-digit binary code with ‘1’ denoting the 

presence and ‘0’ denoting the absence for each spacer, which can also be translated 

into a 15-digit octal code [156] termed as the spoligotype. Spoligotypes can be used to 

compare Mtb isolates collected between different laboratories. Traditionally, 

spoligotyping is conducted using PCR-based reverse line hybridization blotting 

technique [154]. Various new spoligotyping methods have been proposed recently, 

the most of which are microarrays, such as the PixSysn QUAD 4500 Microarrayer 

[157], DNA microarray [158], hydrogel microarray (biochip) [159], Spoligorifytyping 
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[160] and its follow up TB-SPRINT [161]. Other spoligotyping methods include 

those based on a matrix-assisted laser desorption/ionization time-of-flight mass-

spectrometry (MALDI-ToF MS) platform [162, 163]. Spoligotyping has also been 

applied to strain typing in other bacterial species such as Campylobacter jejuni [164, 

165], Legionella pneumophila [166], and Salmonella [167]. 

Though technological advancements in next-generation sequencing have enabled 

single-nucleotide resolution for Mtb phylogenetic studies by allowing the construction 

of a SNP-based phylogenetic tree, genotyping of bacteria is still needed for fast strain 

identification and correlation with previous isolates. For previous isolates, particularly 

the historical ones, genotypes including the spoligotype may have been determined as 

a routine, but whole genome sequencing data is not available and some isolates are 

not able to be sequenced. Under such circumstances, in silico genotyping from the 

whole genome sequences is necessary for correlating current isolates with previously 

genotyped ones. There are several molecular genotyping techniques for Mtb, of which 

the most widely used are: (1) spoligotyping; (2) Mycobacterial Interspersed 

Repetitive Units - Variable Numbers of Tandem Repeat (MIRU-VNTR) and (3) 

IS6110-based restriction fragment length polymorphism (IS6110-RFLP) [168]. Since 

the determination of MIRU-VNTR depends on determining the repeat number of 

tandem repeats, inferring MIRU-VNTR from next-generation sequencing reads 

involves resolving tandem repeats, which is extremely challenging for the current 

sequencing reads generated by the most widely used sequencing platforms due to 

their short lengths. IS6110-RFLP commonly has its result based on DNA fragment 
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blots on electrophoresis gel image and focuses on the determination of fragment 

lengths, which is also extremely challenging to infer since short-read sequencing 

cannot be used alone to construct finished genomes. Spoligotyping, therefore, 

provides a unique chance to obtain the same result from whole genome sequences as 

the molecular genotyping result achieved in laboratories, which can correlate isolates 

investigated using different approaches. In silico spoligotyping is also important in 

investigations using public data, where sequencing reads or complete genomic 

sequences are available but the spoligotypes of the isolates are not reported. 

SpolPred [169] is a tool capable of accurately predicting the spoligotype of Mtb 

isolates using sequencing reads of uniform length obtained from platforms such as 

Illumina GAII and HiSeq. However, for sequencing reads generated by platforms 

marketed for clinical diagnostics such as Illumina MiSeq and Ion sequencers, where 

throughput is moderate and read lengths are non-uniform, the accuracy of SpolPred is 

significantly reduced. SpoTyping improves the performance of SpolPred in three 

ways: (1) SpolPred reads in a fixed number of bases from each sequencing read as 

specified by the user. As a result, for sequencing experiments with non-uniform read 

length, prediction accuracy is highly dependent on the choice of the read length by the 

user, which is hard to determine. SpoTyping, by reading in the full length of every 

read, makes use of all the available sequencing data. (2) SpolPred requires the user to 

specify a direction for the reads, which can be either direct or reverse. However, since 

each FASTQ file consists of both direct and reverse reads, SpolPred only utilizes a 

fraction of the input sequencing reads which can lead to incorrect predictions for 
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sequencing experiments with low throughput. SpoTyping explicitly considers the 

reads in both directions, thereby using all the information presented in the sequencing 

reads. (3) SpolPred relies on an inefficient sequence search algorithm; whereas 

SpoTyping integrates the BLAST algorithm in the search which can considerably 

reduce the time of the search. In addition to the improvements listed above, 

SpoTyping also comes with novel functions not found in SpolPred or other software 

previously: (1) For TB disease outbreak investigation, it is necessary to quickly 

identify isolates with matching spoligotypes. SpoTyping thus automatically queries 

