
ALGORITHMS FOR THE ANALYSIS OF

SPATIO-TEMPORAL DATA FROM TEAM SPORTS

A thesis submitted in fulfilment of the requirements for the

degree of Doctor of Philosophy in the School of Information Technologies at

The University of Sydney

Michael John Horton

January 2018

c© Copyright by Michael John Horton 2018

All Rights Reserved

ii

Abstract

Modern object tracking systems are able to simultaneously record trajectories—sequences

of time-stamped location points—for large numbers of objects with high frequency and

accuracy. The availability of trajectory datasets has resulted in a consequent demand

for algorithms and tools to extract information from these data. In this thesis, we

present several contributions intended to do this, and in particular, to extract informa-

tion from trajectories tracking football (soccer) players during matches.

Football player trajectories have particular properties that both facilitate and present

challenges for the algorithmic approaches to information extraction. The key property

that we look to exploit is that the movement of the players reveals information about

their objectives through cooperative and adversarial coordinated behaviour, and this,

in turn, reveals the tactics and strategies employed to achieve the objectives. While

the approaches presented here naturally deal with the application-specific properties of

football player trajectories, they also apply to other domains where objects are tracked,

for example behavioural ecology, traffic and urban planning.

The research in this area is at a relatively early stage, and there is currently no

consensus on the best approach to a number of key open problems. We present a

detailed survey of the algorithmic approaches to mining sports trajectory data, and

define a taxonomy for the tasks and problems that have been identified.

Within this taxonomy, we make several individual contributions. We consider the

task of automatically classifying passes made during football matches according to

their quality, and present a framework that accepts player trajectory data as input and

iii

automatically makes such ratings with high accuracy. We find that the level of agree-

ment of the assigned ratings between the automated classifier and an expert observer

is similar to the level of agreement between two experts.

Next, we observe that trajectories are a particular class of a more general data

structure of state sequences, and we present a method of summarising sets of state

sequences using flow diagrams that are minimal in the number of nodes, and where

each state sequence appears as a path in the flow diagram. We prove that an exact

algorithm for this problem is computationally intractable except for small inputs, and

furthermore show that the exact solution is hard to approximate. As such we present

two heuristic algorithms that perform well experimentally, and we also demonstrate

the utility of this approach on two use cases on football trajectory data.

We then consider two approaches to clustering of trajectories under the Fréchet

distance. First, we investigate the problems of clustering and outlier detection as an

integrated task, and present improved heuristic algorithms derived from two distinct in-

teger program formulations of the problem. Both the algorithms are iterative and main-

tain their state in a set of auxiliary variables, and by monitoring these variables over the

iterations of execution of the algorithm, time-series are captured. We claim that these

time-series are an inherently two-dimensional view of the clustering and outliers that

can be easily visualised and interpreted without suffering from the typical distortions

implicit in low-dimensional visualisations of highly- or infinite-dimensional data.

Finally, we investigate the problem of directly clustering trajectories such that each

cluster contains an low-complexity exemplar that is representative of the cluster. Each

exemplar is a trajectory with a bounded number of location points, and thus is robust

to the noise that is typical in many trajectory data sets. We formalise this problem

and present an algorithmic framework that decomposes the problem into distinct sim-

plification and clustering tasks. Using previously known algorithms for these tasks,

we present a family of approximation algorithms for the trajectory clustering prob-

lem where the obtained clustering costs are bounded by a multiplicative factor of the

optimal cost.

iv

Statement of Originality

This is to certify that to the best of my knowledge, the content of this thesis is my own

work. This thesis has not been submitted for any degree or other purposes.

I certify that the intellectual content of this thesis is the product of my own work

and that all the assistance received in preparing this thesis and sources have been ac-

knowledged.

Michael Horton

v

Acknowledgements

I would like to first acknowledge the financial support that I received from the Com-

monwealth of Australia under the Australian Postgraduate Award scheme, and from

Data61, CSIRO under the NICTA Local Project Award and NICTA Research Project

Award schemes. This support was gratefully received and helped to defray the costs of

undertaking this research.

I would also like to thank the collaborators I had on various parts of my research—

your intuition, knowledge and analytic ability left a deep impression on me. Namely:

Boris Aronov, Mark de Berg, Kevin Buchin, Maike Buchin, Anne Driemel, Serge

Gaspers, Herman Haverkort, Bernard Mans, Ali Mehrabi, Stefan Rümmele and Stef

Sijben.

I had two very enjoyable and educational research visits, and thank Maike Buchin

for hosting me at Ruhr-Universität Bochum for a week in 2014 and Mark de Berg for

hosting a ten-week visit to TU Eindhoven in 2016.

Finally, I want to acknowledge and thank my supervisors, Joachim Gudmundsson

and Sanjay Chawla, for the time, resources, knowledge, belief and the patience that

they invested in me as I struggled through the challenges that our research presented. I

very much appreciate your contribution to my education, and I could not have achieved

a fraction of what I have without your help.

Michael Horton

Sydney, January 17, 2018

vi

List of Publications

This thesis was based on these published works. I was the corresponding author and

major contributor for all the works listed.

Chapter 2 is based on this survey paper.

• J. Gudmundsson and M. Horton, “Spatio-temporal analysis of team sports,”

ACM Computing Surveys, vol. 50, no. 2, 22:1–22:34, 2017. DOI: 10.

1145/3054132

Chapter 3 was published as a journal paper and a short version as a conference paper.

• S. Chawla et al., “Classification of passes in football matches using spa-

tiotemporal data,” ACM Transactions on Spatial Algorithms and Systems,

vol. 3, no. 2, pp. 1–30, Aug. 2017. DOI: 10.1145/3105576

• M. Horton et al., “Automated classification of passing in football,” in Pro-

ceedings of the 19th. Pacific-Asia Conference on Advances in Knowledge

Discovery and Data Mining (PAKDD ’15), Part II, ser. Lecture Notes in

Computer Science, vol. 9078, Springer, May 2015, pp. 319–330. DOI:

10.1007/978-3-319-18032-8_25

Chapter 4 is currently under review as a journal paper and a short version was pub-

lished in conference proceedings.

• K. Buchin et al., “Compact flow diagrams for state sequences,” Journal of

Experimental Algorithmics, vol. 22, pp. 1–23, Dec. 2017. DOI: 10.1145/

3150525

vii

https://doi.org/10.1145/3054132
https://doi.org/10.1145/3054132
https://doi.org/10.1145/3105576
https://doi.org/10.1007/978-3-319-18032-8_25
https://doi.org/10.1145/3150525
https://doi.org/10.1145/3150525

• K. Buchin et al., “Compact flow diagrams for state sequences,” in Proceed-

ings of the 15th. International Symposium on Experimental Algorithms

(SEA ’16), ser. Lecture Notes in Computer Science, vol. 9685, Springer,

Jun. 2016, pp. 89–104. DOI: 10.1007/978-3-319-38851-9_7

viii

https://doi.org/10.1007/978-3-319-38851-9_7

Table of Contents

Abstract iii

Statement of Originality v

Acknowledgements vi

List of Publications vii

Table of Contents ix

List of Figures xiv

List of Tables xvii

1 Introduction 1

1.1 Background . 2

1.2 Spatio-temporal Sports Data . 6

1.2.1 Preliminaries . 6

1.2.2 Object Trajectories . 7

1.2.3 Event Logs . 9

1.2.4 Mappings . 10

1.2.5 Distance Measures . 11

1.2.6 Experimental Data set . 12

1.3 Organisation and Contributions . 12

ix

2 Spatio-temporal Sports Analysis: A Survey 16

2.1 Playing Area Subdivision . 18

2.1.1 Intensity Matrices and Maps 19

2.1.2 Low-rank Factor Matrices 22

2.1.3 Movement Models and Dominant Regions 24

2.1.3.1 Motion Model . 24

2.1.3.2 Dominant Regions 26

2.1.3.3 Further Applications 29

2.2 Network Techniques for Team Performance Analysis 33

2.2.1 Centrality . 34

2.2.1.1 Degree centrality 35

2.2.1.2 Betweenness Centrality 36

2.2.1.3 Closeness Centrality 37

2.2.1.4 Eigenvector Centrality and PageRank 37

2.2.2 Clustering Coefficients . 38

2.2.3 Density and Heterogeneity 40

2.2.4 Entropy, Topological Depth, Price-of-Anarchy and Power Law

Distributions . 40

2.3 Data Mining . 41

2.3.1 Applying Labels to Events 41

2.3.2 Predicting Future Event Types and Locations 43

2.3.3 Identifying Formations . 44

2.3.4 Identifying Plays and Tactical Group Movement 48

2.3.5 Temporally Segmenting the Game 51

2.4 Performance Metrics . 53

2.4.1 Offensive Performance . 53

2.4.2 Defensive Performance . 56

2.5 Visualisation . 58

2.6 Applicability of Approaches to Other Sports 59

x

2.7 Conclusion . 61

3 Classification of Passes in Football Matches Using Spatio-temporal Data 62

3.1 Related Work . 63

3.2 Preliminaries . 64

3.2.1 Predictor Variables . 66

3.2.2 Learning Algorithm and Classification Function 67

3.2.3 Evaluation Functions . 68

3.2.4 Problem Statement . 68

3.3 Predictor Variables . 69

3.3.1 Feature Functions . 70

3.3.2 Player Motion Model . 72

3.3.3 The Dominant Region . 73

3.3.4 Discrete Algorithm to Approximate Dominant Region 76

3.4 Label Data . 79

3.4.1 Labelling Process . 79

3.4.2 Process Validation . 81

3.4.3 Analysis of Classification Results 81

3.5 Learning Algorithms . 82

3.6 Experiments . 84

3.6.1 Setup . 85

3.6.2 Results . 86

3.7 Analysis . 87

3.7.1 Classifier Performance . 87

3.7.2 Predictor Variable Importance 88

3.7.3 Inter-Rater Agreement . 91

3.7.4 Limitations of Experimental Setup 92

3.8 Conclusion . 94

xi

4 Summarising State Sequences with Flow Diagrams 96

4.1 Related work . 99

4.2 Preliminaries . 101

4.2.1 Problem Definition . 101

4.2.2 Properties of Criteria . 101

4.3 Hardness Results . 102

4.3.1 Reduction from SHORTEST COMMON SUPERSEQUENCE . . 103

4.3.2 Reduction from SET COVER 104

4.4 Algorithms . 105

4.4.1 General criteria . 105

4.4.2 Monotone decreasing and independent criteria 109

4.4.3 Monotone decreasing and dependent criteria 111

4.4.4 Heuristics . 112

4.5 Experiments . 113

4.5.1 Performance Testing . 114

4.5.2 Perturbation Testing . 116

4.5.3 Shortest Path Selection . 119

4.5.4 Tactical Analysis in Football 122

4.5.4.1 Defensive Formations 123

4.5.4.2 Attacking Plays 126

4.6 Conclusion . 129

5 Integrated Clustering and Outlier Detection 131

5.1 Related Work . 134

5.2 Method . 135

5.2.1 Lagrangian Heuristic Algorithm 137

5.2.2 Affinity Propagation . 146

5.2.3 Visualising the Auxiliary Variables 152

5.3 Case Study: Improving the Lagrangian Heuristic Algorithm 154

5.4 Experiments . 158

xii

5.4.1 Synthetic Data . 158

5.4.1.1 Algorithm Execution 161

5.4.1.2 Cluster and Outlier Quality 162

5.4.2 Dual Variable Conditions . 163

5.4.3 Hurricane Trajectory Data 165

5.4.4 Football Trajectory Data . 169

5.5 Conclusion . 171

6 Trajectory Clustering with Bounded Complexity Exemplars 173

6.1 Related Work . 175

6.2 Preliminaries . 176

6.2.1 Simplification . 177

6.2.2 Clustering . 178

6.3 Approximation Algorithm for the

`-SIMPLIFICATION Problem . 179

6.4 Approximation Algorithms for the (k, `)-CENTER Problem 186

6.4.1 Results . 188

6.5 Conclusion . 190

7 Conclusion 191

A Input Match Data Details 196

A.1 Event Types . 196

B Pass Classifier Feature Descriptions 197

C Affinity Propagation Message Formulation 202

C.1 Variable-to-factor Messages . 203

C.2 Factor-to-variable Messages . 203

xiii

List of Figures

1.1 Illustration of trajectory data and simple geometric properties 8

1.2 Example player trajectory for one half of a football match 9

1.3 Illustration of event log data . 10

2.1 Spatial sports research paper publication counts by year 1995–2015 . 17

2.2 Summary of analysis techniques covered in survey 18

2.3 Example intensity maps for football left-back and striker 20

2.4 Example subdivisions used for location discretization 21

2.5 Example spatial bases induced using non-negative matrix factorization 23

2.6 Example dominant region showing disjoint regions, and example of

construction of dominant region as the projection of the intersection of

surfaces . 27

2.7 Example of approximate bisector between players and induced subdi-

vision of football pitch . 28

2.8 Available receivers for a pass by a player 31

2.9 Comparison of pressure on encircled player using dominant region . . 33

2.10 Example of passing networks excluding and including outcome nodes 34

2.11 Examples of typical formations used in basketball and football 46

3.1 Pass classification solution framework overview 65

3.2 Examples of reachable regions using different motion models 73

3.3 Football pitch subdivision of dominant regions induced from ellipse

motion model . 75

xiv

3.4 Discretized dominant region boundary computed using time-step model 78

3.5 Pass classification obtained evaluation metric values 88

4.1 Simple flow diagram example of activities of three people for a day . 98

4.2 Example flow diagrams computed by reductions 104

4.3 Example of prefix graph and flow diagram for simple input 106

4.4 Plots of runtime statistics for varying input sizes 115

4.5 Plots of performance of flow diagram algorithm on perturbed inputs . 118

4.6 Example flow diagrams computed on seed and perturbed inputs 120

4.7 Illustration of simple input creating multiple shortest paths in prefix

graph . 122

4.8 Example segmentation of single football formation state sequence . . 125

4.9 Flow diagram for formation morphologies of 153 defensive possessions 126

4.10 Flow diagram computed for home team in football attacking play ex-

periments . 128

4.11 Flow diagram computed for away team in football attacking play ex-

periments . 129

5.1 Example of time-series visualisations of dual variables 133

5.2 Graphical model for FLOAP model 147

5.3 Factor graph messages for AP formulation 150

5.4 Plot of objective function value for LH1 and LH2 algorithms 155

5.5 Time-series visualisations of the auxiliary variables from the LH1 and

LH2 algorithms . 156

5.6 Execution statistics for varying input parameters 160

5.7 Cluster quality results for algorithms on differing input sizes 164

5.8 Clustering of hurricane-strength storms 1970–2015 166

5.9 Time-series plot of mean value of λ(S)it 167

5.10 Visualisation of dual variables for hurricane dataset 168

xv

5.11 Clusters and outliers of football trajectories computed by the AP algo-

rithm . 170

5.12 Visualisations of message variables for football dataset 171

6.1 Example of cluster exemplars that are noisy 174

6.2 The tangent lines tcw and tccw of disk D according to point p 177

6.3 Example of a path-restricted `-simplification S of a polygonal path P 178

6.4 2-approximation algorithm finds shortcuts extending as far as possible 181

6.5 Example of the line-stabbing wedge with respect to a point si 182

6.6 Illustration of updates to line-stabbing wedge when disk Dj is added. 184

6.7 Illustration showing the greedy algorithm always stays ahead of the

exact algorithm . 185

xvi

List of Tables

1.1 Summary statistics for football dataset used in experiments 12

2.1 Mapping of techniques applied to sports 19

3.1 Pass classification ground-truth class frequencies 85

3.2 Pass classification evaluation metric scores 86

3.3 Importance of dominant region-based predictors in pass classification

task . 91

3.4 Pass classification inter-rater agreement between human observers and

learned classifiers . 92

4.1 Statistics on minimum shortest paths identified in prefix graph 121

4.2 Summary of flow diagram algorithm performance for football experi-

ments . 123

4.3 Criteria used in football attacking plays experiment 127

5.1 Synthetic experiment parameters and default values 161

5.2 Summary cluster quality statistics on all synthetic datasets 165

6.1 Approximation factor and runtime results for algorithm for the (k, `)-

CENTER problem for a given δ . 189

A.1 List of events used in event logs . 196

B.1 Feature Functions . 197

xvii

Chapter 1

Introduction

In recent years, advances in object tracking technologies have resulted in a large num-

ber of datasets of trajectories—sequences of time-stamped location points of a moving

object. The availability of this data has motivated an interest in algorithms to process

and extract information from the trajectory datasets.

In this thesis, we present several techniques for mining trajectories created by track-

ing players during football (soccer) matches. These trajectories have distinctive prop-

erties that both facilitate and pose challenges to the task of extracting information from

them. The trajectories tend to be dense, in the sense that the location of the players are

sampled regularly at high frequency and accuracy, and the trajectories are constrained

to the football pitch. The trajectories are long running as the players are participating

for long periods of the match, and there is always a fixed number of players on the

pitch—and hence active trajectories—at all times. Furthermore, the movement of the

players has an underlying structure in that team-mates are cooperating, and opponents

are responding in an adversarial manner, and this structure is inherent in the resulting

trajectories. However, the trajectories may be very “un-smooth”, as players change

their direction and velocity frequently, and also the trajectories will often cross over

themselves and the other trajectories.

Given the distinctive properties of the trajectories, and the public and commercial

interest in sports in general, we believe that any contributions in this area will have a

1

CHAPTER 1. INTRODUCTION 2

significant impact. With this rationale in mind, this thesis contains a systematic survey

of the various research activities that have been undertaken to extract information from

player trajectory data, and then presents four contributions that we have made in this

area.

1.1 Background

Sports are an important recreational and cultural activity in many societies. They at-

tract participants who compete in, spectate on and derive their livelihood from sports.

These stakeholders naturally seek to better understand the nature of sports performance

in order to improve performance and enjoyment.

There are several sporting codes that can be classified as invasion sports in that

they share a common structure: two teams are competing for possession of a ball (or

puck) in a constrained playing area, for a given period of time, and each team has si-

multaneous objectives of scoring by putting the ball into the opposition’s goal, while

also defending their goal against attacks by the opposition. The team that has scored

the greatest number of goals at the end of the allotted time is the winner. Football (soc-

cer), basketball, ice hockey, field hockey, rugby, Australian Rules football, American

football, handball, and Lacrosse are all examples of invasion sports.

Aside from the benefits to participants’ health and enjoyment, sporting events are

significant business, with an estimated revenue of $64 billion in 2009, according to a

report by the management consultancy firm ATKearney [58]. Furthermore, invasion

sports comprise the majority of this revenue: football 43%; American football 13%;

basketball 6% and ice hockey 4%. The value of these sports events is primarily derived

from the willingness of fans to watch these events—either live or through television

broadcasts.

In all sporting competitions, and particularly at the elite level, participants want to

be successful and will seek ways to improve their performance. This can be achieved

through improvements in fitness, injury management, training and diet regimes, and

CHAPTER 1. INTRODUCTION 3

also by improving strategies and techniques to be used during matches. It this last

area in which our research is located, in particular the analysis of the events occurring

during matches—known as sports analysis.

Moreover, television broadcasters have realised that coverage of sporting events

can be enhanced by providing analysis of the action, often from ex-professionals using

visual tools to describe key instances and sequences during the play. There is also

an apparent appetite for statistics from fans, and there are many websites devoted to

providing statistical information [70], [157], [177].

The systematic capture and analysis of data on sports play is not a new phenomenon

—box-scores for summarising baseball matches have existed since 1860 [129], and

manual notation of events in football matches has occurred from the 1950s [167]. The

limitations inherent in observing and recording events by hand meant that the subse-

quent analysis was limited to the major discrete events that occurred during the game.

In practice, the utility of this data depended on the particular sport, and sports with a

more linear structure in the order that events occur were more amenable to analysis.

This was most notable in baseball, where the sequence of events has a linear progres-

sion: a designated player pitches the ball to a batter who, in turn, attempts to hit the

ball which will subsequently be fielded by another player, who returns the ball to the

pitcher. The structure of the game, and the type of data captured, facilitated the devel-

opment of statistical models that had a significant impact on the game, a phenomenon

that was detailed in the book Moneyball: The Art of Winning an Unfair Game [134].

However, invasion sports did to benefit from a similar improvement in analytic

methods with the availability of manually captured statistics. The fact that these games

are inherently less structured contributes to the difficulty in data capture and analysis

of these sports. For example, during a football match, there are 22 players on the field,

and they are able to move around the entire playing-area. Moreover, significant events

are not limited to the player in possession of the ball, and matches are a continuous

contest between teams to induce the opposing team into inferior spatial configurations

on the field. Thus, the positioning and movement of all players is significant, and this

CHAPTER 1. INTRODUCTION 4

presents a challenge to manually capture all the significant events. The difficulty in

capturing sufficient data also made it impractical to do at scale, for example, a notable

early contribution by Intille and Bobick [116] used machine learning models to identify

set-plays in American football from trajectories that were manually created from video

footage. The input data set contained player trajectories for 11 players from just 29

short plays. Moreover, human observation can be unreliable—experimental results in

Franks and Miller [76] showed that the expert observers’ recollection of significant

match events is as low as 42 %.

The unstructured nature of invasion sports events, combined with the challenges of

accurately capturing data, meant that progress in developing sophisticated analysis was

limited until the early 2000s. Prior to this period, much of the analysis comprised sim-

ple frequency analysis, and was primarily concerned with what happened, and did not

consider where, by whom or why [143]. The situation changed with the development of

automated object tracking systems that were able to capture and record the movement

of players and the ball during a match. These systems records the trajectory of each

player as a sequence of location points containing the time-stamp and the location of

the player in two or three dimensions, see Section 1.2.

There are several techniques used to capture trajectories. Optical tracking systems

use fixed cameras to capture the player movement, and the images are subsequently

processed to compute the trajectories [25]. There are several commercial vendors who

supply tracking services to professional sports teams and leagues [49], [115], [179],

[180]. An alternative approach is that that of device tracking systems that rely on radio

transmitters to infer location, and the devices are attached to the players’ clothing or

embedded in the ball or puck. These systems can be based on GPS [40] or RFID [178]

technology.