SITVIT [170], a global Mtb molecular markers database to download associated 

epidemiological data for isolates with matched spoligotypes in an Excel spreadsheet, 

which can be presented as a graphical report showing the distribution summaries of 

the meta-data corresponding to the clades, years and countries of isolation for these 

isolates. (2) SpoTyping works on different input files such as next-generations 

sequencing reads in FASTQ format, and complete genomic sequences or assembled 

contigs in FASTA format. (3) SpoTyping can work on most operating systems such 

as Windows, Linux and Mac OS, either as a non-interactive script which can be 

integrated into individual analysis pipelines or as an interactive application with a 

graphical user interface. Thus, we believe SpoTyping would be a useful tool for 

public health surveillance and genotyping from next-generation sequencing data in 

clinical diagnostic of Mtb strains. 

SpoTyping is written in Python, and is freely available at: 

https://github.com/xiaeryu/SpoTyping-v2.0. 
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6.2 Methods 

6.2.1 Implementation 

SpoTyping is implemented with Python and accepts two kinds of input files: single-

end or pair-end sequencing reads in FASTQ format, and complete genomic sequences 

or assembled contigs in FASTA format. A schematic representation of the SpoTyping 

workflow is shown in Figure 26. When the input files are sequencing reads, 

SpoTyping first concatenates all sequencing reads in the input FASTQ file(s) into a 

single contiguous sequence in FASTA format, which would then be constructed into a 

BLAST [70] nucleotide database. The current program uses the swift mode by default, 

which, instead of processing all sequencing reads, reads in no more than 250 Mbp of 

the sequencing reads, which corresponds to a read depth of ~55X of the Mtb genome 

and would be sufficient in most situations. Disabling the swift mode would require 

SpoTyping to utilize all sequencing reads with increased execution time. The set of 43 

spacer sequences, each of 25 bp in length, would be queried against the constructed 

database using nucleotide BLAST. The BLAST output is then parsed to determine the 

number of hits for each spacer sequence in the input file(s). At most one mismatch out 

of 25 bp of the spacer sequence is allowed for a BLAST match to be considered as a 

hit. For sequencing reads, if a spacer sequence is absent in the Mtb isolate, then no or 

very few hits would be identified, while if the number of hits exceeds a threshold (hit 

threshold, with a default of 5 error-free hits and 6 1-error-tolerant hits), it indicates the 

presence of the spacer sequence where the number of hits correlates with the 
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sequencing read depth of the locus. For genomic sequences or assembled contigs, the 

presence of one hit for a spacer sequence indicates the presence of the spacer. The 43-

digit binary string, each digit representing one of the 43 spacer sequences with ‘0’ 

indicating absence and ‘1’ indicating presence, can therefore be written into an octal 

code that defines the spoligotype of the Mtb isolate. The predicted spoligotype is then 

automatically queried in the SITVIT database to retrieve all reported isolates having 

identical spoligotypes, where associated data corresponding to the MIRU12, VNTR, 

SIT, MIT, VIT, clade, country of origin, country of isolation, and year of report for 

these isolates would be downloaded in an Excel spreadsheet. SpoTyping also includes 

an R script that can present summary statistics of the associated meta-data as a pdf 

report. 

 

6.2.2 Performance assessment: accuracy 

The accuracy of SpoTyping was assessed in comparison with SpolPred on 3 datasets: 

(1) 161 isolates sequenced on Illumina HiSeq [SRA: SRA065095]; (2) 30 isolates 

sequenced on Illumina MiSeq [ENA: PRJNA218508]; and (3) 16 isolates sequenced 

on Ion Torrent [ENA: PRJEB6576]. 
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Figure 26. A schematic representation of the SpoTyping workflow. If the specified input 

contains sequencing reads, SpoTyping first concatenates the sequencing reads to form an 

artificial sequence. The artificial sequence, or genetic sequences when the input contains a 

complete genomic sequence or assembled contigs, would be built into a BLAST database. 