The adoption of this technology and the availability to researchers of the resulting

data has varied amongst the different sporting codes and is driven by various factors,

particularly commercial and technical. There is a cost associated with installing and

CHAPTER 1. INTRODUCTION 5

maintaining such systems, and while some leagues mandate that all stadium have sys-

tems fitted, such as the National Basketball Association (NBA), in others the individual

teams will bear the cost, such as the English Premier League, and they view the data

as commercially sensitive. Furthermore, the nature of some sports present technical

challenges to automated systems, for example, sports such as rugby and American

football have frequent collisions present difficulties to optical tracking systems that

rely on uniquely identifying each player in match video.

However, as we show in Chapter 2, the availability of large trajectory datasets en-

abled a multitude of research efforts in a variety of fields with the objective of extract-

ing information about the sports play—collectively known as spatio-temporal sports

analysis. Today, there are several venues exclusively focused on sports analysis, in par-

ticular the MIT Sloan Sports Analytics Conference [152] and SIGKDD 2016 Workshop

on Large Scale Sports Analytics [144]; and there have been special issues of journals

on the computational aspects of sports analytics [2], [27], [83].

More generally, the data produced by object tracking technologies has produced

research in many other application domains, including traffic and route planning [39],

map-making [6], behavioural ecology [5], and urban planning [67]. See the book

Computing with Spatial Trajectories [200] for a coverage of the general research efforts

in trajectory analysis.

Thus, the current interest and conditions offer the opportunity for innovative re-

search contributions to have a meaningful impact in this field. It was in this environ-

ment that we conducted the research included in this thesis.

Chapter 2 contains a survey of the research efforts across a number of areas with

the objective of extracting meaningful information from player trajectory data. Fur-

thermore, we propose a taxonomy to describe the problems inherent in spatio-temporal

sports analysis. In Chapters 3–6 we make four individual contributions to address some

of the problems identified within the taxonomy. In these, we develop and apply tech-

niques that all take as input the spatio-temporal data described in Section 1.2 and in

each case we experimentally evaluate the techniques using trajectory data from four

CHAPTER 1. INTRODUCTION 6

football matches.

1.2 Spatio-temporal Sports Data

The research surveyed in Chapter 2 and the contributions in Chapters 3–6 are all based

on spatio-temporal data, the defining characteristic of which is that it is a sequence of

samples containing the time-stamp and location of some phenomena.

The structure of the spatio-temporal data captured across the various sports in this

domain have largely coalesced into two distinct types: object trajectories that capture

the movement of players or the ball; and event logs that record the location and time of

match events, such as passes, shots or fouls. The two data sets capture different aspects

of the activities that occur during play, and although they can be used individually,

provide a richer explanation of the game when used in combination. For example, the

spatial formation in which a team arranges itself in will be apparent in the set of player

trajectories. However, the particular formation used may depend on whether the team

is in possession of the ball, which can be determined from the event log. On the other

hand, a shot at goal event contains the location from where the shot was made, but

this may not be sufficient to make a qualitative rating of the shot. Such a rating should

consider whether the shooter was closely marked by the opposition defence, and the

proximity of attacking team-mates—properties that can be interpolated from the player

trajectories.

When working with trajectory data, it is often necessary to have some objective

measure of similarity or distance between two trajectories, and several common dis-

tance measures that are mentioned in this manuscript are described in Subsection 1.2.5.

1.2.1 Preliminaries

In order to define the trajectories and event logs in context, we need the following.

Let M = {m1, . . . ,mnM} be the set of matches for which data is available. In the

sports that we consider, matches are temporally divided into periods, e.g. in football

CHAPTER 1. INTRODUCTION 7

a match consists of two halves, and in basketball a match has four quarters. Let W =

{w1, . . . , wnW } be an enumeration of the periods in a single match.

We require a global clock that is consistent across trajectories and events, and for

this we use a match clock S = {s1, . . . , snS}. For each period of a match, the match

clock is initially 0 and increments by a fixed amount, e.g. for a football match at the

beginning of each half the clock will be 0 and increments by 0.1 s until the half ends

after approximately 45 min.

Next, each trajectory is generated by the movement of an object such as a player,

a match official or the ball, and events that occur in the event log may involve one

or more players, and thus we need to be able to associate the objects that generate

trajectories with the objects associated with events. Let U be the set of all objects that

have trajectories, and P = {p1, . . . , pnP } ⊆ U be the set of all players.

Finally, let V be the set of available event-types, such as Touch, Pass, Foul, etc. A

full list of the football event types used in the experimental data sets is described in

Subsection 1.2.6 is in the appendix, Section A.1.

1.2.2 Object Trajectories

The primary data generated by object tracking systems are movement traces for each

player and for the ball. The location of the player (or ball) is sampled regularly to

generate a sequence of location points, either in R2 or R3 and annotated with a time-

stamp. This sequence is commonly called a trajectory.

Formally, a trajectory τ in R2 is defined as a sequence of triples 〈(s, x, y)〉 such

that each triple is a location point denoting that the object p ∈ U that generated the

trajectory was at the planar location (x, y) ∈ R2 at time s ∈ S. Geometrically, a

trajectory is a polygonal path with vertices (x, y) that are indexed by the time-stamp

s. Let T be the set of all trajectories. A trajectory in R3 may be defined in a similar

manner, and the functions defined subsequently can be derived in the same way for

objects in R3.

We use the notation τ [s] to reference the location point occurring at time-stamp s

CHAPTER 1. INTRODUCTION 8

s x1 x2
. . .
10.1 3940 -2362
10.2 3948 -2346
10.3 3956 -2331
10.4 3923 -2392
10.5 3977 -2309
. . . Location: τ(s)

pj
Direction: d(τ, s)

Speed: v(τ, s)

Trajectory: τ for player p

Figure 1.1: Illustration of a trajectory and the functions on location points. Each tra-
jectory is a sequence of location points, and these can be used to extrapolate the basic
geometry of a player at a given time-stamp. Similarly, the geometry of events such as
the pass shown, can be computed from the trajectories of the involved players.

in trajectory τ . Similarly, let τ [s1, s2] be the subsequence of τ between times s1 and s2.

Given this representation, some basic attributes of the tracked object can be easily

computed, in particular the location, direction and speed. We use the following func-

tions. The location of a player p at time s is τ [s]. Let d : T ×S → [−π, π) be a function

that, given a trajectory τ for player p and time-stamp s, returns the direction p is facing

relative to the positive x-axis. Similarly, v : T × S → R computes the velocity of the

player at time s ∈ S as distance between a location point and its successor, divided by

time elapsed between the point and successor. See Figure 1.1 for a simple illustration

of a trajectory and the functions that access the geometry of the trajectory.

Typically, player trajectories are dense, with sampling rates of 10 to 25 Hz. Fur-

thermore, the trajectories have several distinctive properties that may be exploited for

extracting information, or may present challenges for the problem at hand.

The trajectories are spatially constrained in the sense that the players spend a ma-

jority of their time within the playing area. Moreover, the trajectories are long run-

ning—a player will typically be active for long periods of the match, particularly in

sports such as football where players may be active for the entire match. Moreover,

the players will be constantly changing their direction and velocity, and thus the dis-

tance between contiguous location points can vary, and the curvature of the trajectory

is unbounded. These properties combine to make such trajectories very “messy”, and

difficult to interpret visually. An example of a trajectory of a player for one half of a

football match is shown in Figure 1.2.

CHAPTER 1. INTRODUCTION 9

Figure 1.2: Example player trajectory during one half of a football match. The trajec-
tory is not smooth, and crosses itself frequently, and this makes it difficult to visually
extract any meaning from it.

1.2.3 Event Logs

Event logs are a sequence of significant events that occur during a match. Events can

be broadly categorised as player events such as passes and shots; and technical events

that are typically instigated by the referee or umpire, for example fouls, time-outs, and

start/end of period, see Figure 1.3.

An event log ε is a sequence of triples 〈(s, v, R)〉 where each triple is an event

where s is the time-stamp of the event, v is the event type and R ⊂ P is a set of

players who are involved in the event, and let E be the universe of all possible event

logs. Similarly to trajectories, let ε[s] be the event occurring at time s and let ε[s1, s2]

be the subsequence of events between s1 and s2.

The event logs provide details about the discrete events that occur during a match,

and also allow the duration of the match to be segmented into intervals of different

types. For example, a match could be subdivided into intervals when the play is active

and when it is stopped for fouls, injuries, etc. The intervals of active play could be

CHAPTER 1. INTRODUCTION 10

s v P
. . .
10.1 Touch {pj}
10.2 Pass {pj}
10.6 Touch {pk}
11.0 Tackle {pl , pk}
. . . pk

pj

Distance

Direction

Event: ε

Duration

Figure 1.3: Illustration of an event log ε. An event ek ∈ ε has a time-stamp, event type
and a list of zero or more associated players. This diagram on the right shows a Pass
event, and illustrates that some properties of the event can be derived from the event
and its successor event.

further subdivided into periods when a single team is in control of the ball, or when

a single player is in possession. The start and end points of these intervals can be

identified by specific events and possibly the player associated with the event.

Event logs are qualitatively different from the player trajectories in that they are

not dense—samples are only captured when an event occurs—however they can be

semantically richer.

1.2.4 Mappings

In order to identify the trajectories and event log that apply to a given match period, we

require the following mapping functions. Let T : M×W ×P → T be a mapping that,

for a given match, period and player the mapping will return the player’s trajectory.

Next, let E : M × W → E be the mapping from a given match and period to the

corresponding event log. LetMT andME be the set of trajectory and event mappings,

respectively.

For convenience, we use the notation Tm,w,p ≡ t(m,w, p) for the trajectory gener-

ated by player p during period w of match m. Similarly, let Em,w ≡ e(m,w) be the

event log for period w of match m. It is also convenient to access the trajectories for a

given match period, so let Tm,w = {t(m,w, p) | p ∈ P}\{∅} be the set of trajectories

for period w of match m.

CHAPTER 1. INTRODUCTION 11

1.2.5 Distance Measures

A fundamental requirement of many techniques for extracting information from tra-

jectories is to be able to measure the similarity between trajectories, and a common

approach is to compute the distance between two trajectories, as a measure of the (in-

verse) similarity.

There have been several measures proposed. The Hausdorff distance [103] is per-

haps the most obvious measure, which computes, for two trajectories τ and τ ′, the

largest distance over all points p ∈ τ to its closest point q ∈ τ ′:

dH(τ, τ ′) = max
{

sup
p∈τ

inf
q∈τ ′
|p− q|, sup

q∈τ ′
inf
p∈τ
|q − p|

}

where, |·| is the Euclidean distance. The Hausdorff distance can be efficiently com-

puted, however it suffers from the drawback that the mapping of points from τ to τ ′ is

not a continuous 1–1 mapping and can obtain small distances for apparently dissimilar

curves [7].

A more appropriate measure the distance between trajectories is the Fréchet dis-

tance [78]. The Fréchet distance between two trajectories τ and τ ′ is defined as:

dF (τ, τ ′) = inf
µ

max
p∈τ
|p− µ(p)|.

The function µ : τ → τ ′ is a bicontinuous function that maps each point p ∈ τ to a

corresponding point in τ ′. The start of τ is mapped under µ to the start of τ ′ and as p

progresses along τ , µ(p) also progresses along τ ′.

The exact Fréchet distance can be computed in O(n2 log n) where n is the number

of location points in the longer of τ and τ ′, using the algorithm by Alt and Godau [7].

Buchin et al. [34] have recently improved the running time to O(n2(log log n)2). The

running time is somewhat prohibitive, particularly for trajectories with a large number

of location points, and thus the discrete Fréchet distance is often used as a substitute.

The discrete Fréchet distance [68] computes the distances only between location

CHAPTER 1. INTRODUCTION 12

Table 1.1: Summary statistics for the matches used in experiments in Chapters 3–5.

Match Date Home Team Away Team Period # Trajs. Mean # Loc. Pts # Events
10-01-2009 Arsenal Bolton Wanderers first half 23 26,930 1563
10-01-2009 Arsenal Bolton Wanderers second half 26 24,374 1207
11-02-2008 Arsenal Blackburn Rovers first half 22 27,891 1413
11-02-2008 Arsenal Blackburn Rovers second half 25 25,172 1647
15-11-2008 Arsenal Aston Villa first half 22 27,603 1269
15-11-2008 Arsenal Aston Villa second half 25 25,960 1386
19-04-2008 Arsenal Reading first half 22 27,790 1262
19-04-2008 Arsenal Reading second half 28 22,631 1298
Total 193 208,354 11,045

points on τ and τ ′, and it provides a good approximation of the Fréchet distance when

the trajectories are dense. It can be computed inO(n2) time using a dynamic program-

ming algorithm. The discrete Fréchet distance is used in Chapters 5 and 6 to cluster

trajectories.

1.2.6 Experimental Data set

Chapters 3–5 include experimental results, all of which are based on trajectory and

event data from four football matches. This data, provided by STATS LLC [180], is of

four matches played by Arsenal Football Club at the Emirates Stadium in the English

Premier League season in 2008.

The data set contains trajectories for every player that participates in each half

of each of the four matches, and an event log for each match. The trajectories are

uniformly sampled at 10 Hz and have a resolution of 10 cm. A selection of summary

statistics on the input data sets is included in Table 1.1.

The data set contains additional meta-data about the matches, teams and players,

detailed in Appendix A.

1.3 Organisation and Contributions

This thesis contains five chapters which each contain a discrete research contribution.

Chapter 2 contains a systematic literature review of research efforts that have been

undertaken using spatio-temporal data from team sports, as is described in Section 1.2,

CHAPTER 1. INTRODUCTION 13

with the objective of providing tools and data structures for analysis. We observe that

research in this field is at a relatively early stage, and that for many problems there

is not yet a consensus on the best methods to solve them. We define a taxonomy to

classify the types of problems and the techniques that have been proposed to solve

them. The subsequent chapters in this thesis present four contributions to address

problems identified within this taxonomy.

In Chapter 3 we consider the problem of designing a classifier to rate passes made

in football matches with a label of Good, OK or Bad. We started from the thesis that

much of the information required to make the pass ratings is available in the trajectory

signal. Our intuition was that using complex data structures derived from computa-

tional geometry would enable domain football knowledge to be included in the model

by computing metric variables in a principled and efficient manner. We designed a

model that computes a vector of predictor variables for each pass made, and uses ma-

chine learning techniques to determine a classification function that can accurately rate

passes based only on the predictor variable vector. Experimental results showed that

the learned classification functions can rate passes with 90.2 % accuracy. The agree-

ment between the classifier ratings and the ratings made by a human observer is com-

parable to the agreement between the ratings made by human observers, and suggests

significantly higher accuracy is unlikely to be achieved. Furthermore, we show that the

predictor variables computed using methods from computational geometry are among

the most important to the learned classifiers.

Chapter 4 introduces the concept of using a flow diagram to compactly represent

the segmentation of a large number of state sequences according to a set of criteria. We

argue that this flow diagram representation is an effective way to summarise segmen-

tations of a large number of state sequences. In essence, the objective is to generate

a flow diagram with a minimum number of nodes that models a segmentation of the

states in the input sequences. For a small number of state sequences we present ef-

ficient algorithms to compute a minimal flow diagram. For a large number of state

sequences we show that it is unlikely that efficient algorithms exist. Specifically, the

CHAPTER 1. INTRODUCTION 14

problem is W [1]-hard if the number of state sequences is taken as a parameter. We in-

troduce several heuristics for this problem. We argue about the usefulness of the flow

diagram by applying the algorithms to two problems in sports analysis, and evaluate

the performance of our algorithms on a football data set and synthetic data.

In Chapter 5 we present a novel visualisation technique for exemplar-based clus-

tering and outlier detection. We examine two well-known heuristic algorithms for this

problem, each of which is based on an integer program formulation of the facility

location with outliers problem: a Lagrangian heuristic and an affinity propagation al-

gorithm. Although these formulations and the derived algorithms are quite different,

they both seek to optimise a set of dual variables using gradient-based methods. By

capturing the values of these dual variables at each iteration of the algorithm, a col-

lection of time-series are produced for each variable. These time-series are inherently

two-dimensional and thus can be easily visualised, and the visualisations are useful

for exploring both the operation of the algorithms and the structure of the input data

that is clustered. We demonstrate their utility of the visualisations by identifying an is-

sue with the design of an existing Lagrangian heuristic algorithm for this task, and we

modified the algorithm so that it obtained improved numerical stability and objective

function value. We evaluate the new formulations of these algorithms experimentally

on synthetic data, and then consider a case-study when trying to cluster trajectories un-

der the Fréchet distance. There are difficulties in visualising trajectory clusters in R2,

and we show how the proposed dual variable visualisation are a useful tool for gaining

understanding of the computed clusters.

Chapter 6 also looks at the problem of clustering trajectories under the Fréchet dis-

tance, however in this case from a theoretical perspective. In particular, we are inter-

ested in exemplar-based clustering where each cluster has an associated exemplar—a

trajectory that is in some way representative of the cluster. Typically, the exemplar is

a trajectory from the input that belongs to the cluster, however this approach has the

disadvantage that if the input is noisy, then the obtained exemplars will also be noisy.

As an alternative, we investigate the (k, `)-CENTER problem that partitions the input

CHAPTER 1. INTRODUCTION 15

trajectories into k clusters, and where each exemplar is a trajectory of bounded num-

ber of location points `, and this encourages the exemplars to be smooth. We present

a framework that decomposes the problem into sub-problems of curve simplification

and k-center clustering, which have both been well studied. Using existing algorithms

for the sub-problems we are able to obtain a family of approximation algorithms for

the (k, `)-CENTER problem that bound the obtained clustering cost by a multiplicative

factor of the optimal cost.

Chapter 2

Spatio-temporal Sports Analysis: A

Survey

The availability of large spatio-temporal datasets has motivated research into algo-

rithms and techniques to process and extract information from the data about the un-

derlying objectives, strategies and tactics of the players that created them. This chapter

contains a comprehensive and systematic survey of these research efforts. To date, the

majority of data sets available for research are sourced from football and basketball,

and the research we surveyed reflects this, see Figure 2.1.

The research included in this survey has come from a variety of communities,

including machine learning, network science, geographic information science, com-

putational geometry, computer vision, complex systems science, statistics and sports

science. There has been a consequent diversity of methods and models used in the re-

search, and our intention in writing this survey was to provide an overview and frame-

work on the research efforts to date.

We used the following criteria to demarcate the types of research considered for

this survey:

1. We consider team-based invasion sports.

2. The model used in the research has spatio-temporal data as its primary input.

16

CHAPTER 2. SPORTS ANALYSIS SURVEY 17

0

2

4

6

8

10

12

14

16

18

20

1995 2000 2005 2010 2015
Year

N
um

be
r

of
 P

ap
er

s Sporting Code

basketball

football

american football

other

Figure 2.1: Spatial sports research papers cited in this survey, by year, 1995–October
2015, divided by sporting code. There has been a significant increase in papers pub-
lished in this area as data has become available for researchers, particularly in football
and basketball.

3. The model performs some non-trivial computation on the spatio-temporal data.

In other words, a novel algorithmic approach is presented or applied.

This chapter contains the following sections, summarised in Figure 2.2. The mod-

els and techniques surveyed are all based on the object trajectories and event logs from

matches, detailed in Section 1.2. Section 2.1 describes approaches that have been used

to subdivide the playing area into regions that have a particular property. The playing

area may be discretized into a fixed subdivision and the occurrences of some phe-

nomena counted, for instance, a player occupying a particular region or a shot at goal

occurring from that region, producing an intensity map of the playing area. Subdivi-

sions of the playing area that are based on areas dominated by particular players has

also been used in several papers.

In Section 2.2, we survey approaches that represent temporal sequences of events

as networks and apply network-theoretic measures to them. For example, sequences

CHAPTER 2. SPORTS ANALYSIS SURVEY 18

Trajectories Event Logs

Subdivisions Networks

Data Mining

Metric Analysis

Visualisation User Interface

Data Analytics

Input Data

Figure 2.2: Summary of the major approaches surveyed, each approach corresponding
to a section of this chapter. The techniques described in a particular layer of this
diagram can be used as input to a technique described in a higher layer.

of passes between players can be represented as a network with players as the ver-

tices, edges between vertices where a pass occurred between the associated players,

edge weights denoting the frequency of passes between pairs of players Using this

passing network various network measures can be computed to quantify the passing

performance.

Section 2.3 is a task-oriented survey of the approaches to uncover information in-

herent in the spatio-temporal data using data mining techniques. Furthermore, several

papers define metrics to measure the performance of players and teams, and these are

discussed in Section 2.4. Finally, we detail the research into visualisation techniques

to succinctly present metrics of sports performance in Section 2.5.

Table 2.1 summarises the techniques surveyed in this chapter and indicates the

particular sports that they have been applied to. In Section 2.6, we discuss the factors

may be considered when applying these techniques to other sports.

2.1 Playing Area Subdivision

The player trajectories and event logs, described in Section 1.2, are both low-level

representations, and can be challenging to work with. One way to deal with this issue

is to discretize the playing area into regions and assign the location points contained

CHAPTER 2. SPORTS ANALYSIS SURVEY 19

Table 2.1: Summary of the approaches and techniques described in this survey and the
sports that they have been applied to.

Fo
ot

ba
ll

B
as

ke
tb

al
l

Fi
el

d
H

oc
ke

y

Ic
e

H
oc

ke
y

A
m

er
ic

an
Fo

ot
ba

ll

H
an

db
al

l

2.1. Playing Area Subdivision
2.1.1. Intensity Matrices and Maps ? ?
2.1.2. Low-rank Factor Matrices ?
2.1.3. Movement Models and Dominant Regions ? ?