After querying the 43 spacer sequences in the database, the results are parsed to count the 

number of hits for each spacer sequence. A hit threshold is set to define a spacer as ‘present’ 

in the genome, resulting in a 43-digit binary code with ‘1’ as present and ‘0’ as absent, which 

is further translated into an octal code of the spoligotype. SITVIT database is then queried to 

identify matching isolates having the same spoligotype, where the associated data of the 

matched isolates are downloaded and summarized with pie charts. 

 

The first assessment was conducted on a dataset of 161 Mtb isolates sequenced on 

Illumina HiSeq whose spoligotypes have been experimentally determined and 

reported [171]. Both SpoTyping and SpolPred were run with default parameters. The 

predicted octal codes were each queried in the SITVIT database to identify the 

matching spoligotype to compare with the reported spoligotype. Isolates with 

discordant results were examined by searching the spacer sequences on the contigs 

assembled using the de novo assembly software Velvet [172]. 

The next assessment was conducted on a dataset of 30 Mtb isolates sequenced on 

Illumina MiSeq without reported spoligotypes. The reference spoligotype for each 

isolate was determined by manual inspection of the BLAST output file to determine 

the number of hits for each spacer sequence in the sequencing reads. Given that the 

sequencing read depths are above 20X for all isolates, no hit for a spacer sequence is a 

strong indication of its absence while more than 5 hits is a strong indication of its 

presence. While a judgement cannot be safely made based on a hit number of 1-5, 

isolates with at least one such case were removed from the assessment, leaving only 

isolates with confident reference spoligotypes. SpoTyping was run with default 
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parameters while SpolPred calls for a specified read length, where a range of read 

lengths were used based on the read length percentiles from 0.04 to 1 at a step of 0.04, 

resulting in a total of 25 predictions for each isolate. 

The accuracy of SpoTyping was also assessed in comparison with SpolPred on a 

dataset of 16 Mtb isolates sequenced on Ion Torrent. The reference spoligotypes were 

determined the same as those for Illumina MiSeq data. The running parameters were 

also similar as those for Illumina MiSeq data. 

 

6.2.3 Performance assessment: execution time 

The time performance of SpoTyping was compared with SpolPred based on the first 

dataset described above. The programs were run on a 64-bit Fedora Linux server 

workstation having a 2.0GHz quad processor and 32GB RAM. Both SpoTyping and 

SpolPred were run twice for each isolate with the swift mode either on or off. Default 

parameters were used for SpoTyping swift mode, while for non-swift mode, 10 error-

free hits or 12 1-error-tolerant hits (options of -m 10 -r 12) was taken as the hit 

threshold due to the high sequencing read depth to eliminate false positives. For 

SpolPred, the pair-end sequencing reads were first concatenated (concatenation time 

was not counted toward the execution time). The read lengths were set to be the actual 

read lengths. The hit threshold was similarly set to be 10 (option of -m 10) in the non-

swift mode. 
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6.2.4 Performance assessment: downsampling experiment 

The performance of SpoTyping was next assessed at various sequencing read depths 

to determine its applicable range, where SpoTyping prediction accuracy was 

determined for: (1) an H37Ra Mtb isolate that was sequenced at a sequencing 

throughput of 3,000 Mbp (~670X); and (2) a Beijing-genotype Mtb isolate with a 

sequencing throughput of 2,700 Mbp (~600X) by performing 50 iterations each for 

six downsampling ratios of 50%, 20%, 10%, 5%, 2% and 1% of the initial number of 

reads for each isolate. In each downsampling experiment, a certain percent of the 

sequencing reads were randomly selected from the original FASTQ file to form a new 

file with a lower read depth, where the percentage is called the downsampling ratio. 

For all downsampling experiments, default settings were used except for the 

categories of 2% and 1% where the hit threshold was set to 2 error-free hits and 3 1-

error-tolerant hits (options of –m 2 –r 3) due to the low read depths. The false 

positives caused by the concatenation of sequencing reads were also assessed in the 

downsampling experiment. 

Sequencing reads of the Beijing-genotype isolate are deposited in European 

Nucleotide Archive under the code of ERP006354. The H37Ra isolate is a laboratory 

strain and was sequenced as part of a validation sequencing run. 

 

6.2.5 Hit threshold selection 

The selection of the hit thresholds was also based on the downsampling experiments. 

In each downsampling experiment, the number of both error-free hits and 1-error-
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tolerant hits for each spacer identified by SpoTyping were divided by the estimated 

read depth (number of sequence bases/ 4,500,000) of the experiment, representing the 

number of hits as a percentage of the estimated read depth. For each spacer sequence 

in each experiment, the percentage is used as the feature to classify a spacer as present 

or absent, while the spacer’s actual class of presence or absence is used to assess 

whether the classification is correct. A set of percentages was used as the thresholds 

to calculate the respective true positive rates and false positive rates, which were 

plotted as a receiver operating characteristic curve (ROC curve). The thresholds were 

selected to maximize the true positive rate while minimizing the false positive rate. 

 

6.3 Results 

6.3.1 In silico spoligotyping of 161 Mtb isolates sequenced on Illumina HiSeq 

For all the 161 Mtb isolates, SpoTyping and SpolPred predicted the same spoligotypes, 

of which 20 isolates either without a match in the SITVIT database or reported as 

“New” were excluded from subsequent comparisons. Of the remaining 141 isolates, 

predictions of SpoTyping and spoligotypes determined in laboratory for 127 isolates 

(90.07%) were identical. For the 14 discordant isolates, the spacer sequences were 

searched in the assembled contigs to determine the spoligotypes, which are all 

concordant with the predictions from SpoTyping. 
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6.3.2 In silico spoligotyping of 30 Mtb isolates sequenced on Illumina MiSeq 

The accuracy of SpoTyping was then assessed in comparison with SpolPred on 30 

Mtb isolates sequenced on Illumina MiSeq, among which 21 passed filtering for 

having reference spoligotypes confidently determined. SpoTyping correctly inferred 

the spoligotypes for all 21 isolates. Since SpolPred requires a read length to be 

specified, a range of read lengths were assessed based on the percentiles from 0.04 to 

1 at a step of 0.04, resulting in a total of 25 predictions for each isolate. At each 

percentile, the predictions for the 21 isolates were analyzed to calculate the prediction 

accuracy, which is summarized in Figure 27. SpolPred performs the best using the 

read lengths at the 0.36, 0.40 or 0.44 percentiles, with accuracies around 50%. The 

prediction accuracy of SpolPred is significantly lower than that obtained by 

SpoTyping and is also highly dependent on the choice of read length used as input, 

which, in itself, is difficult to determine. 

 

6.3.3 In silico spoligotyping of 16 Mtb isolates sequenced on Ion Torrent 

The accuracy for spoligotype inference was also determined on 16 Mtb isolates 

sequenced on Ion Torrent with spoligotypes reported to be all Beijing genotype [173]. 

Of the 16 isolates, 11 have confidently determined spoligotypes, which are all of the 

spoligotype ‘000000000003771’ as are consistent with the reported Beijing genotype. 

SpoTyping makes correct prediction for all the 11 isolates. The performance of 

SpolPred is summarized in Figure 27. SpolPred performs best using the read length at 

the 0.08 and 0.12 percentile, with accuracies of only around 10%. 
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Figure 27. Prediction accuracy of Mtb isolates sequenced on Illumina MiSeq and Ion 

Torrent. SpolPred requires a read length to be specified, which results in inconsistent 

predictions when using different specifications. The accuracy assessment was conducted 

between SpoTyping (A) and SpolPred (B) on 21 MiSeq-sequenced isolates and 11 Ion-

sequenced isolates, with SpoTyping predictions using default parameters and SpolPred 

predictions using different read length percentiles as the input read lengths. While SpoTyping 

have perfect accuracies for both datasets, SpolPred gives varying accuracies depending on the 

read length, but are always lower than 50%. 