2.2. Network Techniques for Team Performance Analysis
2.2.1. Centrality ? ?
2.2.2. Clustering Coefficients ? ?
2.2.3. Density and Heterogeneity ?
2.2.4. Entropy, Topological Depth, Price-of-Anarchy and Power Law Distribu-
tions

?

2.3. Data Mining
2.3.1. Applying Labels to Events ? ?
2.3.2. Predicting Future Event Types and Locations ? ?
2.3.3. Identifying Formations ? ? ?
2.3.4. Identifying Plays and Tactical Group Movement ? ?
2.3.5. Temporally Segmenting the Game ? ? ?

2.4. Performance Metrics
2.4.1. Offensive Performance ? ?
2.4.2. Defensive Performance ?

2.5. Visualisation ? ? ?

in the trajectory or event log to a discretized region. The frequency—or intensity—

of events occurring in each region is a spatial summary of the underlying process,

alternatively, the playing area may be subdivided into regions such that each region is

dominated in some sense by a single player, for example by the player being able to

reach all points in the region before any other player. There are a variety of techniques

for producing playing area subdivisions that have been used in the research surveyed

here, and are summarised in this section.

2.1.1 Intensity Matrices and Maps

Spatial data from team sports have the useful property that they are constrained to a rel-

atively small and symmetric playing area—the pitch, field or court. The playing area

may be subdivided into regions and events occurring in each region can be counted

to produce an intensity matrix, and can be visualised with an intensity map, see Fig-

ure 2.3. This is a common preprocessing step for many of the techniques described in

subsequent sections.

CHAPTER 2. SPORTS ANALYSIS SURVEY 20

(a) Left-back (b) Striker

Figure 2.3: Example intensity maps showing areas of the football pitch that the player’s
occupy. The player trajectories have been oriented such that the play is from left to
right. (a) The left-back is positioned on the left of the field, but is responsible for taking
attacking corner-kicks from the right. (b) The striker predominantly stays forward of
the half-way line, however will retreat to help defend corner-kicks.

When designing a spatial discretization, the number and shape of the induced re-

gions can vary. A common approach is to subdivide the playing area into rectangles

of equal size [16], [22], [41], [74], [139], [154], [175], for example see Figure 2.4(c).

However, the behaviour of players may not vary smoothly in some areas. For ex-

ample: around the three-point line on the basketball court, a player’s propensity to

shoot varies abruptly; or the willingness of a football defender to attempt a tackle will

change depending on whether or not they are inside the penalty box. The playing area

may be subdivided to respect such predefined assumptions of the player’s behaviour.

Camerino et al. [37] subdivides the football playing-area into areas that are aligned

with the penalty box, see Figure 2.4(a), and interactions occurring in each region were

counted. Similarly, Maheswaran et al. [147] and Goldsberry and Weiss [90] define

subdivisions of the basketball half-court that conforms with the three-point line and is

informed by intuition of shooting behaviour, see Figure 2.4(b).

Transforming the playing area into polar space and inducing the subdivision in that

space is an approach used in several papers. This approach reflects the fact that player

behaviour may be similar for locations that are equidistant from the goal or basket.

Using the basket as the origin, polar-space subdivisions were used by Reich et al. [168]

CHAPTER 2. SPORTS ANALYSIS SURVEY 21

(a) Hand-designed

(b) Hand-designed (c) Cartesian grid (d) Polar grid

Figure 2.4: Examples of subdivisions used to discretize locations: (a), (b) hand-
designed subdivision reflecting expert knowledge of game-play in basketball [147]
and football [37]; (c) subdivision of court into unit-squares [41]; (d) polar subdivision
where origin is centred on ball-carrier and grid is aligned with the basket [198].

and by Maheswaran et al. [146]. Yue et al. [198] used a polar-space subdivision to

discretize the position of the players marking an attacking player. Under this scheme,

the location of the attacking player was used as the origin, and the polar space aligned

such that the direction of the basket is at 0◦, see Figure 2.4(d).

Given a subdivision of the playing area, counting the number of events by each

player in each region induces a discrete spatial distribution of players’ locations during

the match. This can be represented as an Rn×v
≥0 intensity matrix containing the counts

X for n players in each of the v regions of the subdivision. The event X may be

the number of visits by a player to the region, e.g. Maheswaran et al. [147] used

the location points from player trajectories to determine whether a cell was visited.

CHAPTER 2. SPORTS ANALYSIS SURVEY 22

Bialkowski et al. [17] used event data such as passes and touches made by football

players to determine the regions a player had visited.

The number of passes or shots at goal that occur in each region may also be

counted. For example, many papers counted shots made in each region of a subdi-

vision of a basketball court [74], [90], [146], [168], [175]. Similarly, Borrie et al. [22],

Camerino et al. [37], Narizuka et al. [154], and Cervone et al. [41] counted the number

of passes made in each region of a subdivision of the playing area.

2.1.2 Low-rank Factor Matrices

Matrix factorization can be applied to intensity matrices described in Subsection 2.1.1,

to produce a compact, low-rank representation. This approach has been used in several

papers to model shooting behaviour in basketball [41], [74], [198]. The insight that

motivates this technique is that similar types of players tend to shoot from similar

locations, and so each player’s shooting style can be modelled as a combination of a

few distinct types, where each type maps to a coherent area of the court that the players

are likely to shoot from.

The input is an intensity matrix X ∈ Rn×v
≥0 . Two new matrices W ∈ Rn×k

≥0 and

B ∈ Rk×v
≥0 are computed such that WB ≈ X and k � n, v. The k spatial bases in

B represent areas of similar shooting intensity, and the n players’ shooting habits are

modelled as a linear combination of the spatial bases. The factorization is computed

from X by minimizing some distance measure between X and WB, under the con-

straint that W and B are non-negative. The non-negativity constraint, along with the

choice of distance function encourages sparsity in the learned matrices. This leads to

intuitive results: each spatial basis corresponds to a small number of regions of the

halfcourt; and the shooting style of each player is modelled as the mixture of a small

number of bases, see Figure 2.5 for examples of learned spatial bases.

Miller et al. [150] used non-negative matrix factorization to represent shooting lo-

cations in basketball. They observe that the shooting intensity should vary smoothly

CHAPTER 2. SPORTS ANALYSIS SURVEY 23

(a) Corner three-point (b) Top-of-key three-point (c) Right low-post

Figure 2.5: Examples of spatial bases induced by using non-negative matrix factoriza-
tion. Each basis represents an intensity map of where a subset of players tend to shoot
from. Shown are three spatial basis intensity maps that represent defined shooting
locations.

over the court space, and thus fit a Log-Gaussian Cox Process to infer a smooth inten-

sity surface over the intensity matrix, which is then factorized.

Yue et al. [198] used non-negative matrix factorization to model several event

types: shooting; passing and receiving. They include a spatial regularization term

in the distance function used when computing the matrix factorization, and claim that

spatial regularization can be seen as a frequentist analog of the Bayesian Log-Gaussian

Cox process used by Miller et al. [150].

Cervone et al. [41] also used non-negative matrix factorization to find a basis rep-

resenting player roles, based on their occupancy in areas of the court. Players who are

similar to a given player were identified as those who are closest in this basis, and this

was used to compute a similarity matrix between players.

CHAPTER 2. SPORTS ANALYSIS SURVEY 24

2.1.3 Movement Models and Dominant Regions

A team’s ability to control space is considered a key factor in the team’s performance,

and was one of the first research areas in which computational techniques were devel-

oped. Intuitively a player dominates an area if he can reach every point in that area be-

fore anyone else (see Definition 2.1). An early algorithmic attempt to develop a compu-

tational tool for this type of analysis was presented by Taki et al. [184], which defined

the Minimum Moving Time Pattern—subsequently renamed the Motion Model—and

the Dominant Region.

2.1.3.1 Motion Model

The motion model presented by Taki et al. [184] is simple and intuitive: it is a linear

interpolation of the acceleration model. It assumes that potential acceleration is the

same in all directions when the player is standing still or moving very slowly. As speed

increases it becomes more difficult to accelerate in the direction of the movement.

However, their model did not account for deceleration and hence is only accurate over

short distances.

Fujimura and Sugihara [84] presented a more realistic motion model, in particular

they incorporated a resistive force that decrease the acceleration. The maximum speed

of a player is bounded, and based on this assumption, Fujimura and Sugihara [84]

formulated the following equation of motion:

m
d

dt
v = F − kv, (2.1)

where m is the mass, F is the maximum driving force, k is the resistive coefficient,

and v is the velocity. The solution of the equation is:

v =
F

k
− (

F

k
− v0) · exp(− k

m
t),

where v0 is the velocity at time t = 0. If the maximum speed vmax = F/k and the

CHAPTER 2. SPORTS ANALYSIS SURVEY 25

magnitude of the resistance α = k/m are known, then the motion model is fixed. To

obtain α and vmax, Fujimura and Sugihara [84] studied players’ movement on video

and empirically estimated α to be 1.3 and vmax as 7.8m/s. This is then generalised to

two dimensions as follows:

m
d

dt
v = F− kv.

Solving the equation we get that all the points reachable by a player, starting at position

x0 with velocity v0, can reach point x within time t form the circular region centred at

x0 +
1− e−αt

α
· v0 with radius vmax ·

1− e−αt

α
.

They compared this model empirically and observed that the model yields a good

approximation of actual human movement, but they stated that a detailed analysis is a

topic for future research.

A different model was used in a recent paper by Cervone et al. [41] with the aim to

predict player movement in basketball. They present what they call a micro-transition

model. The micro-transition model describes the player movement during a single

possession of the ball. Separate models are then used for defense and attack. Let

the location of an attacking player ` at time t be (x`(t), y`(t)). Next they model the

movement in the x and y coordinates at time (t+ ε) using

x`(t+ ε) = x`(t) + α`x[x
`(t)− x`(t− ε)] + η`x(t), (2.2)

and analogously for y`(t+ε). This expression derives from a Taylor series expansion of

the function for determining the ball-carrier’s position such that α`x[x
`(t)−x`(t−ε)] ≈

εx`(t), and η`x(t) represents the contribution of higher order derivatives modelling ac-

celerations and jerks. When a player receives the ball outside the three-point line,

the most common movement is to accelerate towards the basket. On the other hand, a

player will decelerate when closer to the basket. Players will also accelerate away from

the boundary of the court as they approach it. To capture this behaviour the authors

CHAPTER 2. SPORTS ANALYSIS SURVEY 26

suggest mapping a player’s location to the additive term η`x(t) in (2.2). The position

of the five defenders are easier to model, conditioned on the evolution of the attack’s

positions, see Cervone et al. [41] for details.

Next we consider how the motion models have been used to develop other tools.

2.1.3.2 Dominant Regions

The original paper by Taki et al. [184] defined the dominant region as:

Definition 2.1. The dominant region of a player p is the region of the playing area

where p can arrive before any other player.

Consequently the subdivision induced by the dominant regions for all players will

partition the playing area into cells. In a very simple model where acceleration is not

considered, the dominant region is equivalent to the Voronoi region and the subdivision

can be efficiently computed [73]. However, for more elaborate motion models, such as

the ones described in Section 2.1.3.1, the distance function is more complex. For some

motion models the dominant region may not be a connected area [183], an example

is shown in Figure 2.6(a). A standard approach used to compute the subdivision for

a complex distance function is to compute the intersection of surfaces in three dimen-

sions, as shown in Figure 2.6(b). However, this is a complex task and time-consuming

for non-trivial motion models. Instead approximation algorithms have been considered

in the literature.

Taki and Hasegawa [182], [183] implemented algorithms to compute dominant re-

gions, albeit using a simple motion model. Instead of computing the exact subdivision

they considered the 640 × 480 pixels that at that time formed a computer screen and

for each pixel they computed the player that could reach that pixel first, hence, visu-

alizing the dominant regions. The same algorithm for computing the dominant region

was used by Fujimura and Sugihara [84], although they used a more realistic motion

model, see Section 2.1.3.1.

However, the above algorithms were shown to be slow in practice, for example

preliminary experiments by Nakanishi et al. [153] stated that the computation requires

CHAPTER 2. SPORTS ANALYSIS SURVEY 27

(a) (b)

Figure 2.6: (a) Showing the dominant region for two players. The left player is mov-
ing to the right with high speed and the right player is standing still. Using the motion
models discussed in subsubsection 2.1.3.1 the resulting dominant region for a single
player might not be connected. (b) A standard approach used in computational geom-
etry to subdivide the plane is to compute the projection of the intersection of surfaces
in three dimensions onto the plane.

10 s to 40 s for a 610 × 420 grid. To achieve the real-time computation required for

application in the RoboCup robot football tournament [123], the authors proposed an

alternative approach. Instead of computing the time required for every player to get

to every point, Nakanishi et al. [153] used a so-called reachable polygonal region

(RPR). The RPR of a player p given time t is the region that p can reach within time

t. An advantage with using the RPR for computing dominant regions is that more

complex motion models can be used by simply drawing the RPR for different values

of t. They presented the following high-level algorithm. Given a sequence of time-

steps ti, 1 ≤ i ≤ k compute the RPRs for each player and each time-step. The

algorithm then iterates through the sequence of time-steps and for each pair of players,

the partial dominant regions are constructed from the RPRs. The partial dominant

regions are then combined with the dominant regions computed in the previous time-

step to form new dominant regions. Assuming that the RPR is a convex area for any p

and any t, Nakanishi et al. claim a factor of 1000 improvement in computation time at

the cost of roughly a 10% drop in accuracy.

Gudmundsson and Wolle [96] used RPRs induced from real trajectory data. They

also presented an algorithm for constructing an approximate dominant region subdi-

vision, which is superficially similar to the algorithm by [153]. However, instead of

CHAPTER 2. SPORTS ANALYSIS SURVEY 28

(a) (b)

Figure 2.7: (a) An approximate bisector between two players using the intersection
points of the RPRs. (b) An example of the approximate dominant region subdivision
by Gudmundsson and Wolle [96].

computing partial dominant regions for each pair of players at each time-step, an ap-

proximate bisector is constructed for every pair of players. An example of an approx-

imate bisector between two players is shown in Figure 2.7(a), and in Figure 2.7(b)

the final subdivision generated by the algorithm in Gudmundsson and Wolle [96] is

depicted.

A closer study of a player’s dominant region was performed by Fonseca et al. [72]

in an attempt to describe the spatial interaction between players. They considered two

variables denoting the smallest distance between two teammates and the size of the

dominant region. They observed that the individual dominant regions seem to be larger

for the attacking team. They also found that for the defending team the two measures

were more irregular which indicates that their movement was more unpredictable that

the movement of the attacking team.

According to the authors, the player and team dominant regions detect certain

match events such as “when the ball is received by an attacker inside the defensive

structure, revealing behavioural patterns that may be used to explain the performance

outcome.”

Ueda et al. [187] compared the team-area and the dominant region (within the

CHAPTER 2. SPORTS ANALYSIS SURVEY 29

team-area) during offensive and defensive phases. The team area is defined as the

smallest enclosing orthogonal box containing all the field players of the defending

team. The results seem to show that there exists a correlation between the ratio of the

dominant region to team area, and the performance of the team’s offence and defence.

Dominant regions of successful attacks were thinner than those for unsuccessful at-

tacks that broke down with a turnover event located near the centre of the playing

area. The conclusion was that the dominant region is closely connected to the offen-

sive performance, hence, perhaps it is possible to evaluate the performance of a group

of players using the dominant region.

Open 2.1. The function modelling player motion used in dominant region computa-

tions has often been simple for reasons of tractability or convenience. Factors such

as the physiological constraints of the players and a priori momentum have been ig-

nored. A motion function that faithfully models player movement and is tractable for

computation is an open problem.

2.1.3.3 Further Applications

The dominant region is a fundamental structure that has been shown to support several

other interesting measures, and are discussed next.

1. (Weighted) Area of team dominant region. Taki et al. [184] defined a team

dominant region as the union of dominant regions of all the players in the team.

Variations in the size of the team dominant region was initially regarded by [184]

as a strong indication on the performance of the team. However, Fujimura and

Sugihara [84] argued that the size of a dominant region does not capture the con-

tribution of a player. Instead they proposed using a weighted dominant region,

by either weighting with respect to the distance to the goal, or with respect to

the distance to the ball. They argued that both these approaches better model

the contribution of a player compared to simply using the size of the dominant

region. However, no further analysis was performed.

CHAPTER 2. SPORTS ANALYSIS SURVEY 30

Fujimura and Sugihara [84] also suggested that the weighted area of dominant

regions can be used to evaluate attacking teamwork: tracking the weighted domi-

nant region (“defensive power”) over time for the defender marking each attacker

will indicate the attacker’s contribution to the team.

2. Passing evaluation. A player’s passable area is the region of the playing area

where the player can potentially receive a pass. The size and the shape of the

passable area depends on the motion model, and the positions of the ball and

the other players. Clearly this is also closely related to the notion of dominant

region.

Definition 2.2. [96] A player p is open for a pass if there is some direction and

(reasonable) speed that the ball can be passed, such that p can intercept the ball

before all other players.

Taki and Hasegawa [183] further classified a pass as “successful” if the first

player that can receive the pass is a player from the same team. This model was

extended and implemented by Fujimura and Sugihara [84], as follows. They

empirically developed a motion model for the ball, following formula (2.1) in

Section 2.1.3.1. They then defined the receivable pass variation (RPV) for each

player to be the number of passes the player can receive among a set of sampled

passes. They experimentally sampled 54,000 passes by discretizing [0, 2π) into

360 unit directions and speeds between 1 and 150 km h−1 into 150 units.

Gudmundsson and Wolle [96] also used a discretization approach, but viewed the

problem slightly differently. Given the positions, speeds and direction of motion

of the players, they approximated who is open for a pass for each discretized

ball speed. For each fixed passing speed they built RPRs for each player and the

ball over a set of discrete time-steps. Then an approximate bisector is computed

between the ball and the player. Combining the approximate bisectors for all the

players, a piecewise linear function f is generated over the domain [0, 2π). The

segments of the bisectors that lie on the lower envelope of f map to intervals on

CHAPTER 2. SPORTS ANALYSIS SURVEY 31

Figure 2.8: Available receivers of a pass by player Red 2 where velocity of the ball
is 20 m s−1. Each sector represents an interval on [0, 2π) that indicates which player
may receive the pass. Players may receive a pass made at more than one interval, for
example Blue 7.

the domain where the player associated with the bisector is open for a pass. An

example of the output is shown in Figure 2.8 for a fixed ball speed.

Open 2.2. The existing models for determining whether a player is open to re-

ceive a pass only consider passes made along the shortest path between passer

and receiver and where the ball is moving at constant velocity. The development

of more realistic model that allows for aerial passes, effects of ball-spin, and

variable velocities is an interesting research question.

3. Spatial Pressure. An important tactical measure is the amount of spatial pres-

sure the team exerts on the opposition. Typically when a team believes that the

opponent is weak at retaining possession of the ball, then a high pressure tactic

is used. Taki et al. [184] defined spatial pressure for a player p as:

m · (1− P) + (1−m) · (1− d/D),

CHAPTER 2. SPORTS ANALYSIS SURVEY 32

where, for a fixed radius r, P denotes the fraction of the disk of radius r with

center at p that lies within the dominant region of opposing players, d is the

distance between p and the ball, D is the maximal distance between p and any

point on the playing area, andm is a preset weight. This definition was also used

by Chawla et al. [45] (see also Section 3.3). See Figure 2.9 for two examples of

spatial pressure.

Open 2.3. The definition of spatial pressure in Taki et al. [184] is simple and

does not model effects such as the direction the player is facing or the direction

of pressuring opponents, both of which would intuitively be factors that ought

to be considered. Can a model that incorporates these factors be devised and

experimentally tested?

4. Rebounding. Traditionally a player’s rebounding performance has been mea-

sured as the average number of rebounds per game. Maheswaran et al. [147]

presented a model to quantify the potential to rebound unsuccessful shots in bas-

ketball in more detail. Simplified, the model considers three phases. The first

phase is the position of the players when the shot is taken. From the time that

the ball is released until it hits the rim, the players will try to move into a better

position – the crash phase. After the crash phase the players have the chance to

make the rebound. The proficiency of a player in rebounding is the measured by

the conversion—the third phase.

Both the positioning phase and the crash phase make use of the dominant region

(Voronoi diagram) to value the position of the player, i.e., they compute a “real

estate” value of the dominant region of each player both when the shot is made,

and when the shot hits the rim. These values, together with the conversion, are

combined into a rebounding value.

CHAPTER 2. SPORTS ANALYSIS SURVEY 33

(a) (b)

Figure 2.9: Comparing the pressure that the encircled player is under in the two pic-
tures shows that the encircled player in the right figure is under much more pressure.

2.2 Network Techniques for Team Performance Analy-

sis

Understanding the interaction between players is one of the more important and com-

plex problems in sports science. Player interaction can give insight into a team’s

playing style, or be used to assess the importance of individual players to the team.

Capturing the interactions between individuals is a central goal of social network anal-

ysis [192] and techniques developed in this discipline have been applied to the problem

of modelling player interactions.

An early attempt to use networks for sports analysis was in an entertaining study by

Gould and Gatrell [92] where they explore all passes made in the 1977 FA Cup Final

between Liverpool and Manchester United. They studied the simplicial complexes

of the passing network and made several interesting observations, including that the

Liverpool team had two “quite disconnected” subsystems and that Kevin Keegan was

“the linchpin of Liverpool”. However, their analysis, while innovative, did not attract

much attention.

In the last decade numerous papers have appeared that apply social network anal-

ysis to team sports. Two types of networks have dominated the research literature to

CHAPTER 2. SPORTS ANALYSIS SURVEY 34

A C

4 2

1

5

8

4

2

B D

(a)

A C

4 2

1

5

8

4

2

B D

2

1

1
2

3

free kick

lost possession

shot off goal

shot on goal

(b)

Figure 2.10: (a) A passing network modelling four players {A,B,C,D} and the passes
between the players. (b) A transition network is a passing network extended with
outcomes. For example, twice player C made a shot on goal and once the player lost
possession.

date: passing networks and transition networks.