 

6.3.4 Comparison of time performance for SpoTyping and SpolPred on 161 Mtb 

isolates 

For the 161 Mtb isolates assessed, SpoTyping is about 20-40 times faster than 

SpolPred, with SpoTyping taking an average of 28.8 sec (standard deviation is 5.3 sec) 

in its swift mode, and an average of 56.4 sec (standard deviation is 8.0 sec) to process 

all reads, while SpolPred took an average of 17 min 19.3 sec (standard deviation is 1 

min 35.3 sec) by using the –s option, or an average of 18 min 20.0s (standard 

deviation is 50.2 sec) to process all reads. 
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6.3.5 Downsampling experiments 

Based on the downsampling experiments which first explore the applicable 

throughput for accurate spoligotype inference, SpoTyping is able to efficiently and 

accurately predict the spoligotype for isolates having sequencing throughput over 54 

Mbp (read depth of ~12X) with accuracies above 98% (Figure 28, Table 10 for 

H37Ra, and Table 11 for Beijing). However, in experiments with very low throughput 

(read depth below 10X), lowering hit thresholds is still not sufficient to make accurate 

predictions as some of the spacer sequences would not be adequately sequenced and 

represented in the input FASTQ file(s). 

 

 

 

Figure 28. Assessing the accuracy of SpoTyping across various sequencing read depths 

for H37Ra and Beijing-genotype isolates. With blue points denoting the Beijing genotype, 

pink points denoting H37Ra, the prediction accuracies were assessed with the sequencing 

throughput measured by the number of bases for all the downsampling experiments. 

SpoTyping is suitable for sequencing runs whose throughput are over 54 Mbp (read depth of 

~12X), where the accuracy is almost 100%. 
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Table 10. Statistics of time and accuracy of running SpoTyping on 50 iterations each for 

various downsampling ratios of an H37Ra Mtb isolate. 
Downsampling ratio 1

+
 0.5 0.2 0.1 0.05 0.02 0.01 

# Read 

pairs 

Mean (M
^
) 199.1

M 5 

99.58 39.83 19.91 9.96 3.98 1.99 

SD NA 2,901 1,765 1,372 1,173 626 356 

# Bases 
Mean (M

^
) 3,027 1,513 605 302 151 60 30 

SD NA 440,98

3 

268,22

3 

208,49

1 

178,22

7 

95,223 54,112 

Estimated 

coverage* 

Mean 672.7 336.35 134.53 67.26 33.63 13.46 6.73 

SD NA 0.1 0.06 0.05 0.04 0.02 0.01 

Time 

elapsed (s) 

Mean 25.936 40.476 40.068 50.663 24.351 7.705 4.698 

SD NA 1.534 1.257 2.148 2.169 0.834 0.639 

Accuracy 1 100% 100% 100% 100% 98% 12% 

 

+ No downsampling was performed 

* The coverage is estimated by (#bases/4,500,000) 

^ In the unit of a factor of one million 

 

Table 11. Statistics of time and accuracy of running SpoTyping on 50 iterations each for 

various downsampling ratios of a Beijing-genotype Mtb isolate. 
Downsampling ratio 1

+
 0.5 0.2 0.1 0.05 0.02 0.01 

# Read 

pairs 

Mean (M
^
) 17.83 8.91 3.57 1.78 0.89 0.36 0.18 

SD NA 1,921 1,683 1,265 845 528 410 

# Bases 
Mean (M

^
) 2,710 1,355 542 271 136 54 27 

SD NA 292,03

9 

255,76

2 

192,30

2 

128,51

1 

80,184 62,321 

Estimated 

coverage* 

Mean 602.24 301.12 120.45 60.22 30.11 12.05 6.02 

SD NA 0.06 0.06 0.04 0.03 0.02 0.01 

Time 

elapsed (s) 

Mean 25.301 38.778 38.506 42.15 20.276 6.427 3.977 

SD NA 1.732 1.945 2.098 0.807 0.296 0.535 

Accuracy 1 100% 100% 100% 100% 100% 60% 

+ No downsampling was performed 

* The coverage is estimated by (#bases/4,500,000) 

^ In the unit of a factor of one million 

 

Since SpoTyping concatenates sequencing reads into an artificial sequence to 

create the BLAST database, an immediate concern is the false positives created due to 

chimera sequences. In all of 600 downsampling experiments performed for both 

H37Ra and Beijing genotype Mtb isolates, the maximum number of false positive hit 

is 1 for both error-free hits and 1-error-tolerant hits. Of the experiments, 98.3% 
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(590/600) show no false-positive error-free hits while 95.7% (574/600) show no false-

positive 1-error-tolerant hits. The likelihood of false positives created due to chimera 

sequences is thus low, which can be further reduced by setting more stringent hit 

thresholds. 