Passing networks have been most frequently studied type in the research field. To

the best of our knowledge, they were first introduced by Passos et al. [159]. A passing

network is a graph G = (V,E) where each player is modelled as a vertex and two

vertices v1 and v2 in V have a directed edge e = (v1, v2) from v1 to v2 with integer

weight w(e) such that the player represented by vertex v1 has made w(e) successful

passes to the player represented by vertex v2. A small example of a passing graph is

shown in Figure 2.10a. Passing networks can be constructed directly from event logs,

defined in Section 1.2. A temporal sequence of passes made in a match is encoded as

a path within the passing network. A passing network that is extended with outcomes,

as illustrated in Figure 2.10b, is then referred to as a transition network.

Many properties of passing networks have been studied, among them density, het-

erogeneity, entropy, and Nash equilibria. However, the most studied measurement is

centrality. We begin by considering centrality and its variants, and then we briefly

consider some of the other measures discussed in the literature.

2.2.1 Centrality

Centrality measures were introduced in an attempt to determine the key nodes in a

network, for example, to identify the most popular persons in a social network or

CHAPTER 2. SPORTS ANALYSIS SURVEY 35

super-spreaders of a disease [155]. In team sports the aim of using centrality measure-

ments is generally to identify key players, or to estimate the interactivity between team

members. For an excellent survey on network centrality see Borgatti [21].

2.2.1.1 Degree centrality

The simplest centrality measure is the degree centrality, which is the number of edges

incident to a vertex. For directed networks one usually distinguish between the in-

degree and the out-degree centrality. In sports analysis the out-degree centrality is

simply referred to as centrality while the in-degree centrality is usually called the

prestige of a player. Some papers do consider both centrality and prestige, see for

example Clemente et al. [56], but most of the literature has focused on centrality.

Fewell et al. [69] considered a transition graph induced from basketball games

where the vertices represented the five traditional player positions (point guard, shoot-

ing guard, small forward, power forward, and center), possession origins and posses-

sion outcomes. The centrality was computed on the transition graph, split into two

outcomes: “shots” and “others”. The measure was computed on 32 basketball games

and prior knowledge about the importance of players to the teams involved was com-

pared to the centrality values of the players. They used degree centrality to compare

teams that heavily rely on key players with teams with a more even distribution be-

tween their team members. Unfortunately, the data was not definitive since the overall

centrality rankings did not show a strong relation to the teams performance.

Grund [93] used degree centrality together with Freeman centralization [80]. The

idea by Freeman was to consider the relative centrality of the most important node in

the network. That is, how central is the most central node compared to the centrality

of the other nodes in the network. The Freeman centrality is measured as the sum

of the differences between the node with the highest degree centrality and all other

nodes; divided by a value depending only on the size of the network [80]. They used

an extensive set of 283,259 passes from 760 English Premier League football matches

for their experiments. From a team performance perspective Grund [93] set out to

CHAPTER 2. SPORTS ANALYSIS SURVEY 36

answer two hypotheses: (i) increased interaction between players leads to increased

team performance; and (ii) increased interaction centralization leads to decreased team

performance. The latter is strongly connected to centrality and Grund [93] went on to

show that a high level of centralization decreases team performance.

In a series of recent papers, Clemente et al. [51], [52], [55], [56] argue that central-

ity may recognise how football players collaborate, and also the nature and strength

of their collaboration. For example, central midfielders and central defenders usu-

ally show higher degree centrality then other players. Some exceptions were shown

in Clemente et al. [54] where the left and right defenders also obtained very high degree

centrality. In general goal-keepers and forwards have the lowest centrality measure.

2.2.1.2 Betweenness Centrality

The betweeness centrality of a node is the number of times it lies on the shortest path

between two other nodes in the network. Originally it was introduced by Freeman [79]

in an attempt to estimate “a human’s potential control of communication in a social

network”.

Peña and Touchette [160] claimed that the betweenness centrality measures how

the ball-flow between football players depends on a particular player and as such pro-

vides a measure of the impact of the “removal” of that player from the game, either

by being sent off or by being isolated by the opponents. They also argued that, from a

tactical point of view, a team should aim to have a balanced betweenness score for all

players.

A centrality measure closely related to the betweenness centrality is flow central-

ity. The flow centrality is measured by the proportion of the entire flow between two

vertices that occur on paths of which a given vertex is a part.

Duch et al. [66] considered flow centrality for transition networks where the weight

of an edge from a player v1 to a player v2 is equal to the fraction of passes initiated

by v1 to reach v2. Similarly, the shooting accuracy for a player (the weight of the

edge from the player to the vertex “shots on goal”) is the fraction of shots made by

CHAPTER 2. SPORTS ANALYSIS SURVEY 37

the player that end up on goal. They then studied the flow centrality over all paths that

results in a shot in football. They also take the defensive performance into account

by having each player initiate a number of flow paths which is comparable to the

number of times the player wins possession of the ball. The match performance of

the player is then the normalised value of the logarithm of this combined value. They

argue that this gives an estimate of the contribution of a single player and also of the

whole team. The team’s match performance value is the mean of the individual player

values. Using these values, both for teams and individual players, Duch et al. [66]

analysed 20 games from the football 2008 UEFA European Cup. They claim that their

measurements provide “sensible results that are in agreement with the subjective views

of analysts and spectators”, in other words, the better paid players tend to contribute

more to the team’s performance.

2.2.1.3 Closeness Centrality

The standard distance metric used in a network is the length (weight or cost) of the

shortest path between pairs of nodes. The closeness centrality of a node is defined

as the inverse of the farness of the node, which is the sum of its distance to all other

nodes in the network [11]. Peña and Touchette [160] argued that the closeness score is

an estimate of how easy it is to get the ball to a specific player, i.e., a high closeness

score indicates a well-connected player within the team. They made a detailed study

using the 2010 FIFA World Cup passing data. The overall conclusion they reached

was that there is a high correlation between high scores in closeness centrality, PageR-

ank and clustering (see below), which supports the general perception of the players

performance reported in the media at the time of the tournament.

2.2.1.4 Eigenvector Centrality and PageRank

The general idea of Eigenvector centrality and PageRank is that the importance of a

node depends, not only on its degree, but also on the importance of its neighbours.

Cotta et al. [60] used the eigenvector centrality calculated with the power iteration

CHAPTER 2. SPORTS ANALYSIS SURVEY 38

model by Mises and Pollaczek-Geiringer [151]. The measure aims to identify which

player has the highest probability to be in possession of the ball after a sequence of

passes. They also motivated their measure by a thorough analysis of three games from

the 2010 FIFA World Cup, where they argued the correlation between the eigenvector

centrality score and the team’s performance.

A variant of the eigenvector centrality measure is PageRank, which was one of

the algorithms used by Google Search to rank web-pages [28]. The passing graph is

represented as an adjacency matrix A where each entry Aji is the number of passes

from player j to player i. In football terms, the PageRank centrality index for player i

is defined as:

xi = p
∑

j 6=i

Aji
Loutj

· xj + q,

whereLoutj =
∑

k Ajk is the total number of passes made by player j, p is the parameter

representing the probability that a player will decide to give the ball away rather than

keep it and shoot, and q is a ‘free’ popularity assigned to each player. Note that the

PageRank score of a player is dependant on the scores of the player’s team mates. Peña

and Touchette [160] argue that the PageRank measure gives each player a value that

is approximately the likelihood that the player will be in possession of the ball after a

fixed number of passes. Using data from the 2010 FIFA World Cup, they computed

the PageRank for the players in the top 16 teams, but focused their discussion on the

players in the top four teams: Spain, Germany, Uruguay and the Netherlands. They

showed that the PageRank of players in the Dutch and Uruguay teams were more

evenly distributed than players from Spain and Germany. This indicates that no player

in those teams has a predominant role in the passing scheme while Xavi Hernandez

(Spain) and Bastian Schweinsteiger (Germany) were particularly central to their teams.

2.2.2 Clustering Coefficients

A clustering coefficient is a measure of the degree of which nodes in a network are

inclined to cluster together. In the sport science literature both the global and the

CHAPTER 2. SPORTS ANALYSIS SURVEY 39

local clustering coefficients have been applied. The idea of studying the global cluster

coefficient of the players in a team is that it reflects the cooperation between players,

that is, the higher coefficient for a player the higher is his cooperation with the other

members of the team [51], [69], [160]. Fewell et al. [69] also argued that a high global

clustering coefficient indicates that attacking decisions are taken by several players,

and thus increases the number of possible attacking paths that have to be assessed by

defences in basketball. Peña and Touchette [160] showed, using the 2010 FIFA World

Cup passing data, that Spain, Germany and the Netherlands consistently had very high

clustering scores when compared to Uruguay, suggesting that they were extremely well

connected teams, in the sense that almost all players contribute.

Cotta et al. [60] considered three games involving Spain from the 2010 FIFA World

Cup and used the local clustering coefficient as a player coefficient. They studied how

the coefficient changed during the games, and argued for a correlation between the

number of passes made by Spain and the local clustering coefficient. They claimed

that Spain’s clustering coefficient remains high over time, “indicating the elaborate

style of the Spanish team”.

It should be noted that it is not completely clear that there is a strong connection

between the clustering coefficient and the team performance. For example, Peña and

Touchette [160] stated that in their study they did not get any reasonable results and

“will postpone the study of this problem for future work.”

Open 2.4. Various centrality and clustering measures have been proposed to accu-

rately represent some aspect of player or team performance. A systematic study re-

viewing all such measures against predefined criteria, and on a large data set would

be a useful contribution to the field.

CHAPTER 2. SPORTS ANALYSIS SURVEY 40

2.2.3 Density and Heterogeneity

In general it is believed that stronger collaboration between football players (i.e. more

passes) will make the team stronger—known as the density-performance hypothe-

sis [10]. Therefore a widely-assessed measure of networks is density, which is tra-

ditionally calculated as the number of edges divided by the total number of possible

edges. This is the density measure used by Clemente et al. in a series of recent pa-

pers [52], [53], [55], [56]. For weighted graphs the measurement becomes slightly

more complex. Grund [93] defined the intensity of a team as the sum of the weighted

degrees over all players divided by the total time the team have possession of the ball,

i.e., possession-weighted passes per minute.

Related to the density is passing heterogeneity, which Cintia et al. [50] defined

as the standard deviation of the vertex degree for each player in the network. High

heterogeneity of a passing network means that the team tends to coalesce into sub-

communities, and that there is a low level of cooperation between players [52]. One

interesting observation made by Clemente et al. [52] was that the density usually went

down in the 2nd half while the heterogeneity went up.

Open 2.5. The density-performance hypothesis suggests an interesting metric of team

performance. Can this hypothesis be tested?

2.2.4 Entropy, Topological Depth, Price-of-Anarchy and Power Law

Distributions

As described above, Fewell et al. [69] considered an extended transition graph for

basketball games, where they also calculated player entropy. Shannon entropy [173]

was used to estimate the uncertainty of a ball transition. The team entropy is the

aggregated player entropies, which can be computed in many different ways. Fewell

et al. [69] argue that from the perspective of the opposing team the real uncertainty

is the number of options, and computed the team entropy from the transition matrix

describing ball movement probabilities across the five standard player positions and

CHAPTER 2. SPORTS ANALYSIS SURVEY 41

the two outcomes.

Skinner [176] showed that passing networks have two interesting properties. They

identified a correspondence between a basketball transition network and a traffic net-

work, and used insights from the latter to make suppositions about the former. They

posited that there may be a difference between the Nash equilibrium of a transition

network and the community optimum—the Price of Anarchy. In other words, for the

best outcome one should not always select the highest-percentage shot. A similar ob-

servation was made in Fewell et al. [69] who noted that the low flow centrality of the

most utilised position (point guard) seems to indicate that the contribution of key play-

ers can be negatively affected by the point guard controlling the ball more often than

other players. Related to the same concept, Skinner [176] suggested that removing a

key player from a match—and hence the transition network—may actually improve

the team performance, a phenomena known as the Braess’ paradox in network analy-

sis [26].

2.3 Data Mining

The representations and structures described in Sections 1.2 and 2.2 are informative

in isolation, but may also be the input for more complex algorithmic and probabilis-

tic analysis of team sports. In this section, we present a task-oriented survey of the

techniques that have been applied, and outline the motivations for these tasks.

2.3.1 Applying Labels to Events

Sports analysts are able to make judgments about events and situations that occur in a

match, and apply qualitative or quantitative attributes to that event, for example, to rate

the riskiness of an attempted shot on goal, or the quality of a pass. Event labels such as

these can be used to measure player and team performance, and are currently obtained

manually by video analysis. Algorithmic approaches to automatically produce such

labels may improve the efficiency of the process.

CHAPTER 2. SPORTS ANALYSIS SURVEY 42

Chawla et al. [45] presented a classifier that determines the quality of passes made

in football matches by applying a label of good, OK or bad to each pass made, and

were able to obtain an accuracy rate of 85.8 %. The classifier uses features that are

derived from the spatial state of the match when the pass occurs, including features

derived from the dominant region described in Subsection 2.1.3, which were found to

be important features to the classifier.

In research by Beetz et al. [13], the approach was to cluster passes, and to then

induce a decision tree on each cluster where the passes were labelled as belonging to

the cluster or not. The feature predicates, learned as splitting rules, in the tree could

then be combined to provide a description of the important attributes of a given pass.

Bialkowski et al. [16] used the formation descriptors computed with the algorithm

presented in [18] (see Subsection 2.3.3) to examine whether formations could accu-

rately predict the identity of a team. In the model, a linear discriminant analysis clas-

sifier was trained on features describing the team formation, and the learned model

was able to obtain an accuracy of 67.23 % when predicting a team from a league of 20

teams.

In Maheswaran et al. [146] the authors perform an analysis of various aspects of the

rebound in basketball to produce a rebound model. The rebound is decomposed into

three components: the location of the shot attempt; the location where the rebound is

taken; and the height of the ball when the rebound is taken. Using features derived from

this model, a binary classifier was trained to predict whether a missed shot would be

successfully rebounded by the offensive team. The model was evaluated and obtained

an accuracy rate of 75 % in experiments on held-out test data.

Tora et al. [186] employs a deep learning approach to detecting puck events in

ice hockey games, such as shot, pass, loose puck recovery, dump-in and dump-out.

The model uses a long short-term memory (LSTM) recurrent neural network [109] to

predict, given an input sequence including player locations, whether any of the puck

events occurred at each time-step. The model is trained using an imitation learning

algorithm, and was found to outperform existing baseline methods for this task in an

CHAPTER 2. SPORTS ANALYSIS SURVEY 43

experimental evaluation.

2.3.2 Predicting Future Event Types and Locations

The ability to predict how play will unfold given the current game-state has been re-

searched extensively, particularly in the computer vision community. This has an ap-

plication in automated camera control, where the camera filming a match must au-

tomatically control its pitch, tilt and zoom. The framing of the scene should ideally

contain not just the current action, but the movement of players who can be expected

to be involved in future action, and the location of where such future action is likely to

occur.

Kim et al. [122] considered the problem of modelling the evolution of football

play from the trajectories of the players, such that the location of the ball at a point in

the near future could be predicted. Player trajectories were used to compute a dense

motion field over the entire playing area, and points of convergence within the motion

field identified. The authors suggest that these points of convergence indicate areas

where the ball can be expected to move to with high probability, and the experiments

described in the paper demonstrate this with several examples.

Yue et al. [198] construct a model to predict whether a basketball player will shoot,

pass to one of four teammates, or retain possession. The action a player takes is mod-

elled using a multi-class conditional random field. The input features to the clas-

sifier include latent factors representing player locations which are computed using

non-negative matrix factorization—see Subsection 2.1.1—and the experimental results

show that these features improve the predictive performance of the classifier.

Wei et al. [193] constructed a model to make short-term predictions of which foot-

ball player will be in possession of the ball after a given interval. They propose a

model—augmented-Hidden Conditional Random Fields (aHCRF)—that combines lo-

cal observation features with the hidden layer states to make the final prediction of the

player who possess the ball. The experimental results show that they are able to design

a model that can predict which player will be in possession of the ball after 2 s with

CHAPTER 2. SPORTS ANALYSIS SURVEY 44

99.25 % accuracy.

Predicting the location of players over longer durations is a challenging problem for

several reasons. The future location of a player is partially dependent on the locations

of the other players up to, and including, the time-stamp of the required prediction.

This suggests that the policies that define the movement of all players must be learned

jointly. Le et al. [133] defines a model based on a LSTM recurrent neural network

that is trained using imitation learning to estimate the movement policies of players.

This model is applied to ghosting in Le et al. [132]. Ghosting is a visualisation tech-

nique where the player’s locations are displayed markers on the playing area, and for

each player a “ghost” marker is also displayed that shows the player’s “ideal” location

according to the learned policy.

Furthermore, the movement that players make is the manifestation of competing

long- and short-term priorities. Research by Zheng et al. [199] proposes a hierarchical

policy model, instantiated as a recurrent neural network, to learn policies that balance

short-term micro actions with longer-term macro goals. This model was applied to

a basketball setting to predict long-term player trajectories, that were realistic in the

short term—e.g. passing, dribbling—and achieved longer-term goals—e.g. moving to

a scoring position.

Short-term prediction of player movement is also used in camera planning where

the goal is to automatically control a camera’s tilt, pan and zoom in order to include all

the relevant action within the frame while simultaneously ensuring that the movement

of the camera is smooth. Chen et al. [47] uses a recurrent decision tree framework for

this problem, where the input is the noisy location points of players and the desired

output is a smooth sequence of camera movements that induce frames containing the

all the relevant players.

2.3.3 Identifying Formations

Sports teams use pre-devised spatial formations as a tactic to achieve a particular ob-

jective. The ability to automatically detect such formations is of interest to sports

CHAPTER 2. SPORTS ANALYSIS SURVEY 45

analysts and coaches. For example, a coach would be interested in understanding the

proportion of time that a team maintains an agreed formation, and also when the team

is compelled by the circumstances of the match to alter its formation. Moreover, when

preparing for a future opponent, an understanding of the formation used, and periods

where the formation changes would be of interest.

A formation is a positioning of players, relative to the location of other objects,

such as the playing-area boundaries or goal/basket, the players’ team-mates, or the op-

position players. Formations may be spatially anchored, for example a zone defence

in basketball where players position themselves in a particular location on the play-

ing area, see Figure 2.11(a). On the other hand, a formation may vary spatially, but

maintain a stable relative orientation between the players in the formation. For exam-

ple, the defensive players in a football team will position themselves in a straight line

across the playing-area, and this line will move as a group around the playing-area,

depending on the phase of play, Figure 2.11(c). Finally, a different type of formation is

a man marking defence, where defending players will align themselves relative to the

attacking players that they are marking, Figure 2.11(b). In this scenario, the locations

of defenders may vary considerably, relative to their teammates or to the boundaries of

the playing area.

Moreover, the players that fulfil particular roles within a formation may switch,

either explicitly through substitutions or dynamically where players may swap roles

for tactical reasons. The following approaches have been used to determine formations

from the low-level trajectory signal.

Lucey et al. [140] investigated the assignment of players to roles in field hockey,

where teams use a formation of three lines of players arrayed across the field. At any

time t there is a one-to-one assignment of players to roles, however this assignment

may vary from time-step to time-step. This problem is mathematically equivalent to

permuting the player ordering pτt using a permutation matrix xτt which assigns the

players to roles rτt = xτtp
τ
t . The optimal permutation matrix xτt should minimise the

total Euclidean distance between the reference location of each role and the location

CHAPTER 2. SPORTS ANALYSIS SURVEY 46

(a) Zone Defence (b) Man-marking Defence (c) Back-four Defence

Figure 2.11: Examples of typical formations used in basketball and football. (a) The
zone defence is spatially anchored to the dimensions of the court and the players po-
sitioning is invariant to the phase of play. (b) Defenders who are man-marking will
align themselves relative to their opposing player, typically between the attacker and
the basket. (c) The back-four formation in football maintains the alignment of players
in the formation, but will move forward and laterally, depending on the phase of play.

of the player assigned to the role, and can be computed in closed form using the Hun-

garian algorithm [128].

Wei et al. [194] used this approach as a preprocessing step on trajectory data from

football matches, and the computed role locations were subsequently used to tempo-

rally segment the matches into game phases. Lucey et al. [141] applied role assignment

to basketball players in sequences leading up to three-point shots. They analysed close

to 20,000 such shots and found that role-swaps involving particular pairs of players in

the moments preceding a three-point shot have a significant impact on the probability

of the shooter being open—at least 6 feet away from the nearest marker—when the

shot is made.

Furthermore, Bialkowski et al. [18] observed that the role assignment algorithm

presented by Lucey et al. [140] required a predefined prototype formation to which the

players are assigned. They consider the problem of simultaneously detecting the ref-

erence location of each role in the formation, and assigning players to the formation,

using an expectation maximization approach [61]. The initial role reference locations

CHAPTER 2. SPORTS ANALYSIS SURVEY 47

are determined as the mean position of each player. The algorithm then uses the Hun-

garian algorithm to update the role assignment for each player at each time-step, and

then the role reference locations are recomputed according to the role assignment. The

new locations are used as input for the next iteration, and process is repeated until

convergence.

The learned formations for each team and match were then clustered into six forma-

tions, and the authors claim that the clustered formations were consistent with expert

knowledge of formations used by football teams. This was validated experimentally

by comparing the computed formation with a formation label assigned by an expert,

and an accuracy of 75.33 % was obtained.

In a subsequent paper, Bialkowski et al. [17] investigated differences in team strate-

gies when playing home or away, by using formations learned with the role assignment

algorithm. By computing the mean position when teams are playing at home from

when they are playing away, they observed that teams defend more deeply when away

from home, in other words they set their formation closer to the goal they are defend-

ing.

A qualitatively different formation is for players to align themselves with the po-

sitions of the opposition players, such as man-marking defense used in basketball, see

Figure 2.11(b). Franks et al. [74] defined a model to determine which defender is

marking each attacker. For a given offensive player at a given time, the mean location

of the defender is modelled as a convex combination of three locations: the position

of the attacker, the location of the ball and the location of the hoop. The location of a

defender, given the observed location of the marked attacker, is modelled as a Gaussian

distribution about a mean location. The matching between defenders and the attacker

that they are marking over a sequence of time-steps is modelled using a Hidden Markov

Model, ensuring that the marking assignments are temporally smoothed.

CHAPTER 2. SPORTS ANALYSIS SURVEY 48

2.3.4 Identifying Plays and Tactical Group Movement

Predefined plays are used in many team sports to achieve some specific objective.

American football uses highly structured plays where the entire team has a role and

their movement is highly choreographed. On the other hand, plays may also be em-

ployed in less structured sports such as football and basketball when the opportunity

arises, such as the pick and roll in basketball or the one-two or wall pass in football.

Furthermore, teammates who are familiar with each other’s playing style may develop

ad-hoc productive interactions that are used repeatedly, a simple example of which is

a sequence of passes between a small group of players. Identification of plays is a

time-consuming task that is typically carried out by a video analyst, and thus a system

to perform the task automatically would be useful.

An early attempt in this direction attempted to recognise predefined plays in Amer-

ican football [116]. They model a play as a choreographed sequence of movements

by attacking players, each trying to achieve a local goal, and in combination achieve

a group goal for the play. The approach taken was to encode predefined tactical plays

using a temporal structure description language that described a local goal in terms

of a sequence of actions carried out by an individual player. These local goals were

identified in the input trajectories using a Bayesian belief network. A second belief

network then identified whether a global goal had been achieved based on the detected

local goals—signifying that the play has occurred.

Two papers by Li et al. investigated the problem of identifying group motion, in

particular the type of offensive plays in American football. Li et al. [136] presented

the Discriminative Temporal Interaction Network (DTIM) framework to characterise

group motion patterns. The DTIM is a temporal interaction matrix that quantifies the

interaction between objects at two given points in time. For each predefined group

motion pattern—a play—a multi-modal density was learned using a properly defined

Riemannian metric, and a MAP classifier was then used to identify the most likely play

for a given input set of trajectories. The experiments demonstrated that the model was

CHAPTER 2. SPORTS ANALYSIS SURVEY 49

able to accurately classify sets of trajectories into five predefined plays, and outper-

formed several other common classifiers for the task. This model has the advantage of

not requiring an a priori definition of each player’s movement in the play, as required

in Intille and Bobick [116].

Li and Chellappa [135] considered group motion segmentation, where a set of un-

labelled input trajectories are segmented into the subset that participated in the group

motion, and those that did not. The problem was motivated by the example of segment-

ing a set of trajectories into the set belonging to the offensive team (who participated

in the play) and the defensive team (who did not). The group motion is modelled as

a dynamic process driven by a spatio-temporal driving force—a densely distributed

motion field over the playing area. The driving force is modelled as a 3 × 3 ma-

trix F (t0, tf , x, y) such that X(tf) = F (t0, tf , x, y)X(t0). Thus, an object located at

X(t0) at time t0 will be driven to X(tf) at time tf . Using Lie group theory [170], a Lie

algebraic representation f of F is determined with the property that the space of all

fs is linear, and thus tractable statistical models can be induced from f . A Gaussian

mixture model was used to learn a fixed number of driving forces at each time-step,

which was then used to segment the trajectories.

There has been number of diverse efforts to identify commonly occurring sequences

of passes in football matches. In Borrie et al. [22], the playing-area is subdivided into

zones and sequences of passes are identified by the zones that they start and terminate

in. A possession can thus be represented by a string of codes representing each pass

by source and target zone, and with an elapsed time between them. They introduce

T-pattern analysis which is used to compute possessions where the same sequence

of passes are made with consistent time intervals between each pass, and frequently

occurring patterns could thus be identified. Camerino et al. [37] also used T-pattern

analysis on pass strings, however the location of passes was computed relative to the

formation of the team in possession, e.g. between the defense and midfield, or in front

of the attacking line.

An algorithm to detect frequently occurring sequences of passes was presented in

CHAPTER 2. SPORTS ANALYSIS SURVEY 50

Gudmundsson and Wolle [96]. A suffix tree [195] was used as a data structure D to

store sequences of passes between individual players. A query (τ, o) can then be made

against D that returns all permutations of τ players such that the ball is passed from a

player p1 to pτ , via players p2, . . . , pτ−1 at least o times, and thus determine commonly

used passing combinations between players.

Van Haaren et al. [188] considered the problem of finding patterns in offensive

football strategies. The approach taken was to use inductive logic programming to

learn a series of clauses describing the pass interactions between players during a pos-

session sequence that concludes with a shot on goal. The passes were characterised

by their location within the playing-area, and a hierarchical model was defined to ag-

gregate zones of the playing-area into larger regions. The result is a set of rules, ex-

pressed in first-order predicate logic, describing the frequently-occurring interaction

sequences.

Research by Wang et al. [191] also aimed to detect frequent sequences of passing.

They claim that the task of identifying tactics from pass sequences is analogous to

identifying topics from a document corpus, and present the Team Tactic Topic Model

(T3M) based on Latent Dirichlet Allocation [19]. Passes are represented as a tuple

containing an order-pair of the passer and receiver, and a pair of coordinates represent-

ing the location where the pass was received. The T3M is an unsupervised approach

for learning common tactics, and the learned tactics are coherent with respect to the

location where they occur, and the players involved.

As discussed in Subsection 2.3.2, the problem of predicting the future movement

of players must account for the structure implicit in the tactical organisation of team-

mates and the opposing players. Le et al. [133] presents a model that learns individual

movement policies for players using imitation learning. The model is defined with

an explicit entropy regularization term in the objective function that incorporates the

policies of other players. The individual learned policies are thus consistent as a group

and can be viewed in aggregate as a joint policy.

CHAPTER 2. SPORTS ANALYSIS SURVEY 51

2.3.5 Temporally Segmenting the Game

Segmenting a match into phases based on a particular set of criteria is a common task

in sports analysis, as it facilitates the retrieval of important phases for further analysis.

The following paragraphs describe approaches that have been applied this problem for

various types of criteria.

Hervieu et al. [106], [107] present a framework for labelling phases within a hand-

ball match from a set of predefined labels representing common attacking and de-

fensive tactics. The model is based on a hierarchical parallel semi-Markov model

(HPaSMM) and is intended to model the temporal causalities implicit in player tra-

jectories. In other words, modelling the fact that one player’s movement may cause

another player to subsequently alter their movement. The upper level of the hierarchi-

cal model is a semi-Markov model with a state for each of the defined phase labels, and

within each state the lower level is a parallel hidden Markov model for each trajectory.

The duration of time spent in each upper level state is modelled using a Gaussian mix-

ture model. In the experiments, the model was applied to a small data set of handball

match trajectories from the 2006 Olympics Games final, and resulted in accuracy of

92 % accuracy on each time-step, compared to the ground truth provided by an expert

analyst. The model exactly predicted the sequence of states, and the misclassifications

were all the result of time-lags when transitioning from one state to the subsequent

state.

Perše et al. [162] investigated segmentation of basketball matches. A framework

with two components was used, the first segmented the match duration into sequences

of offensive, defensive or time-out phases. The second component identified basic

activities in the sequence by matching to a library of predefined activities, and the se-

quences of activities were then matched with predefined templates that encoded known

basketball plays.

Wei et al. [194] considered the problem of automatically segmenting football matches

into distinct game phases that were classified according to a two-level hierarchy, using

a decision forest classifier. At the top level, phases were classified as being in-play or

CHAPTER 2. SPORTS ANALYSIS SURVEY 52

a stoppage. In-play phases were separated into highlights or non-highlights; and stop-

pages were classified by the reason for the stoppage: out for corner, out for throw-in,

foul or goal. The classified sequences were subsequently clustered to find a team’s

most probable method of scoring and of conceding goals.

In a pair of papers by Bourbousson et al. [23], [24], the spatial dynamics in bas-

ketball was examined using relative-phase analysis. In Bourbousson et al. [23], the

spatial relation between dyads of an attacking player and their marker were analysed.

In Bourbousson et al. [24], the pairwise relation between the centroid of each team

was used, along with a stretch index that measured the aggregate distance betweens

players and their team’s centroid. A Hilbert transformation was used to compute the

relative phase in the x and y direction of the pairs of metrics. Experimental results

showed a strong in-phase relation between the various pairs of metrics in the matches

analysed, suggesting individual players and also teams move synchronously. The au-

thors suggest that the spatial relations between the pairs are consistent with their prior

knowledge of basketball tactics.

Frencken et al. [81] performed a similar analysis of four-a-side football matches.

They used the centroid and the convex hull induced by the positions of the players in a

team to compute metrics, for example the distance in the x and y direction of the cen-

troid, and the surface area of the convex hull. The synchronized measurements for the

two teams were modelled as coupled oscillators, using the HKB-model [101]. Their

hypothesis was that the measurements would exhibit in-phase and anti-phase coupling

sequences, and that the anti-phase sequences would denote game-phases of interest.

In particular, the authors claim that there is a strong linear relationship between the

x-direction of the centroid of the two teams, and that phases where the centroid’s

x-directions cross are indicative of unstable situations that are conducive to scoring

opportunities. They note that such a crossing occurs in the build up to goals in about

half the examples.

Open 2.6. Coaches and analysts are often interested in how the intensity of a match

varies over time, as periods of high intensity tend to present more opportunities and

CHAPTER 2. SPORTS ANALYSIS SURVEY 53

threats. It is an interesting open problem to determine if it is possible to compute a

measure of intensity from spatio-temporal data, and thus be able to determine high-

intensity periods.

2.4 Performance Metrics

Determining the contribution of the offensive and defensive components of team play

has been extensively researched, particularly in the case of basketball which has sev-

eral useful properties in this regard. For example, a basketball match can be easily

segmented into a sequence of possessions—teams average around 92 possessions per

game [127]—most of which end in a shot at goal, which may or may not be success-

ful. This segmentation naturally supports a variety of offensive and defensive metrics

[127], however the metrics are not spatially informed, and intuitively, spatial factors are

significant when quantifying both offensive and defensive performance. In this section

we survey a number of research papers that use spatio-temporal data from basketball

matches to produce enhanced performance metrics.

2.4.1 Offensive Performance

Shooting effectiveness is the likelihood that a shot made will be successful, and ef-

fective field goal percentage (EFG) is a de-facto metric for offensive play in basket-

ball [127]. However, as Chang et al. [43] observe, this metric confounds the efficiency

of the shooter with the difficulty of the shot. Intuitively, spatial factors such as the lo-

cation where a shot was attempted from, and the proximity of defenders to the shooter

would have an impact of the difficulty of the shot. This insight has been the basis of

several efforts to produce metrics that provide a more nuanced picture of a player or

team’s shooting efficiency.

Early work in this area by Reich et al. [168] used shot chart data (a list of shots

attempted, detailing the location, time, shooter and outcome of each shot). The paper

contained an in-depth analysis of the shooting performance of a single player—Sam

CHAPTER 2. SPORTS ANALYSIS SURVEY 54

Cassell of the Minnesota Timberwolves—over the entire 2003/2004 season. A vector

of boolean-valued predictor variables was computed for each shot, and linear models

fitted for shot frequency, shot location and shot efficiency. By fitting models on sub-

sets of the predictor variables, the authors analysed the factors that were important in

predicting shot frequency, location and efficiency.

Miller et al. [150] investigated shooting efficiency by using vectors computed with

non-negative matrix factorization to represent spatially distinct shot-types, see Sub-

section 2.1.2. The shooting factors were used to estimate spatial shooting efficiency

surfaces for individual players. The efficiency surfaces could then be used to com-

pute the probability of a player making a shot conditioned on the location of the shot

attempt, resulting in a spatially-varying shooting efficiency model for each individual

player.

Cervone et al. [41] present expected possession value (EPV), a continuous mea-

sure of the expected points that will result from the current possession. EPV is thus

analogous to a “stock ticker” that provides a valuation of the possession at any point

in time during the possession. The overall framework consists of a macro-transition

model that deals with game-state events such as passes, shots and turnovers, and micro-

transition model that describes player movement within a phase when a single player

is in possession of the ball. Probability distributions, conditioned on the spatial lay-

out of all players and the ball, are learned for the micro- and macro-transition models.

The spatial effects are modelled using non-negative matrix factorization to provide

a compact representation that the authors claim has the attributes of being computa-

tionally tractable with good predictive performance. The micro- and macro-transition

models are combined in a Markov chain, and from this the expected value of the end-

state—scoring 0, 2 or 3 points—can be determined at any time during the possession.

Experimental results in the paper show how the EPV metric can support a number of

analyses, such as EPV-Added which compares an individual player’s offensive value

with that of a league-average player receiving the ball in the same situation; or Shot

Satisfaction which quantifies the satisfaction (or regret) of a player’s decision to shoot,

CHAPTER 2. SPORTS ANALYSIS SURVEY 55

rather than taking an alternative option such as passing to a teammate.

Chang et al. [43] introduces another spatially-informed measure of shooting quality

in basketball: Effective Shot Quality (ESQ). This metric measures the value of a shot,

were it to be taken by the league-average player. ESQ is computed using a learned

least-squares regression function whose input includes spatial factors such as the loca-

tion of the shot attempt, and the proximity of defenders to the shooter. Furthermore,

the authors introduce EFG+, which is calculated by subtracting ESQ from EFG. EFG+

is thus an estimate of how well a player shoots relative to expectation, given the spatial

conditions under which the shot was taken.

A further metric, Spatial Shooting Effectiveness, was presented by Shortridge et al.

[175]. Using a subdivision of the court, an empirical Bayesian scoring rate estimator

was fitted using the neighbourhood of regions to the shot location. The spatial shooting

effectiveness was computed for each player in each region of the subdivision, and is

the difference between the points-per-shot achieved by the player in the region and

the expected points-per-shot from the estimator. In other words, it is the difference

between a player’s expected and actual shooting efficiency, and thus measures how

effective a player is at shooting, relative to the league-average player.

Lucey et al. [142] considered shooting efficiency in football. They make a similar

observation that the location where a shot is taken significantly impacts the likelihood

of successfully scoring a goal. The proposed model uses logistic regression to esti-

mate the probability of a shot succeeding—the Expected Goal Value (EGV). The input

features are based on the proximity of defenders to the shooter and to the path the

ball would take to reach the goal; the location of the shooter relative to the lines of

players in the defending team’s formation; and the location where the shot was taken

from. The model is empirically analysed in several ways. The number of attempted

and successful shots for an entire season is computed for each team in a professional

league, and compared to the expected number of goals that the model predicts, given

the chances. The results are generally consistent, and the authors are able to explain

away the main outliers. Furthermore, matches where the winning team has fewer shots

CHAPTER 2. SPORTS ANALYSIS SURVEY 56

at goal are considered individually, and the expected goals under the model are com-

puted. This is shown to be a better predictor of the actual outcome, suggesting that the

winning team was able to produce fewer—but better—quality chances.

2.4.2 Defensive Performance

Measures of defensive performance have traditionally been based on summary statis-

tics of interventions such as blocks and rebounds in basketball [127] and tackles and

clearances in football. However, Goldsberry and Weiss [90] observed that, in basket-

ball the defensive effectiveness ought to consider factors such as the spatial dominance

by the defence of areas with high rates of shooting success; the ability of the defence

to prevent a shot from even being attempted; and secondary effects in the case of an

unsuccessful shot, such as being able to win possession or being well-positioned to

defend the subsequent phase.

In order to provide a finer-grained insight into defensive performance, Goldsberry

and Weiss [90] presented spatial splits that decompose shooting frequency and effi-

ciency into a triple consisting of close-range, mid-range and 3-point-range values. The

offensive half-court was subdivided into three regions, and the shot frequency and effi-

ciency were computed separately for shots originating in each region. These offensive

metrics were then used to produce defensive metrics for the opposing team by compar-

ing the relative changes in the splits for shots that an individual player was defending

to the splits for the league-average defender.

An alternate approach to assessing the impact of defenders on shooting frequency

and efficiency was taken by Franks et al. [74], [75]. They proposed a model that

quantifies the effectiveness of man-to-man defense in different regions of the court.

The proposed framework includes a model that determines who’s marking whom by

assigning each defender to an attacker. For each attacker, the canonical position for

the defender is computed, based on the relative spatial location of the attacker, the

ball and the basket. A hidden Markov model is used to compute the likelihood of an

assignment of defenders to attackers over the course of a possession, trained using the

CHAPTER 2. SPORTS ANALYSIS SURVEY 57

expectation maximization algorithm [61]. A second component of the model learned

spatially coherent shooting type bases using non-negative matrix factorization on a

shooting intensity surface fitted using a log-Gaussian Cox process. By combining the

assignment of markers and the shot type bases, the authors were able to investigate

the extent to which defenders inhibit (or encourage) shot attempts in different regions

of the court, and the degree to which the efficiency of the shooter is affected by the

identity of the marker.

Another aspect of defensive performance concerns the actions when a shot is un-

successful, and both the defence and attack will attempt to rebound the shot to gain pos-

session. This was investigated by Maheswaran et al. [147] where they deconstructed

the rebound into three components: positioning; hustle and conversion, described in

subsubsection 2.1.3.2. Linear regression was used to compute metrics for player’s

hustle and conversion, and experimental results showed that the top-ranked players on

these metrics were consistent with expert consensus of top-performing players.

On the other hand, Wiens et al. [196] performs a statistical evaluation of the op-

tions that players in the offensive team have when a shot is made in basketball. Players

near the basket can either crash the boards—move closer to the basket in anticipation

of making a rebound—or retreat in order to maximise the time to position themselves

defensively for the opposition’s subsequent attack. The model used as factors the play-

ers’ distance to the basket, and proximity of defenders to each attacking player. The

experimental results suggested that teams tended to retreat more than they should, and

thus a more aggressive strategy could improve a team’s chances of success.

The analysis of defense in football would appear to be a qualitatively different

proposition, in particular because scoring chances are much less frequent. To our

knowledge, similar types of analysis to those presented above in relation to basketball

have not been attempted for football.

Open 2.7. There has been significant research into producing spatially-informed met-

rics for player and team performance in basketball, however there has been little re-

search in other sports, particularly football. It is an open research question whether

CHAPTER 2. SPORTS ANALYSIS SURVEY 58

similar spatially-informed sports metrics could be developed for football.

2.5 Visualisation

To communicate the information extracted from the spatio-temporal data, visualization

tools are required. For real-time data the most common approach is so-called live

covers. This is usually a website that comprise of a text panel that lists high-level

updates of the key events in the game in almost real time, and several graphics showing

basic information about the teams and the game. Live covers are provided by leagues

(e.g. NHL, NBA and Bundesliga), media (e.g. ESPN) and even football clubs (e.g.

Liverpool and Paris Saint-Germain). For visualizing aggregated information the most

common approach is to use heat maps. Heat maps are simple to generate, are intuitive,

and can be used to visualize various types of data. Typical examples in the literature

are, visualizing the spread and range of a shooter (basketball) in an attempt to discover

the best shooters in the NBA [89] and visualizing the shot distance (ice hockey) using

radial heat maps [164]. Two recent attempts to provide more extensive visual analytics

systems have been made by Perin et al. [161] and Janetzko et al. [181] .

Perin et al. [161] developed a system for visual exploration of phases in football.

The main interface is a timeline and small multiples providing an overview of the

game. A small multiple is a group of similar graphs or charts designed to simplify

comparisons between them. The interface also allows the user to select and further

examine the phases of the game. A phase is a sequence of actions by one team bounded

by the actions in which they first win, and then finally lose possession. A selected

phase can be displayed and the information regarding a phase is aggregated into a

sequence of views, where each view only focus on a specific action (e.g. a long ball

or a corner). The views are then connected to show a whole phase, using various

visualization techniques such as a passing network, a time line and sidebars for various

detailed information.

CHAPTER 2. SPORTS ANALYSIS SURVEY 59

In two papers Janetzko et al. [118], [181] present a visual analysis system for in-

teractive recognition of football patterns and situations. Their system tightly couple

the visualization system with data mining techniques. The system includes a range

of visualization techniques (e.g., parallel coordinates and scalable bar charts) to show

the ranking of features over time and plots the change of game play situations, at-

tempting to support the analyst to interpret complex game situations. Using classifiers

they automatically detected the most common situations and introduced semantically-

meaningful features for these. The exploration system also allows the user to specify

features for a specific situations and then perform a similarity search for similar situa-

tions.

Open 2.8. The area of visual interfaces to support team sports analytics is a devel-

oping area of research. Two crucial gaps are large user studies with the aim to (1)

explore the analytical questions that experts need support for, and (2) which types of

visual analytical techniques can be understood by experts?

2.6 Applicability of Approaches to Other Sports

The techniques and tools described in this survey are often motivated by a particular

sport. This begs the question as to how easily the techniques could be applied to

other team-based invasion sports. For the most part, our view is that the techniques

are generally applicable to most other invasion sports, however the peculiar rules and

dynamics of each sport will impact on the specifics of the implementation. In this

section, we provide a general discussion on some of the considerations inherent in

applying techniques to various invasion sports.

Broadly speaking, the spatio-temporal analytic techniques described in this survey

are designed to identify structure within spatio-temporal data, in particular persistent

formations and patterns. These are typically the manifestations of the tactical or strate-

gic behaviour of the players, and such behaviour is common to all invasion sports. This

objective, combined with other common features of all invasion sports suggest that the

CHAPTER 2. SPORTS ANALYSIS SURVEY 60

techniques can be broadly applied. Examples of the common features are: two oppos-

ing teams alternating between defence and attack; constrained playing area and match

duration; the concept of possession of the ball/puck as a means of scoring a goal; and

the physical and physiological constraints of nature and the players.