 

6.3.6 Hit threshold selection 

 The choice of hit thresholds to determine the presence or absence of a spacer 

sequence used in SpoTyping was evaluated. The evaluation was conducted in the 

downsampling experiments, based on the groups with downsampling ratios from 2% 

to 50% (read depths between ~12X and ~300X) where accurate inferences for the 

spacer sequences are possible to be made. A total of 21,586 spacer sequence instances 

((5 downsampling ratios * 50 rounds for each downsampling ratio * 43 spacer for 

each round + 43 spacers without downsampling) = 10,793 spacers for each of the two 

strains) with their respective number of hits identified by SpoTyping were included in 

the analysis, of which 10,040 are absent cases and 11,546 are present cases. The 

number of hits was divided by the estimated read depth to represent the number of 

hits as a percentage of the read depth in order to adjust for the difference in 

sequencing throughput. A set of percentages was used as the thresholds to calculate 

the respective true positive rates and false positive rates, which were plotted as an 

ROC curve (Figure 29). The ROC curves for both the error-free hits (Figure 29A) and 

1-error-tolerant hits (Figure 29B) show very high true positive rates and very low 

false positive rates, with the areas under the ROC being 0.9999997 and 0.9999998, 
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respectively. False positive rates are always nearly 0, while the true positive rates are 

above 99% by setting the thresholds to be 1.80% to 14.86% of the read depth for 

error-free hits and 1.80% to 14.88% of the read depth for 1-error-tolerant hits. Thus 

the default thresholds of 5 error-free hits and 6 1-error-tolerant hits are applicable to 

sequencing experiments with estimated read depths between ~30X and ~280X. The 

thresholds can be adjusted accordingly given sequencing throughputs beyond this 

range. 

 

 

 
Figure 29. ROC curves for the selection of hit thresholds. The ROC curves were plotted 

for both error-free hits (A) and 1-error-tolerant hits (B) to select the hit thresholds. Diagonal 

lines, also known as lines of no discrimination, were plotted as references of random guess. 

The threshold evaluation was based on a percentage calculated as the number of hits divided 

by the estimated read depth. A set of percentages was used as the thresholds to calculate the 

respective true positive rates and false positive rates, which were plotted as the ROC curves. 

Both ROC curves show constantly high true positive rates and low false positive rates, with 

the areas under the ROC curve being 0.9999997 and 0.9999998, respectively. 
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6.4 Discussion 

The global burden of TB, especially drug-resistant strains, has put a significant 

spotlight on pathogen whole genome sequencing as a rapid diagnostic tool, which is 

of great relevance to both public health surveillance and clinical treatment. The 

application of next-generation sequencing in clinical microbiology requires fast and 

easy-to-use software that is able to accurately produce easily comprehensible results. 

As shown, SpoTyping is able to accurately determine the spoligotype of Mtb isolates 

rapidly. Contrary to SpolPred which is sensitive to the user-specified read length and 

gives inconsistent predictions at different read lengths, SpoTyping gives accurate 

predictions based on sequencing reads produced from different sequencing platforms 

regardless of the length uniformity of the sequencing reads and is 20 to 40 times faster 

than SpolPred. Additional functions of SpoTyping include: (1) database query, where 

the predicted spoligotype is automatically queried in the SITVIT database to retrieve 

all associated epidemiological data corresponding to the MIRU12, VNTR, SIT, MIT, 

VIT, clade, country of origin, country of isolation, and year of report; and (2) 

information visualization, where the retrieved information would be summarized, 

visualized, and presented as a report. These additional functions would be useful for 

public health surveillance of Mtb strains causing TB. 

While there are several molecular typing techniques for Mtb, the most widely used 

are spoligotyping, MIRU-VNTR and IS6110-RFLP. Spoligotyping, though being a 

relatively simple, cost-effective, and high-throughput method, suffers from the 

limitations of: (1) having relatively low discriminatory power [174] due to its use of 
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only a single genetic locus for genotyping; and (2) having limited use in phylogenetic 

study. Among the genotyping methods for Mtb, a combination of spoligotyping and 

MIRU-VNTR was reported to be the best strategy [175, 176]. However, significant 

technical challenges currently exist for accurate in silico typing from next-generation 