On the other hand, there are a qualitative differences between various invasion

sports that can impact how these techniques can be applied. Perhaps the most sig-

nificant difference between sports in this context, is the temporal segmentation of the

match into plays that occur between stoppages, and the frequency and variety of the

events that occur within each play. At one extreme are sports such as American foot-

ball, where each play is short, a single team is typically in possession for the duration

of the play, and a small number of events can occur, such as passes or tackles. This

can be contrasted with sports such as football, where a play may continue for an arbi-

trarily long time, possession may alternate between the two teams multiple times, and

multiple events can occur. However, in both American football and football, a play

will often end without a scoring opportunity, which is in contrast to basketball, where

scoring events are more frequent.

These qualitative differences between plays impacts on many of the analytic tech-

niques described herein. For example, in sports like football, hockey and rugby where

the possession of the ball can alternate multiple times within a play, spatial dominance

of the entire playing area, described in Section 2.1, is perhaps more significant than a

sport such as basketball where the defending team will often cede the back-court and

only seek to dominate the half-court below the basket they are defending, or even just

the area around the ball-carrier. Similarly, the network techniques described in Sec-

tion 2.2 rely on sequences of passing events within a play, and will be less applicable

to sports where such sequences do not exist, like American football.

The research surveyed in Section 2.3 typically apply standard data-mining tech-

niques to problems in the sporting domain and use spatio-temporal data as the primary

input data. The objectives of these works, such as event classification and prediction,

formation and group movement identification, and temporal segmentation would be

CHAPTER 2. SPORTS ANALYSIS SURVEY 61

applicable to any invasion sport. This appears to be an effective strategy, and we ex-

pect continued interest in this approach.

A final consideration is the frequency in which particular events occur. Many of

the techniques are predicated on the occurrence of events, most notably scoring events,

and the number of times which such events can occur varies between different sports.

Thus, a technique that applies to basketball—where fifty or more scoring events occur

per match—may be applicable in theory to football—where two or three scoring events

per match is normal—however in practice a significantly larger number of matches

must be available to effectively apply the technique.

2.7 Conclusion

The proliferation of optical and device tracking systems in the stadia of teams in pro-

fessional leagues in recent years have produced a large volume of player and ball tra-

jectory data, and this has subsequently enabled research efforts across a number of

communities to produce algorithms and tools to analyse this data. To date, a diversity

of techniques have been brought to bear on a number of problems described in this sur-

vey, however there is little consensus on the key research questions or the techniques

to use to address them. Thus, this survey sought to define a taxonomy of the types of

problems that have been considered, and to detail the research efforts aimed at address-

ing these problems. The following chapters describe several specific contributions that

address specific problems within this taxonomy.

Chapter 3

Classification of Passes in Football

Matches Using Spatio-temporal Data

In this chapter, we present a supervised machine learning framework that automati-

cally labels passes made during football matches with a rating of the quality of the

pass. A pass is an event where the player in possession of the ball kicks the ball to a

teammate with the intention that the receiver will be able to control the ball and there-

fore retain possession for the team. Passing the ball is a core skill, and the quality and

impact of the passes made by a player are a significant factor in evaluating the player’s

performance. Passes can be manually rated by an informed observer, such as a coach

or analyst, however this is a time-consuming task. Here, we present a framework for

automatically rating passes made during matches. This framework assigns an ordinal

rating to each pass made during a football match using a simple scale, e.g. Good, OK

and Bad.

The facility to automatically rate passes provides a number of benefits for the anal-

ysis of football matches. Pass rating is a useful metric in player evaluation, and can

be used to track the development of players, identify potential new recruits and anal-

yse the strengths and weaknesses of future opponents. Furthermore, given that a large

fraction of passes made are of average quality—in the experiments carried out for this

research, 83 % of passes were rated as OK by observers—the ability of identify only

62

CHAPTER 3. PASS CLASSIFICATION 63

the particularly good and poor passes would improve the efficiency of tasks such as

match video analysis.

State-of-the-art object tracking systems can capture the movement of players in

football matches and produce spatio-temporal trajectory data on the players with high

accuracy and frequency. Our intuition is that much of the information required to

evaluate a pass is inherent in the movement of the players and the ball. The challenge is

then to take the low-level trajectory signal as input and design a framework to produce

the high-level pass rating.

The framework presented in this chapter uses data structures and algorithms from

computational geometry to compute complex predictor variables, and then apply ma-

chine learning classification algorithms to produce an ordinal measure of passing per-

formance. The results show that this combination is promising, and may be applied to

problems in domains other than football.

The remainder of the chapter is structured as follows. In Section 3.2 we formalise

the problem and the framework. The feature functions that compute the predictor

variables used for the pass classification are described in Section 3.3 and the process for

obtaining labelled examples in Section 3.4. The learning algorithms used are described

in Section 3.5. The experimental setup and results are reported in Section 3.6, and an

analysis of the results is provided in Section 3.7. A summary of the current state and

future directions for research in this area is contained in Section 3.8.

3.1 Related Work

The work described in this chapter clearly fits into the research surveyed in Chapter 2,

however we believe that the approach of using complex geometric structures to com-

pute predictor variables for learning algorithms is novel. In this section, we point out

several contributions that are directly related to this research.

Taki and Hasegawa [183] define a geometric subdivision called a dominant region,

similar to a Voronoi region [14], that subdivides the playing-area into cells “owned”

CHAPTER 3. PASS CLASSIFICATION 64

by players such that the player can reach all areas of their cells before any other player.

The dominant region considers the direction and velocity of the players. This concept

is further developed by Fujimura and Sugihara [84] and Nakanishi et al. [153] who

define efficient approximation models for calculating the dominant region.

Gudmundsson and Wolle [95] consider a related problem of computing the passing

options that the player in possession has, based on the areas of the playing-area that

are reachable by the other players. Kang et al. [120] uses a simplified motion model

to compute a similar subdivision in order to define a set of performance measures for

assessing player’s passing and receiving performance.

Recent efforts using machine learning to extract information from spatial data are

detailed in Section 2.3. Perhaps the most similar are those by Beetz et al. [13] who

use decision tree learning to identify attributes of passes, and that of Maheswaran et

al. [146] who used a classification algorithm on geometric input features to predict the

outcome of a rebound in basketball.

Several recent application-focused papers have investigated passing as a measure

of performance. Power et al. [165] provides an analysis of impact of passing on team

performance. A logistic regression classifier was trained to obtain two binary response

variables: risk and reward. The model used hand-crafted predictor variables, and the

ground-truth response variables were obtained from the context and outcome of the

possession in which the pass occurred. The classifier was then applied to all passes

made during a season to facilitate player and team performance analysis. The same

model was also used as a component of the analysis of the performance of Leicester

City’s premiership-winning season of 2015–2016 in Ruiz et al. [171].

3.2 Preliminaries

We formally define the problem and the solution framework in this section. Given

input of the player movement trajectories and a list of the events during a match as

defined in Section 1.2, then we wish to apply a label from an ordered set, such as

CHAPTER 3. PASS CLASSIFICATION 65

tp2

tp1

tp3

tp4

tp5
tp6

x1
x2
...
xn

Event: ek

Good

Trajectories: Tr

Predictor Vector: x(i)

p4p5

Response Variable: y (i)

Feature
Functions

Classifier

Figure 3.1: The high-level framework for pass classification. The first component,
described in Subsection 3.2.1, produces a vector x for each pass from the raw input.
The second component is the classification function h.

{Good,OK,Bad}, to each pass made. The overall objective is to find a classification

function that, for each pass made, outputs a label for the pass.

The approach that we selected was to use supervised machine learning algorithms

to learn a classification function to produce the ratings. These algorithms are designed

to learn the required classification function from a set of training examples where the

required output is already known: the ground-truth labels. In this case the ground-

truth is a rating for each pass that has been made by human observers. The learning

algorithm accepts the training examples and corresponding ground-truth labels and

determines a classification function whose output labels are consistent with the ground-

truth labels.

The input to both the learning algorithm and resulting classification function is

a vector of numeric values that ideally contains sufficient information to accurately

rate each pass event. However, the raw input trajectory and event data is not suitable

as input into the classification function, and thus a preprocessing step is required to

compute a predictor vector from the input for each pass event. Thus, the proposed

framework has two components, and a high-level digram is provided in Figure 3.1.

There are many supervised machine learning algorithms designed to learn such

classification functions, and each algorithm may have parameters known as hyper-

parameters. By varying the choice of learning algorithm and hyper-parameters, many

CHAPTER 3. PASS CLASSIFICATION 66

candidate classification functions can be computed, and an objective method for com-

paring them is required. We use an evaluation function that can score the performance

of the classification function on a set of test examples where the ground-truth labels

are available. In this way, different classification functions can be compared and the

best performing candidate can be identified.

In this section, we outline the structure of the framework by formalising the inputs

and output of each component. First, we describe how the input trajectory and event

data is preprocessed into vectors of predictor variables that are input to the classifica-

tion function. Next, we describe the evaluation functions used to compare different

classification functions. Finally, using the notation in the preceding paragraphs, we

present a formal statement of the problem.

3.2.1 Predictor Variables

The raw trajectory and event data is used in a preprocessing step to compute a predictor

vector for each pass made. The values contained in this vector are intended to contain

sufficient discriminative information so that it is possible to train a classifier to make a

good prediction of the quality of the pass. Each component of the predictor vector is a

predictor variable and is computed using a feature function. The predictor variable for

a pass can (in principle) depend upon all the previous and future events of the match

and period in which the pass occurs. Similarly, a predictor variable can depend on the

current location of all players, and possibly their previous and future locations.

Using the notation defined in Section 1.2, let φj be the feature function that pro-

duces the j-th predictor variable for a Pass event:

φj : M ×W × S × T × E → R

Feature function φj(m,w, s, Tm,w, Em,w) computes a predictor variable for the Pass

event that occurs at time-stamp s of period w of match m, using the set of trajectories

Tm,w and event log Em,w for match m and period w.

CHAPTER 3. PASS CLASSIFICATION 67

It is convenient to work with a vector of predictor variables for the i-th pass event:

x(i) =

φ1(m,w, s, Tm,w, Em,w)
φ2(m,w, s, Tm,w, Em,w)

...
φn(m,w, s, Tm,w, Em,w)

x(i) ∈ Rn

Finally, in order to train the learning algorithms, example labels are required for

each class as response variables. The response variable is drawn from an ordered

set e.g. Y = {Good,OK,Bad}. Combining the response variable vectors with the

corresponding predictor variables gives a matrix of training examples.

X =

(x(1))>

(x(2))>

...
(x(m))>

 y =

y(1)

y(2)

...
y(m)

X ∈ Rm×n y ∈ Y m

Section 3.3 gives a detailed discussion of the feature functions used in the frame-

work.

3.2.2 Learning Algorithm and Classification Function

Given a training set of pass events X and labels y, the learning algorithm is run to

determine a parameterisation θ that characterises a classification function

hθ : Rn 7→ Y.

The parameterisation θ should be optimal in the sense that the corresponding hθ

produces output labels that are close to the ground-truth. Each algorithm has an as-

sociated cost function J(X,y, θ), and will select the parameterisation, θ̂ ∈ Rm such

CHAPTER 3. PASS CLASSIFICATION 68

that

θ̂ = argmin
θ

J(X,y, θ).

This parameterisation characterizes the classifier function hθ̂(x) that will predict the

response variable y(i), given the input vector x(i).

Section 3.5 details the learning algorithms used in the experiments.

3.2.3 Evaluation Functions

Each learning algorithm and hyper-parameterisation run on a training set of data will

produce a classification function hθ, and we can thus compute a set of candidate clas-

sification functions H . Given such a set H , we need a method to compare how well

each function performs the task of predicting the ground-truth label for each pass, and

for this we define an evaluation function.

Consider a vector of m ground truth labels y for a given input X and the labels ŷ

computed by hθ̂ on the same input X. An evaluation function ρ : Y m × Y m 7→ R

compares vectors to compute a measure of the similarity between the vectors. An

evaluation function ρ can thus be used to compare classification functions to find the

function that induces the optimal score for the evaluation function within the set.

3.2.4 Problem Statement

Using the framework and notation described above, we define a function h : M×W ×

S × T × E ×MT ×ME 7→ Y for the overall task. Thus, given a time-stamp, period

and match and the full input data, h produces a label y for the pass. We wish to find

the “best” h within the set of functions that we search, and thus we are now able to

formally define the decision problem.

CHAPTER 3. PASS CLASSIFICATION 69

PROBLEM PASS RATING

Instance: The set of player trajectories T , the set of match events E , the trajec-

tory and event mapping setsMT andME , a labelling y of ground-

truth ratings for each pass event, an evaluation function ρ, and a

threshold value t.

Question: Is there a function ĥ that, given an instance as input, computes a

rating for each pass ŷ, such that ρ(y, ŷ) > t?

3.3 Predictor Variables

The objective of the feature engineering task is to extract information from the spatio-

temporal match data so that the classifiers are able to make accurate inferences about

the quality of the passes made in a match. To place this in context, consider how an

informed observer of a football match would make an assessment about the quality of

a pass.

At a basic level, the observer would consider the fundamentals of the pass, such as

the distance and speed of the pass and whether the intended recipient of the pass was

able to control the ball. These are the basic geometric aspects of the pass, but even at

this level, the observer is required to make some inferences, such as who the intended

recipient of the pass is. They would also likely consider the context of the match state

when the pass was made. For example, was the passer under pressure from opposition

players? To make such assessments, the observer would consider the positions of

the players and the speed and direction that they were moving in, and the observer

would make assumptions about whether the defending players are physically able to

influence the pass by pressuring the passer or intercepting the pass. The observer thus

has a mental model of the physiological capabilities of the players, and will consider

this in their estimation of the quality of a pass made.

At a higher level, passes are not made simply to move the ball from one player to

a teammate, but also to improve the tactical or strategic position of their team. Passes

can be made to improve the position of the ball, typically by trying to move the ball

CHAPTER 3. PASS CLASSIFICATION 70

closer to the opponent’s goal in order to have an opportunity to score. Passes may also

be made to improve the match state by moving the ball from a congested area of the

playing-area to a location where the team in possession has a numerical or positional

advantage. Meanwhile, the opposition will be actively trying to reduce the options

of the player in possession to make passes. Thus, the match observer would need to

consider the tactical and strategic objectives of the passer, and thus would have an

understanding of the tactics and strategies employed by the player and team, and apply

them to their estimate [197]. Likewise, the observer would consider the defensive team

and their strategies and tactics.

A football match can also be viewed as a sequence of events occurring at particular

times. The event-type that we are concerned with, Pass, can thus be viewed as part of a

sequence. This sequence can be subdivided in various ways, for example by unbroken

sub-sequences of events where a single player or team is in possession of the ball, or

by a sub-sequence of events that occur between stoppages in play such as fouls, goals

or injuries. When assessing the quality of a pass, the observer may consider the context

of the pass in the sequence of events.

Finally, the observer may also consider the opportunity cost of the pass. By making

the pass, the player forsook the other options available, such as passing to other players,

dribbling or shooting.

For the trained observer, synthesising all this disparate information and making a

prediction is a mental exercise that can be done in a matter of seconds. The problem

described in this chapter is to replicate this in a computational process.

3.3.1 Feature Functions

Feature functions are used to compute the predictor variables that are input to the clas-

sifier. The feature function φj(m,w, s, Tm,w, Em,w) outputs the j-th predictor variable

for the i-th pass event. The predictor variables are divided into the following categories

in a manner consistent with our analysis of the types of information discussed above.

The full list of features is provided in the Appendix.

CHAPTER 3. PASS CLASSIFICATION 71

Basic Geometric Predictor Variables

The basic geometric predictor variables are derived from the basic orientation of the

players and ball within the playing-area. The feature functions for these predictor

variables implement simple geometric operations such as determining angles between

points, measuring Euclidean distances, and calculating velocity of objects over a time

interval. Typical examples of basic features would be: the distance of a pass; the

velocity of the pass; and the angle of the pass relative to the direction the passer is

facing.

Sequential Predictor Variables

Sequential predictor variables are constructed from the event sequence data. Currently

three types of sequences are modelled: player possession, where a single player is in

possession; team possession, where players from the same team are in uninterrupted

possession; and play possession, where events between stoppages are grouped in a

sequence. Examples of these predictor variables are the ordinal position of the event

in a sequence, the duration of the sequence, and the event that is the final outcome of

the current sequence.

Physiological Predictor Variables

Physiological predictor variables incorporate some aspect of the physiological capa-

bilities of the players, generally how quickly they can reach a given point. Inherent in

these predictor variables is a motion model that simulates the physical capabilities of

the players. This is discussed in detail in Subsection 3.3.2.

Strategic Predictor Variables

Strategic predictor variables are designed to provide some information about strategic

elements of a football match. The approach taken was to design predictor variables

based on the dominant region structure proposed in [183], see Subsection 3.3.3.

CHAPTER 3. PASS CLASSIFICATION 72

3.3.2 Player Motion Model

The physiological and strategic features used in the model are based to some degree on

an estimate of how quickly a player currently travelling at a given speed and direction

can reach a given point. In particular, if a player can reach a point before any other

player, then that player is said to dominate the point. This notion is the basis for the

physiological and strategic predictor variables we have defined in our model. In order

to determine the time required to reach a given point, a motion model of the player is

required.

The motion model is defined as a function g for a player p that takes as arguments:

the coordinates of a point (x, y) ∈ R2, the trajectory τp of player p, and the time-step s

at which to determine the distance. The function returns the time t ∈ R≥0 it would take

for the player to reach the point. As this time is dependent on the existing direction

and velocity of the player, these factors are extrapolated from the player’s trajectory at

time-step s.

g(x, y, τp, s) = t (3.1)

Gudmundsson and Wolle [95] propose three simple motion models to approximate

the reachable region for a player, that is, the region a player can reach in a given time.

These models discretize the reachable region by introducing a fixed set of time-steps

T where the boundary of the reachable region is computed. Thus, for each t ∈ T,

the motion model contains a closed boundary curve that surrounds the initial starting

point of the player. Furthermore, each curve is approximated by an n-sided polygon.

The three motion models considered are based on a circular boundary, an elliptical

boundary and a boundary constructed by sampling from the trajectory sequences, see

Figure 3.2.

When computing the reachable region, the time that it would take for a player po-

sitioned at a certain point to reach another point is determined by a number of factors.

The maximum achievable velocity of the player is a factor, as is the speed and direction

CHAPTER 3. PASS CLASSIFICATION 73

(a) Circle (b) Ellipse (c) Data-driven

Figure 3.2: Reachable region boundaries produced using different motion models. The
grey polygons surrounding the player are the boundary of the area that the player can
reach in a given time, and are based on the speed and direction that the player is mov-
ing.

the player is heading.

The motion models are used in several of the feature functions, in particular those

based on the dominant region, below. We evaluated all three motion models in [95],

however since the variance between the models is small, particularly for small dis-

tances such as on a football field, we consider only the ellipse motion model here, see

Figure 3.2.

For more details about the motion models, we refer the interested reader to [95].

3.3.3 The Dominant Region

Taki and Hasegawa [183] presents the dominant region as a dynamic area of influence

that a player in a football match can exert dominance over, where dominance is de-

fined as being the regions of the playing-area that the player is able to reach before any

other player. We propose to use the dominant region as a measure to approximate the

strategic position of a team at a given point in time, and to subsequently construct fea-

ture functions based on it. Furthermore, we use the dominant region to also construct

predictor variables that model the pressure exerted on the player in possession of the

ball by opposition players in close proximity.

CHAPTER 3. PASS CLASSIFICATION 74

Intuitively, these appear to be useful predictors for the task of rating passes. The

passing player wants to put the ball at a point where the intended recipient can reach

it first, and this is, by definition, in the receiving player’s dominant region. Thus,

the proportion of the playing-area that the team in possession dominates is a factor in

the passing options of the passing player. Similarly, the size of the dominant region

surrounding the passing and receiving players provide information about the pressure

the player is under.

The playing-area can be partitioned into dominant regions, each dominated by a

particular player. It is thus conceptually similar to the Voronoi region [14], the differ-

ence being the function that determines the region that a particular point belongs to: the

function for a Voronoi region is usually the Euclidean distance; and for the dominant

region is the time it takes for a player to reach a given point.

The dominant region is defined in [183] by the following equation for a player pi

at time-step s, where g is defined in Equation (3.1).

D(pi, s) = {(x, y) ∈ R2 | g(x, y, τpi , s) ≤ g(x, y, τpj , s) for j 6= i, τpi , τpj ∈ T , s ∈ S}

(3.2)

The subdivision of the dominant regions for all players will thus partition the

playing-area into cells. An approximate version can be seen in Figure 3.3. How-

ever, (x, y) ∈ R2 is continuous, and there is currently no algorithm available to ef-

ficiently compute this continuous function. For simple distance functions, such as

Euclidean distance, the dominant region can be computed efficiently [73]. However,

in our setting, the distance function is more complex. In fact, the dominant region of

a player may not even be a single connected region [183]. Computing the intersection

of surfaces in three dimensions, as required in Equation (3.2) is non-trivial and time-

consuming. As such, we use a discrete algorithm to compute an approximation of the

dominant region, presented in Subsection 3.3.4. Taki and Hasegawa [183] and Nakan-

ishi et al. [153] both present approximation algorithms where (x, y) is approximated

by a discrete grid Y ⊂ R2, and the dominant regions are thus computed for all points

CHAPTER 3. PASS CLASSIFICATION 75

Figure 3.3: Dominant regions constructed using ellipse motion model. The playing
field is subdivided into regions surrounding each player. For each player, the sur-
rounding region is the area of the playing field that the player can reach before any
other player. Note how the player’s speed and direction can induce concave bound-
aries, such as the boundary around “Red-25”, top-right.

in Y .

Ten of the feature functions constructed are based on the dominant region and the

motion model. Examples of these feature functions are the dominant region when the

player in possession passes; the net change in dominant region area between when a

pass is made and when it is received; and the pressure the passer is under, defined by

the area of the passer’s dominant region. A brief description of the feature functions

is provided as an appendix. The intuition is that the computed predictor variables will

be important to the classifier, as they provide domain-specific information about the

physiology and strategy of the players; and this information would not otherwise be

available to the classifier. We investigate the importance assigned to these features by

the classification algorithms in the experiments, and provide an analysis of the results

in Subsection 3.7.2.