sequencing reads of MIRU-VNTR which involves resolving tandem repeats and 

IS6110-RFLP whose result is based on DNA fragment blots on electrophoresis gel 

image and thus involves the determination of DNA fragment lengths. Spoligotyping, 

as a result, provides a unique chance to obtain the same result from whole genome 

sequences as the molecular typing result achieved in laboratories, which can correlate 

the isolates investigated with different approaches. Though spoligotyping has less 

discrimination power than SNP phylogeny inferred from whole genome sequences, it 

is unique in correlating the genomic data produced in research laboratories and the 

molecular typing data from clinical laboratories. Thus in silico spoligotyping is not 

only a genotyping method for Mtb isolate differentiation, but also a bridge between 

isolates investigated with whole genome sequencing and isolates investigated with 

traditional laboratory protocols, especially those historical isolates that are not 

sequenced. Inexorably, clinical surveillance and management of TB, particularly for 

disease diagnosis and treatment, will progress towards the use of direct Mtb 

sequencing. Thus the ease of use and interpretability of the results will be of 

considerable importance to users within a public health setting, which is well 

achieved with SpoTyping. 
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A recently published letter reported CASTB, an analysis server for the 

Mycobacterium tuberculosis complex, which provides next-generation sequencing 

data analysis tools for virtual typing (spoligotyping included), virtual drug resistance 

analysis, and phylogenetic analysis [177]. While the webserver provides a 

comprehensive overview of the sequencing data, the performance of each tool is not 

well evaluated in the publication. More accurate and well assessed tools are thus 

needed for further analysis. SpoTyping is here assessed to provide high accuracy for 

in silico spoligotyping and thus demonstrates the reliability of the results. SpoTyping 

also benefits from its open source nature that it can be easily integrated into in house 

analysis pipelines for in-depth analysis of the sequencing data. When talking about 

execution time, services provided by webservers may be very slow due to the inherent 

issues such as the process of data uploading and the availability of the computational 

resources. SpoTyping, on the other hand, can be setup locally and provides the 

spoligotyping result within a minute. 

For the 14 discordant spoligotypes between the laboratory tests and the in silico 

predictions made by SpoTyping in the 161 Mtb isolates sequenced on Illumina HiSeq, 

the SNP-based phylogenetic tree of these 161 Mtb isolates in the original article [171] 

was examined to compare the lineage with the spoligotyping results. Out of the 14 

discordant results, 3 showed better concordance of the in silico prediction with the 

lineage shown on the tree. As an example, an isolate (Accession: SRR671868, Strain: 

143) located at Lineage 4.2 on the SNP-based phylogenetic tree is reported to be 

Beijing genotype based on the laboratory test in the publication, while predicted to be 
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T2 genotype by SpoTyping. However, Beijing genotype is usually found at East Asia 

Lineage 2, while Lineage 4 usually harbors the Euro-American genotypes. One of the 

discrepancies may be caused by the different naming of spoligotypes in different 

databases (Beijing and Beijing-like). Definite conclusion cannot be made for the 

remaining 10 isolates for which the reported spoligotype and in silico predicted 

spoligotype are different while the lineages for both spoligotypes are similar (T2 and 

H3, for example). For such isolates, the difference could be due to the discrepancy 

between laboratory tests and the genomic features. 

SpoTyping would not be able to differentiate between mixed infections as spacers 

deleted in one strain may be compensated by reads from another strain, thus making 

an incorrect inference of presence of the spacer sequence. 

 

6.5 Conclusion 

SpoTyping is an accurate, fast and easy-to-use program for in silico spoligotyping of 

Mtb isolates from next-generation sequencing reads, complete genomic sequences, 

and assembled contigs. In addition, SpoTyping automatically queries the global Mtb 

molecular markers database SITVIT to retrieve associated data for matching isolates 

with the inferred spoligotypes, which can be summarized graphically to generate a 

report. SpoTyping would be a useful tool for public health surveillance and 

genotyping of Mtb strains. 
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Chapter 7 

 

Discussion  
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7.1 Longer reads can do more 

Illumina sequencing has been the most widely used sequencing technique in 

bacteria genomics. While bearing the merit of high accuracy, reads generated 

by Illumina sequencing has relatively short length (pair-end reads of up to 150 

bp in HiSeq, and 250 bp in MiSeq). The short read lengths may not cause 

problems for reference-based reads mapping and variant calling, but may be a 

limitation in bacteria genomics, where de novo assembly is widely used. 