CHAPTER 3. PASS CLASSIFICATION 76

3.3.4 Discrete Algorithm to Approximate Dominant Region

This section describes a discrete algorithm for efficiently computing an approximation

of the dominant cell arrangement of the playing-area at a given point in time. The

algorithm, outlined in Algorithm 1, has three steps. First, for every pairwise combi-

nation of players, the intersection points are determined between the reachable region

polygons for each time-step. In the second step, the intersection points are used to pro-

duce a reachable boundary between each pair of players. This is done using a modified

version of Kruskal’s minimum spanning tree algorithm [125], constrained so that the

degree of every vertex is at most two, and thus the output is a set of one or more discon-

nected paths that span the intersection points, see Figure 3.4. The third step constructs

the smallest enclosing polygon around each player from the boundaries, and this is the

player’s dominant region.

Algorithm 1 Discrete algorithm to compute the approximate dominant region at a
given time s.
Require: P ← {po, · · · , pn} . Players
Require: T← {t, · · · , tmax} . Time-steps for boundaries

1: M ← ∅ . Set of MSPs
2: D ← ∅ . Set of dominant regions
3: for all pairs of players (pi, pj) ∈ P × P do
4: I ← ∅ . The set of intersection points
5: for all time-steps t ∈ T do
6: x← INTERSECTIONPOINTS(pi, pj , t) . Compute intersection points
7: I ← I ∪ {x}
8: end for
9: m← MSP(I) . Compute “minimum spanning path” boundary

10: M ←M ∪ {m}
11: end for
12: for all players p ∈ P do
13: d← DOMINANTREGION(p,M) . Compute dominant region for p as smallest

enclosing polygon of boundaries
14: D ← D ∪ {d}
15: end for
16: return D . The set of dominant regions for all players

In the following paragraphs we detail the three steps of the algorithm. The first

step is to compute the intersection points between the reachable regions of each pair of

CHAPTER 3. PASS CLASSIFICATION 77

players. The intersection points at time s are determined using a line segment intersec-

tion algorithm [14]. Each intersection point vj has a time-step attribute t(vj) denoting

the time-step of the reachable region polygon that it was constructed from. In most

cases, there will be zero or two intersection points between the polygons however de-

generate cases exist where there are one, or three or more intersection points [110].

The intersection points V = {v0, v1, . . . , vm} between the pair of players for all time-

steps are collected. A graph G = (V,E) is constructed using V as vertices and adding

edges to E between two points if either: the time-step of the two vertices are adjacent;

or the two vertices have the same time-step and this time-step is the minimum of all

intersection vertices:

E = {(vi, vj) | (t(vj) = t(vi) + 1) ∨ (t(vi) = t(vj) = min({t(vk) | k ∈ V }))}.

The second step in the algorithm takes the graph G as input and computes the

reachable boundary between each pair of players. G contains edges between each in-

tersection point for consecutive time-steps. Typically each vertex in V will have degree

four, with edges to two vertices whose time-step is immediately prior to the time-step

of the current vertex, and two edges to the vertices whose time-step is immediately

subsequent. The objective of this step is to prune the graph so that each vertex in the

graph has degree no greater than two, and that the edges retained will be the shortest

edges. The pruned graph will thus be a path. This is performed using a modified ver-

sion of Kruskal’s algorithm [125]. The algorithm is modified so that an edge (vi, vj)

is added to the output tree only if deg(vi) < 2 and deg(vj) < 2. This modification

means that the algorithm will return “spanning paths”, i.e. the set of paths from the

input graph that span the connected components of the graph. In most cases there will

be a single path, see Figure 3.4. If there are two or more paths, select the path that

intersects the bisector between the sites of the two players. The graphs for each pair

of players are collected into a single graph GMSP = (VMSP, EMSP). The edges in this

graph are the line segments that form the reachable boundaries of each player.

CHAPTER 3. PASS CLASSIFICATION 78

Figure 3.4: The intersection of time-step polygons defines the boundary between
player’s dominant regions, computed using the ellipse motion model. The boundary
contains the points that both players are able to reach at the same time.

The final step of the algorithm is to compute the dominant region for each player by

collecting the line segments that comprise the boundaries the player has with all other

players, and then determining the polygon that encloses the site of the player. The al-

gorithm shoots a ray in an arbitrary direction from the site of the player and locates the

closest intersecting line segment. The algorithm then collects the closest line segments

by repeatedly “turning left” and walking to the next intersection with another line seg-

ment. This loop stops when the original intersection point is again encountered again.

As such, this algorithm walks around the innermost polygon surrounding the player’s

site, and this polygon defines the player’s dominant region. The dominant regions of

all players induce a subdivision of the playing-area, as required, see Figure 3.3.

The time complexity of the discrete algorithm to compute the approximate dom-

inant regions is O(n2), where n is the number of line segments on the boundary of

all of the m reachable regions used in the approximation. The following is a sketch

of the computational complexity of the approximation algorithm. The time and space

complexity of the first two steps of the algorithm is O(n log n). However, the com-

plexity includes a large constant of
(
22
2

)
as these steps must be carried out pairwise for

all 22 players. The worst-case complexity of the third step (determine the enclosing

CHAPTER 3. PASS CLASSIFICATION 79

polygon) is quadratic in the number of line segments in the player motion model. For

each line on the polygon boundary, we need to compute the closest intersecting line

segment which is done by computing the intersection point for the line segment with

every other line segment, which has linear complexity. The number of lines on the

polygon boundary is at most n thus yielding the quadratic complexity for this step, and

for the overall algorithm. However, in practice this value is much smaller than n. In

particular, the polygons of reachable regions will only intersect at zero or two points

in most cases, rather than some fraction of n, hence resulting in a total running time of

O(n log n) for most practical instances.

3.4 Label Data

The supervised machine learning algorithms used in the experiments learn from train-

ing examples that have been labelled with the ground-truth values; in this case a rating

of each pass’ quality. This section describes the process used to capture and validate

the label data.

3.4.1 Labelling Process

The labels used to train the classifiers were created by two human observers watching

video footage of the matches. Each observer separately watched video clips of the

passes and assigned a rating to each pass using a six-point Likert scale consisting of

ratings Very Good, Good, Marginally Good, Marginally Bad, Bad and Very Bad. The

experiments, described in Section 3.6 were carried out with two labelling schemes: the

first using the full six-point scale; and the second using a three-point scale where the

ratings were aggregated into the labels: Good, OK and Bad.

The video clip for each pass included two seconds of footage preceding and fol-

lowing the pass event. The intention was to provide sufficient context to rate the pass,

and to ensure that each pass was rated in isolation, but not to include longer-term con-

siderations such as the eventual outcome of a sequence of possession.

CHAPTER 3. PASS CLASSIFICATION 80

The candidate passes were selected using events labelled as Pass in the Event Log,

see Section 1.2, and includes both successful and unsuccessful passes (i.e. where the

ball did not reach the intended receiver). This approach clearly adds an additional layer

of subjectivity in which movements of the ball are labelled as passes, as the player’s

intention is unknown in terms of whether the movement was indeed a pass and also

who the intended recipient was. In contrast, the approach taken in Power et al. [165],

and Ruiz et al. [171] was to automatically label the passes using a function on the

context that the pass was made on. Such an approach would eliminate the subjective

nature of the labelling process described here, however would introduce a different

source of error in that the computed labels may not adequately capture passing player’s

intention. An analysis of the correlation between the two labelling methods would be

interesting to consider in future work.

When evaluating the pass, the rater was asked to consider the following questions

when determining the rating to apply.

• What is the technical quality of the pass?

• Did the pass reach the intended receiver?

• Was the pass made with appropriate speed and accuracy?

• Was the receiver able to control the ball without having to change direction or

speed?

• Did the pass improve the field position of the team?

• Was the pass risky or lucky in any way?

• Did the pass change the relative pressure of the player in possession? i.e. was

the passer under more or less pressure from the opposition than the receiver?

• Was the pass the best option that the player had? For example, would the player

have been better to make an alternative pass, dribble the ball, or shoot?

CHAPTER 3. PASS CLASSIFICATION 81

3.4.2 Process Validation

The classification process was designed using principles and techniques described by

Lincoln and Guba [137]. The intention was to produce a robust set of labels created

using a consistent process.

Prolonged engagement

Each observer viewed video clips of over 2,900 passes, consistent with Lincoln and

Guba’s technique of persistent observation. The intention was to ensure that the ob-

servers would identify characteristics that were most relevant to the quality of a pass.

Member checking

After two matches had been labelled, the difference between the labels assigned by

the observers was calculated. The passes where the distance between the two ratings

was two or more were then selected. The observers then viewed the footage of these

passes together and discussed their reasoning. The purpose of this was to explore the

characteristics of a pass that impacted the classifications, and was intended to ensure a

consensus on the significant characteristics.

Triangulation

The labelling task was carried out by two observers so that the labels used in training

the classifier did not rely on a single source. The two labels for each pass were com-

pared, and where there was not agreement, the label nearest the middle of the scale was

selected. The rationale for this decision was to produce a conservative set of labels.

3.4.3 Analysis of Classification Results

The ratings made by the observers are subjective, and it is natural to expect some

disagreement between raters in their labels. Cohen’s kappa [57] is a heuristic measure

of agreement between raters that takes into account the possibility that ratings can

CHAPTER 3. PASS CLASSIFICATION 82

agree by chance, with a value of 0 denoting chance agreement and 1 denoting perfect

agreement. Formally, Cohen’s kappa is defined as:

κ =
po − pe
1− pe

Here, po is the fraction of observations where the raters were in agreement, and pe

is the fraction of observations that could be expected to agree by chance.

The ratings made by the two observers yielded a Cohen’s kappa of 0.393 on the

six-point scale which indicates a moderate level of agreement. The value of the kappa

for the three-point scale was 0.697, which indicates a high level of agreement, see

kappa between Annotator 1 and Annotator 2 in Table 3.4. Although, Cohen’s kappa

does not have a statistical significance, it suggests that the observers produced similar

outcomes.

3.5 Learning Algorithms

The pass rating task is a classification problem and we evaluate several supervised

machine learning algorithms for this task. The learning algorithm computes a classifi-

cation function hθ(x(i)) that can predict the ground truth variable y(i) for a given input

vector of predictor variables, x(i). The algorithm is trained on the labelled example

data with the objective of learning a parameterisation θ̂ such that the prediction error

measured by the function J is minimised.

The nature of the pass classification problem, and properties of the data informed

the choice of learning algorithms that were selected. The distribution of example data

used in our experiments is unbalanced amongst the classes. The majority of examples

were clustered towards the middle of the scale, see Tables 3.1(b) and 3.1(a), and thus

learning algorithms that are robust to class imbalance were selected.

The rating labels that we wish to predict for each pass have a natural ordering,

and thus the classification problem can be considered as an ordinal classification prob-

lem, or using a weaker formulation as a multinomial classification problem where the

CHAPTER 3. PASS CLASSIFICATION 83

ordering of the labels is ignored.

We examined two support vector machine (SVM) classifiers—c-SVC and ε-SVR;

the RUSBoost classifier; the multinomial logistic regression (MLR) with three differ-

ent cost functions; and the ordered logistic regression classifier.

The intention was to perform the experiments using diverse types of learning algo-

rithms: the logistic regression classifiers attempt to model the probability distribution

of the labels, given the input predictor variables [148], [149]; SVM is a maximum mar-

gin classifier [189] and RUSBoost is an ensemble method that utilises sampling and

boosting of weak classifiers [172].

Moreover, the SVM algorithms accept a per-class weight vector as a hyperparam-

eter for dealing with imbalanced classes, and RUSBoost is designed to mitigate the

effect of class imbalance, and thus were considered to be appropriate choices for the

experiments.

Two of the chosen classifiers are ordinal: ordered logistic regression and the ε-SVC

variety support vector machine. The remaining classifiers are multinomial classifiers.

For multinomial logistic regression, the cost function J is computed as the sum of

an empirical risk term and a regularization term. We evaluated three models learned

using different empirical risk functions. The function (3.3) is the risk function that

minimises the error between the observed values and the predicted values calculated

using the maximum likelihood estimation of θ. The arithmetic (3.4) and quadratic (3.5)

risk functions are intended to perform better under class imbalance conditions by com-

puting the per-class risk [138]. The arithmetic risk takes the sum of the per-class error,

whereas the quadratic risk uses the root of the sum of the squared errors for each class.

CHAPTER 3. PASS CLASSIFICATION 84

fθj(x
(i)) = log

eθ
>
j x(i)

∑k
l=1 e

θ>l x(i)

RL(X,y, θ) = − 1

m

[
m∑

i=1

k∑

j=1

I[{y(i) = j}]fθj(x(i))

]
(3.3)

RA(X,y, θ) = −1

k

k∑

j=1

[
1

mj

m∑

i=1

I[{y(i) = j}]fθj(x(i))

]
(3.4)

RQ(X,y, θ) = −

√√√√1

k

k∑

j=1

[
1

mj

m∑

i=1

I[{y(i) = j}]fθj(x(i))

]2
(3.5)

J(X,y, θ) = R(X,y, θ) + λ‖θ‖p (3.6)

θ̂ = argmin
θ

J(X,y, θ) (3.7)

Here, the function I[·] is the indicator function that accepts a logical proposition as

argument and returns 1 if true, and 0 if false. The cost function J contains a regular-

ization term, and we evaluate regularization terms based on the `1- and `2-norms in the

experiments, i.e. p ∈ {1, 2} in Equation (3.6). Moreover, the `1-norm will induce a

sparse parameterisation of θ [119], and we investigate the predictor variables whose

corresponding value in θ is non-zero as a measure of the importance of the predictor

variable.

3.6 Experiments

The experiments were designed to address the following questions:

1. Is it possible to find a classification function and a set of predictor variables to

accurately predict the quality of a pass?

2. To what extent did the predictor variables computed using algorithms and data

structures from computational geometry contribute to the performance of the

classifier?

CHAPTER 3. PASS CLASSIFICATION 85

Table 3.1: Class frequencies for (a) three- and (b) six-class labelling schemes

(a) three-class

Class Rel. Freq. Count
Good 0.067 195
OK 0.830 2,433
Bad 0.104 304

(b) six-class

Class Rel. Freq. Count
Very Good 0.008 24
Good 0.058 171
Marginally Good 0.624 1,829
Marginally Bad 0.206 604
Bad 0.088 257
Very Bad 0.016 47

3.6.1 Setup

The objective of the experiments was to learn an optimal vector of parameters θ̂ that

yield a classification function hθ̂(x) such that the classification function makes correct

predictions on unseen examples.

The setup for the experiments was as follows. The training sample X and corre-

sponding labels y were randomly permuted and then split into a training set of 80 % of

the examples, XTRAIN and yTRAIN, and a test set of the remaining 20 %, XTEST and

yTEST. Each predictor vector x(i) in the training examples had 114 components, 10 of

which were derived from the dominant region arrangement.

A set of candidate classifier models was defined by performing a grid search over

a range of hyper-parameters to the classifier algorithm.

Each model was then trained on the training set using tenfold cross validation, and

then evaluated by using the model to make predictions yPRED on the test set predictor

vectors XTEST. The predicted labels yPRED were compared with the ground truth

tables yTEST and the model evaluation metrics were computed using the following

functions: accuracy, precision, recall, F1-score, mean absolute error (MAEµ), macro-

averaged mean absolute error (MAEM), mean squared error (MSEµ), macro-averaged

mean squared error (MSEM). The functions for precision, recall and F1-score were

also macro-averaged, i.e. the metrics were calculated on a per-class basis, and a simple

mean of the per-class values was used as the metric. The MAE and MSE evaluation

functions are ordinal in that they compute the distance in the ordered set Y between

y and ŷ, and will penalise misclassified predicted values that are a further from the

CHAPTER 3. PASS CLASSIFICATION 86

Table 3.2: Summary evaluation metric results for experiments using (a) three- and (b)
six-class labelling schemes. The greatest obtained value for each column is shown in
bold.

(a) three-class

Classifier Accuracy Precision Recall F1-score MAEµ MAEM MSEµ MSEM

MLR 0.902 0.812 0.717 0.748 0.101 0.893 0.107 0.980
MLR-Arith 0.898 0.847 0.802 0.737 0.105 0.670 0.113 0.820
MLR-Quad 0.895 0.847 0.802 0.732 0.109 0.670 0.117 0.820
c-SVC 0.898 0.882 0.818 0.741 0.106 0.609 0.111 0.728
ε-SVR 0.898 0.854 0.686 0.746 0.105 0.983 0.109 1.070
RUSBoost 0.838 0.676 0.864 0.759 0.169 0.469 0.182 0.606
Ordered Logit 0.888 0.741 0.690 0.714 0.116 0.971 0.122 1.054

(b) six-class

Classifier Accuracy Precision Recall F1-score MAEµ MAEM MSEµ MSEM

MLR 0.704 0.581 0.407 0.461 0.326 4.041 0.399 5.248
MLR-Arith 0.697 0.541 0.426 0.442 0.337 3.924 0.412 4.773
MLR-Quad 0.684 0.483 0.426 0.444 0.354 3.924 0.443 4.782
c-SVC 0.693 0.630 0.454 0.437 0.334 3.809 0.394 4.834
ε-SVR 0.695 0.639 0.394 0.447 0.335 4.287 0.388 5.571
RUSBoost 0.572 0.360 0.484 0.402 0.575 3.811 0.908 5.772
Ordered Logit 0.693 0.576 0.377 0.454 0.339 4.602 0.409 6.421

ground-truth value [9].

Each experiment was repeated ten times with a different random split between the

training and test sets, and the final evaluation metrics were calculated as the mean over

the ten iterations.

3.6.2 Results

The results of the three-class experiments are summarised in Table 3.2(a) and the six-

class results in Table 3.2(b). For the first four evaluation metrics, the values are in the

range [0, 1] and a larger score indicates better performance. The MAE metrics compute

results in the range [0, |Y | − 1] and the MSE metrics compute results in the range

[0, (|Y | − 1)2]. For both MSE and MAE, smaller values indicate better performance.

The evaluation metrics for both the three- and six-class experiments show that the

classifiers produce broadly similar results, with the exception of RUSBoost. The best

CHAPTER 3. PASS CLASSIFICATION 87

RUSBoost classifier significantly outperformed all the other classifiers under the re-

call metric and underperformed when using the accuracy and precision metrics. Con-

versely, the other classifiers produced better precision than recall scores.

Interestingly, the ordinal classifiers—ordered logistic regression and ε-SVR—did

not outperform on the ordinal evaluation metrics. On the other hand, the ordinal clas-

sifiers had similar scores for the other evaluation metrics, with the exception of recall,

where they performed worse.

3.7 Analysis

In this section, we analyse the results of the experiments to validate the approach taken

and identify any limitations that may have impacted the results. The observations in

this section are predominantly based on the experiments carried out using the three-

class label scheme. The analysis generally applies to the experiments using the six-

class scheme as well, but classification task in this case is more difficult.

3.7.1 Classifier Performance

The experimental results in Table 3.2(a) show that, in the three-class case, it is possible

to learn a classifier that performs well against all the evaluation metrics used. In the

six-class case the classification task is more difficult, and the metrics obtained reflect

this, see Table 3.2(b).

The performance of the classifier across the classes was variable. Figure 3.5 shows

the metric values on a per-class basis using the three- and six-class label schemes.

Classes with larger numbers of examples tend to result in higher metrics, which is to

be expected. An exception is the Marginally Bad class in the six-class setup, which

scores poorly even though 16.9 % of the examples are labelled with this class. An

examination of the misclassification errors for these examples showed that there were

many misclassification between the Marginally Good and Marginally Bad classes, sug-

gesting that the classifier is unable to discriminate between these cases.

CHAPTER 3. PASS CLASSIFICATION 88

Very Good Good Mg. Good Mg. Bad Bad Very Bad

Classes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
co

re

Precision
Recall

F
1
-Score

(a) Six-class label scheme

Good OK Bad

Classes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
co

re

Precision
Recall

F
1
-Score

(b) Three-class label scheme

Figure 3.5: Per-class obtained values of the evaluation metrics. The performance of the
classifier was variable over the classes: as can be expected, classes with larger numbers
of training examples performed better.

Furthermore, we examined the misclassification error rate on the training examples,

and on the unseen test examples. There was no significant difference, e.g. for the MNR

classifier, the training and generalization error rates were both 29.6 %. In the three-

class case, the error rates on the training and test examples were 9.9 % and 10.1 %,

respectively.

This implies that there was sufficient training data to learn classifiers that general-

ized well to unseen data, however the relatively poor performance of the classifiers on

classes with fewer examples suggests that more examples would improve the perfor-

mance of the classifiers.

3.7.2 Predictor Variable Importance

The predictor variables used in these experiments were computed using feature func-

tions of varying complexity. This begs the question whether the effort involved in

implementing and computing complex feature functions resulted in improved perfor-

mance. We selected the 10 predictor variables that were computed using the dominant

region described in Subsection 3.3.3.

The task of assessing and ranking the importance of predictors in a given classi-

fication task has been the subject of much research [100]. The ability to assess the

CHAPTER 3. PASS CLASSIFICATION 89

importance a classifier assigns to predictors is desirable for two related, but contradic-

tory, reasons. First, it can provide an insight into the problem domain. For example, in

case of the pass rating problem described in this chapter, the importance that a classi-

fier assigns to a predictor may provide insight into the elements of a successful pass,

which could be used by a coach to improve team performance. Conversely, if the

classifier assigns high importance to predictors that are known to significant in the un-

derlying problem domain, then this will provide assurance that the model is behaving

as intended.

However, eliciting predictor importance from a classifier is not a straightforward

proposition. The importance of a given predictor may not derive simply from its in-

dividual contribution, but also from the dependency between sets of predictors [156].