Repeats are notoriously hard to resolve when their lengths are longer than the 

sequencing read lengths. Tandem repeats are repeats where repetitions are 

directly adjacent to each other, and may describe patterns that help to 

determine an individual's traits. MIRU-VNTR, a genotyping method for Mtb, 

for example, involves the determination of repetition numbers in tandem 

repeats, and is not feasible with short sequencing reads. There are also repeat 

sequences like insertion sequences, transposable elements, and duplicated 

genes that cannot be adequately resolved by short sequencing reads, thus 

confounding de novo assembly, and making it extremely difficult to construct 

complete genomes with only these reads. Accuracy of haplotype 

reconstruction described in Chapter 5 is also limited by read length. Thus 

longer sequencing reads can achieve more in bacteria genomics if sequencing 

quality is not undermined. 

Efforts have been made to increase sequencing read length. The company 

Pacific Biosciences has achieved the success by using the SMRT technology 

for sequencing, which was reported to have a throughput of 500Mbp to 1Gbp 

per cell with half of the reads longer than 14Kbp, 5% of the reads longer than 

24Kbp and a maximum read length of longer than 40Kbp. Other attempts like 
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the Oxford Nanopore sequencing also provide increased read length. Though 

generating long reads in several kilo bases, single-molecule sequencing 

approaches have quite high error rates (15.4% to 17.9% [178]). As a result, 

methods have been proposed [178, 179] to finish bacterial genomes using a 

combination of high quality short reads from next-generation sequencing and 

less accurate long sequencing reads, exploiting both merits of higher accuracy 

and longer read lengths, respectively. 

 

7.2 Experience with different sequencing platforms 

During my PhD training, I have encountered sequencing reads from multiple 

platforms: Illumina MiSeq sequencing, Illumina HiSeq sequencing, 454 

sequencing, Ion Proton sequencing, and PacBio SMRT sequencing. 

Illumina MiSeq sequencing is most widely used in sequencing bacterial 

genomes, which provides highly accurate pair-end reads of up to 250 bp in 

length. The accuracy and the relatively long read length make MiSeq optimum 

among the platforms for de novo assembly when used alone, though longer 

reads will still help to improve assembly quality. Compared to MiSeq, HiSeq 

have higher throughput but shorter read length. Given the importance of read 

length in de novo assembly, HiSeq is more often used in sequencing of 

chromosomes of clonal bacterial like Mtb, where reference-based reads 

mapping would be used. The major error type for Illumina sequencing is 

substitutions, which does not call for special pre-processing given sufficient 

read depth (~50X). 

Roche’s 454 sequencing was used once for sequencing dengue virus in 

order to do haplotype reconstruction. Back in 2012, 454 and Illumina were the 
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most used sequencing platforms. Reads generated by 454 sequencers have the 

advantage of being longer (~700 bp), but also the disadvantages of having: (1) 

higher error rates; and (2) much higher cost. The major error types of 454 are 

insertions and deletions, which needs to be considered in the pre-processing 

step. Reads of extreme lengths, which are correlated with low sequencing 

quality [134], may also need to be removed at the pre-processing step. As 

Roche announced the plan to shut down the 454 sequencing business, people 

tend to use it less and less. 

Ion Torrent sequencing was used once as a trial run, where the 

performance appeared similar to that of Illumina in terms of the relatively 

short read length, and similar to that of 454 in terms of the higher error rates 

(insertions and deletions, primarily), thus not optimum for our research 

purposes. However, Ion Torrent sequencing has the advantage of having very 

fast speed and relatively low throughput per run, making it ideal for clinical 

diagnostics laboratories where rapid sequencing of a small number of isolates 

is required. 

PacBio SMRT sequencing was also used as a trial run, which managed to 

complete 4 out of 5 pieces of DNA in a K. pneumoniae isolate though raw 

sequencing reads and sequencing design like how many cells were actually 

used were not provided. It would be very useful in bacteria genomics studies 

where genomes are plastic and complete genomes are needed for better 

characterization of the isolates if the price is not that high. 
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