Moreover, while some classification algorithms, such as RUSBoost, compute measures

of predictor importance, many do not, for example SVM. Standalone tests of predictor

importance have also been proposed, see [100] for a survey.

We used the following tests to assess the importance of the predictors based on the

dominant region.

Pearson’s correlation coefficient

The correlation coefficient was computed between each individual predictor and the

class labels. The predictors were then ranked by the absolute coefficient.

Single-predictor classifier

Multinomial logistic regression classifiers were learned and evaluated using a single

predictor. Tenfold cross-validation was used and the resulting misclassification rate

was collected for each predictor. The predictors were then ranked by the misclassifi-

cation rate.

CHAPTER 3. PASS CLASSIFICATION 90

RUSBoost predictor importance

The importance of predictors to the RUSBoost classifier can be calculated by deter-

mining the risk for instances of the predictor in the ensemble relative to the sum of the

risks of the instance’s child vertices. The importance scores can thus be used to rank

predictors.

`1-Regularized multinomial logistic regression

`1-regularization produces sparse coefficients for MLR classifiers [119]. Using the

classifier parameterization that produced the highest accuracy in our experiments, we

examined the predictors that had non-zero coefficients in the learned parameters. This

test does not rank the predictors but examines the subset of 40 predictors that were

selected for this classifier.

Table 3.3 summarises the results of the test for the dominant region-based predic-

tors. The receiver pressure predictor is highly ranked by all three ranking tests, yet is

not included by the `1-regularized MNR classifier. This can be explained by the fact

that the receiver pressure predictor is a linear combination of two other predictors: the

passer pressure and the passer/receiver pressure net change, both of which are included

by the MNR classifier, and thus the receiver pressure information can be recovered by

the classifier. Moreover, the receiver pressure and the receiver dominant region predic-

tors are highly correlated (93.0 %) which is another possible reason why both were not

retained by the MLR classifier.

The correlation and single-feature classifiers both assign high rank to the receiver

dominant region and pressure predictors and to the reachable angle predictor, which

suggests that these predictors are significant in isolation. However, these tests can-

not capture the importance of the dependencies between predictors. The predictor

importances assigned by the RUSBoost classifier and the predictors retained by the

`1-regularized MLR classifier may provide some insight. In particular, the RUSBoost

classifier rates all 10 predictors in the top 38. In the case of the MLR classifier, 5 of

CHAPTER 3. PASS CLASSIFICATION 91

Table 3.3: Dominant region-based predictor importance. These predictors were ranked
based on their scores for: correlation with the label; misclassification rate on a single
feature MLR classifier; and feature importance assigned using RUSBoost. The final
column indicates the predictors with non-zero coefficients in the best-performing `1-
regularized MLR classifier.

Feature Corr
ela

tio
n

1-F
ea

tur
ea

RUSBoo
st

` 1
-R

eg
ula

riz
ed

Dominant Region - Passer 90 16 17 0
Dominant Region - Receiver 18 13 4 1
Dominant Region Net Change - Passer 110 16 14 1
Dominant Region Net Change - Receiver 27 108 38 1
Dominant Region - Team 60 16 23 0
Dominant Region Net Change - Team 30 108 24 0
Pressure - Passer 53 16 35 1
Pressure - Receiver 6 1 5 0
Pressure Net Change - Passer-Receiver 113 16 37 1
Reachable Angle 19 16 43 0

a Only the first 15 single-feature classifiers performed better than the “majority-class classifier”, i.e. selecting the “OK” label
for all test examples. 91 of the 114 learned single-feature classifiers were majority-class classifiers.

the 10 predictors are non-zero, from a total of 40 non-zero coefficients.

This analysis suggests that the dominant region-based predictors are important to

the learned classifiers. Moreover, as discussed in Section 3.3, the purpose of these

predictors is to capture some of the physiological and strategic aspects of the match

state that would not otherwise be available to the classifier, and the fact that they are

important to the classifier provides a level of assurance of the validity of the proposed

model.

3.7.3 Inter-Rater Agreement

In Subsection 3.4.3 we discussed the fact that it is reasonable to expect that the ob-

servers would rate passes differently, and we applied Cohen’s kappa [57] as a heuristic

to evaluate the inter-rater agreement between the observers. Here we extend that anal-

ysis to the responses produced by the classifiers in the experiments. We computed

Cohen’s kappa in a pairwise manner on all labellings, see Table 3.4. The objective was

to examine whether the inter-rater agreement between an observer and a classifier was

significantly different from that between two observers.

The classifiers have a similar level of agreement with a given human observer to

CHAPTER 3. PASS CLASSIFICATION 92

Table 3.4: Cohen’s Kappa showing inter-rater agreement between human observers
and learned classifiers using the three-class labels. Note that the level of agreement for
Annotator 2 is similar for all other raters.

Ann
ota

tor
1

Ann
ota

tor
2

M
LR

M
LR-A

rit
h

M
LR-Q

ua
d

c-S
VC

ε-S
VR

RUSBoo
st

Orde
red

Log
it

Annotator 1 - 0.697 0.595 0.602 0.591 0.579 0.559 0.598 0.570
Annotator 2 0.697 - 0.626 0.631 0.628 0.611 0.596 0.628 0.607
MLR 0.595 0.626 - 0.933 0.896 0.926 0.909 0.620 0.894
MLR-Arith 0.602 0.631 0.933 - 0.940 0.929 0.903 0.643 0.902
MLR-Quad 0.591 0.628 0.896 0.940 - 0.899 0.874 0.651 0.877
c-SVC 0.579 0.611 0.926 0.929 0.899 - 0.937 0.608 0.907
ε-SVR 0.559 0.596 0.909 0.903 0.874 0.937 - 0.585 0.888
RUSBoost 0.598 0.628 0.620 0.643 0.651 0.608 0.585 - 0.603
Ordered Logit 0.570 0.607 0.894 0.902 0.877 0.907 0.888 0.603 -

the agreement between the two observers. The inter-rater agreement between the best

classifier and each of the two human observers is 0.602 and 0.631, which are compa-

rable to the agreement between the observers of 0.697. The pass classification task

is essentially subjective, and a level of disagreement between raters is to be expected.

That the classifiers can produce a similar level of agreement with an observer suggests

that the performance of the classifiers may be as good as can be expected for this task.

The agreement between the classifiers and Annotator 2 is consistently higher than

with Annotator 1, which is interesting given that the voted labels used to train the

classifiers were based on both observers. This suggests that Annotator 2’s was more

conservative in their labelling decisions, as the tie-breaking strategy used to select-

ing the voted label was to use the label closer to the middle of the Likert scale. A

comparison of the agreement between the observers and the voted labels bears this

out, as Annotator 2’s label agrees with the voted label in 96.2 % of cases, whereas for

Annotator 1’s label is the same in 92.4 % of cases.

3.7.4 Limitations of Experimental Setup

A desirable property of the feature functions described in Section 3.3 is to capture suf-

ficient information to train a classifier that has good predictive performance. However,

this objective is constrained by several aspects of the experimental setup that was used.

In the following section we provide an analysis of the constraints of the experimental

CHAPTER 3. PASS CLASSIFICATION 93

setup, what the potential impact is, and also whether any mitigation might be possible.

Sample Bias

The trajectory data available is limited to four matches. All of these matches are home

matches for Arsenal Football Club. Arsenal were a strong team in the 2007/08 sea-

son, finishing third. They were unbeaten at home, playing 19 games, winning 14 and

drawing 5. The opposition teams in the four matches were Aston Villa (finished 6th in

season), Blackburn Rovers (7th), Bolton Wanderers (16th) and Reading (18th). Given

that teams will often vary their tactics based on whether they are playing home or away,

and also in terms of the relative strength of the opposition, there is the possibility of

bias. This effect could be mitigated by repeating the experiments on a larger number

of matches, involving a larger number of teams, and hosted at different stadia.

Source Data

The data used to produce the predictor variables is limited to trajectory data for the

players and event sequence. The learning algorithm must train the classifier using only

this information. However, the observers who labelled the training data may consider

a number of other aspects when making their rating, for example the aesthetics of the

pass, their prior belief about the player making the pass, or the apparent intensity of

the current state of the match.

Video Framing

The labelling made by the observers was performed by viewing televised video footage

of the match. This footage does not display the entire playing field, and thus the

observer cannot take into account the state of players not in the video frame. The

classifier, however, does not know what parts of the playing field were visible to the

observer, and thus cannot discriminate based on this. This situation could be improved

by obtaining wide-angle video footage of the match that included the entire playing-

area in the picture frame.

CHAPTER 3. PASS CLASSIFICATION 94

Facing direction of players

The source data used to construct the predictor variables only provides the location of

each player. The orientation of the player is not available, and thus must be extrapo-

lated. Two plausible extrapolations were used in designing the feature functions: that

the player is facing in the direction of motion; or that the player is facing the ball. How-

ever, there are clearly situations where a player may face a direction other than these

two, particularly at low speeds, where a player may move backwards or diagonally

from the direction they are facing.

Ball trajectory

The trajectory of the ball is not provided, and thus is extrapolated by using the event

data to determine when a player touches the ball. In between such events, the location

and speed of the ball is interpolated using a simple linear model. This is clearly an

approximation, as the ball may not travel in a straight line, for example if it is kicked

in the air. Moreover, the velocity of the ball will not remain constant between events

as is the case in the model.

3.8 Conclusion

In this chapter we present a model that is able to learn a classifier to rate the quality of

passes made during a football match with an accuracy of up to 90.2 %. We compared

the ratings made by the classifier with those made by human observers, and found that

the level of agreement between the machine classifier and an observer is similar in

magnitude to the level of agreement between two observers.

The model uses feature functions based on algorithms and data structures from

computational geometry, in particular the dominant region [183]. This structure is in-

tended to provide information about the strategic and physiological state of the match,

however it is costly to compute. We evaluate the importance to the classifier of the

predictor variables based on the dominant region, and find them to be important to the

CHAPTER 3. PASS CLASSIFICATION 95

classifiers, suggesting that the cost of computation is worthwhile in this case.

The experimental results suggest that the model described in this chapter is ef-

fective in solving the problem of automatically classifying passes made in football

matches. The framework and experiments also provide a foundation for further inves-

tigation, and several areas became apparent during this research.

The problem investigated was to assign a single rating to each pass, however it

is apparent that the overall quality of a pass convolves several factors. These factors

include how well the player executed the pass, the difficulty of executing the pass given

the situation, the riskiness of the pass, and the strategic value of the pass. Rating each

pass according to several distinct, but possibly dependent, criteria is a natural extension

from the pass rating problem, and may provide deeper insights into determining the

quality of passes.

Similarly, the model currently rates passes that have been made. An interesting

question would be whether it is possible to rate passes that were not made, and from

this be able to gain an insight into whether the player in possession made the best

passing decision, given the conditions under which the pass was made.

There already exists some work in this direction. The problem of determining what

players are available to receive a pass at a given point in time has been investigated by

Gudmundsson and Wolle [96]. Furthermore, research by Yue et al. [198] attempts to

construct a model to predict whether a basketball player should shoot, pass or retain

possession in a given situation.

Another interesting extension to this model would be to consider sequences of

passes during a possession, and attempt to rate the passes in the sequence jointly. In-

tuitively, the quality of the previous passes made in a possession sequence will have

some impact on current pass, and thus this information could be exploited to improve

the overall quality of the ratings assigned.

Chapter 4

Summarising State Sequences with

Flow Diagrams

The player trajectories and event logs described in Section 1.2 are examples of data

that track movement or activity as a sequence of states. Similar datasets are captured

using object tracking sensors in other application domains such as traffic analysis [39]

and behavioural ecology [5]. A natural question to ask is how can large sets of activity

sequences be represented in a model that is both compact and reveals the underlying

structure within the activities. That is, a model that summarizes the activity sequences

in such a way that it can be easily interpreted by domain experts. To this end, we

introduce the concept of representing the “flow” of activities in a compact way using a

flow diagram, and we argue that this model is helpful to detect and visualize patterns

in large sets of state sequences.

To make this idea concrete, consider the following simple example that tracks three

people and their activities during a single day. The activities of each person over a day

are modelled as a state sequence, and the set of state sequences T = {τ1, τ2, τ3} are

shown in Figure 4.1(a). As input we are also given a set of criteria C = {C1, . . . , Ck},

in Figure 4.1(b). Each criterion is a Boolean function on a single subsequence—or a

set of subsequences—of states. In the example, the criterion C1 = “eating” is true for

Person 1 at time intervals 7–8am and 7–9pm, but false for all other time intervals. If a

96

CHAPTER 4. FLOW DIAGRAMS 97

criterion C is true for a set of subsequences, we say the subsequences fulfil C. Thus, a

set of criterion C partitions a state sequence into subsequences, called segments, where

each segment fulfils a criterion C ∈ C. A segmentation of T according to C is a

partition of each sequence in T into segments, each fulfilled by a particular criterion in

C. A segmentation can thus be represented as the corresponding sequence of criteria.

To continue the above example, the segments of T according to the set C are shown in

Figure 4.1(c).

The aim is to efficiently summarize the segmentations of all sequences in a compact

representation; that is, to build a flow diagram F , that has a small number of nodes,

including a start state s and end state t, such that for each state sequence τi, 1 ≤ i ≤ m,

there exists a segmentation according to C which appears as an s–t path in F . One

possible flow diagram for the example input (T , C) is shown in Figure 4.1(d), and

from this flow diagram one can observe that the three people either eat (C1) or exercise

(C3) before commuting (C2), followed by working or studying (C4), and finally they

eat (C1) and possibly shop (C6). Each interval in which a person carries out an activity

is a segment of the overall segmentation. We believe that the obtained flow network is

considerably easier to interpret than the input. The flow diagram for T according to

C can be validated by going through a segmentation of each object while following a

path in F from s to t. For example, for Person 1 the s–t path s→ C1 → C2 → C4 →

C1 → t is a valid segmentation, and is marked in red in Figure 4.1(d).

We are not aware of any (efficient) approach to extract flow patterns in large sets

of state sequences. Clustering would be a natural alternative but we do not know of

any simple and useful way to cluster state sequences. One possible approach would

be to simply cluster each individual state in the set of sequences, but then one would

lose important information linked to the fact that we are dealing with sequences. Our

approach combines both the sequential nature of the data and the aggregation based on

similar parts, and we believe this is a natural “sparse” visualisation of the output that

can be interpreted by a domain expert and that it highlights frequent patterns that are

hard to extract computationally. Even the small example above shows that there can be

CHAPTER 4. FLOW DIAGRAMS 98

States Person 1 Person 2 Person 3
07:00–08:00 breakfast gym breakfast
08:00–09:00 cycle drive cycle
09:00–17:00 work work work
17:00–19:00 study dinner shop
19:00–21:00 dinner shop dinner

(a)

Criteria Satisfying States
C1 Eating breakfast, dinner
C2 Commuting cycle, drive
C3 Exercising gym, cycle
C4 Working or studying working, studying

C5
Working for at least 4
hours

working, studying

C6 Shopping shopping

C7
At least two people eating
simultaneously

eating

(b)

States Person 1 Person 2 Person 3
07:00–08:00 [C1, C7] [C3] [C1, C7]

08:00–09:00 [C2, C3] [C2] [C2, C3]

09:00–17:00 [C4, C5] [C4, C5] [C4, C5]

17:00–19:00 [C4] [C1] [C6]

19:00–21:00 [C1, C7] [C6] [C1, C7]

(c)

s

C3

C1

C4 tC2 C6

C1

C6

(d)

Figure 4.1: The input is (a) a set T = {τ1, . . . , τm} of sequences of states and (b) a set
of criteria C = {C1, . . . , , Ck}. (c) The criteria partition the states into a segmentation.
(d) One possible flow diagram representing a valid segmentation of T according to C,
with the s–t path for Person 1 (highlighted in red).

considerable space savings by representing a set of state sequences as a flow diagram.

It is important to note that is not a lossless representation and therefore comes at a

cost. The flow diagram contains a valid segmentation for each input state sequence,

however, the particular segmentation corresponding to an individual state sequence is

not apparent. Furthermore, a state sequence may have many valid segmentations, and

only one is guaranteed to be represented as an s–t path in the flow diagram. On the

other hand, not all s–t paths in F necessarily represent a valid segmentation of one

of the state sequences in T . However, as we will argue in Section 4.5, paths repre-

senting many segments in the obtained flow diagrams show interesting patterns, and

we give two examples. First we consider segmenting the morphology of formations

of a defensive line of football players during a match, and find that the obtained flow

diagram provides an intuitive summary of these formations. The second example uses

state sequences to model the attacking actions of the team in control of the ball during

CHAPTER 4. FLOW DIAGRAMS 99

a football match. The summary given by the induced flow diagram on the state se-

quences highlights the differences in attacking tactics between teams playing at home

and teams playing away from home.

The remainder of this chapter is organized as follows. Section 4.2 formally defines

the problem and states the properties of the criteria that we use to improve the run-

time of the algorithms. Theorems proving the hardness of the problem are stated in

Section 4.3. In Section 4.4 we present algorithms for the FLOW DIAGRAM problem

using criteria with the properties described above. Moreover, to obtain flow diagrams

for larger groups of state sequences we propose two heuristics for the problem. In

Section 4.5, the exact and heuristic algorithms are evaluated experimentally in order to

determine their practical performance characteristics, and also to assess the utility of

the output flow diagrams.

4.1 Related work

To the best of our knowledge the concept of compactly representing sequences of states

as flow diagrams has not been considered before. The only related work of which we

are aware comes from the area of trajectory analysis, and from machine learning using

Markov models. Spatial trajectories are a special class of state sequences where a

trajectory describes the movement of an object through space over time and the states

are the location points. Furthermore, the states may also include additional information

such as direction, speed, and temperature.

For a single trajectory a common way to obtain a compact representation is simpli-

fication [38]. Trajectory simplification aims to determine a subset of the location points

that represents the trajectory well by minimising the maximum distance between the

input and simplified trajectories. If the focus is on characteristics other than the loca-

tion, then segmentation [5], [8], [29] may be used to partition a trajectory into a small

number of sub-trajectories, where each subtrajectory is homogeneous with respect to

some given characteristic. This allows a trajectory to be compactly represented as a

CHAPTER 4. FLOW DIAGRAMS 100

sequence of characteristics.

For multiple trajectories distinct techniques apply. A large set of trajectories may

contain groups of similar trajectories where trajectories from different groups are dis-

similar, and hence clustering may be used. Clustering on complete trajectories may

not uncover information about interesting parts of the trajectories; so clustering on

sub-trajectories may be required [35], [102]. A set of trajectories that forms different

groups over time may be captured by a grouping structure [30], and approaches such

as this also focus on location over time.

For the special case of spatial trajectories, a flow diagram can be illustrated by a

simple example: trajectories of migrating geese, see [36]. The individual trajectories

can be segmented into phases of activities such as directed flight, foraging and stop

overs. This results in a flow diagram containing a path for the segmentation of each

trajectory. More complex criteria can be imagined that depend on a group of geese, or

frequent visits to the same area, resulting in complex state sequences that are imprac-

tical to analyze without computational tools.

Segmenting a single sequence can also be viewed from a stochastic learning per-

spective as a structured prediction problem. For each sequence state, a distribution is

modelled to assign a probability that the state fulfils each criteria. The problem can

thus be represented as a hidden Markov model, see [185] for a detailed discussion.

Typically, the objective of such models is to maximise the likelihood of an assignment

of criteria to the state sequence, and thus does not attempt to find an assignment that is

minimal in the number of segments.

Bonchi et al. [20] proposes a Markov model that uses a hierarchical taxonomy of

criteria that uses the concept of lumpability, where sequences of states can be aggre-

gated within the taxonomy to produce a partition of the state sequence that is compact

and also maintains the characteristics of the input sequence. A number of algorithms

are defined, in particular one that minimises the complexity of the partition, which is

analogous to minimising the number of segments.

CHAPTER 4. FLOW DIAGRAMS 101

4.2 Preliminaries

4.2.1 Problem Definition

A flow diagram is a node-labelled directed acyclic graph (DAG) with a distinguished

source node s and sink node t, and where all other nodes are labelled with a criterion.

Given a set T of state sequences and a set C of criteria, the goal is to construct a

flow diagram with a minimum number of nodes, such that a valid segmentation of

each sequence of states in T is represented—that is, included as an s–t path—in the

flow diagram. Furthermore (when criteria depend on multiple state sequences, e.g.

C7 in Figure 4.1) we require that the segmentations represented in the flow diagram

are consistent, i.e. the segmentations can be jointly realized. The FLOW DIAGRAM

problem thus requires the segmentations of each sequence of states and the minimal

flow diagram of the segmentations to be computed, and can be formally stated as:

PROBLEM FLOW DIAGRAM (FD)

Instance: A set of sequences of states T = {τ1, . . . , τm}, each of length at

most n, a set of criteria C = {C1, . . . , Ck} and an integer λ > 2.

Question: Is there a flow diagram F with≤ λ nodes, such that for each τi ∈ T ,

there exists a segmentation according to C which appears as an s–t

path in F?

4.2.2 Properties of Criteria

The efficiency of the algorithms depend on properties of the criteria on which the

segmentations are based. Here we consider three cases:

• general criteria without restrictions,

• monotone decreasing and independent criteria, and

• monotone decreasing and dependent criteria.

These properties are illustrated using the example in Figure 4.1.

CHAPTER 4. FLOW DIAGRAMS 102

A criterionC is monotone decreasing [29] for a given sequence of states τ that fulfil

C, if all subsequences of τ also fulfil C. For example, if criterion C4—working and

studying—is fulfilled by a sequence τ then any subsequence τ ′ of τ will also fulfil C4.

In contrast, criterion C5—working for at least 4 hours—is not monotone decreasing.

A criterion C is independent if verifying whether a subsequence τ ′ of a sequence

τi ∈ T fulfils C can be achieved without reference to other sequences τj ∈ T , i 6= j.

Conversely, C is dependent if verifying that a subsequence τ ′ of τi requires reference to

other state sequences in T . In the above example C4—working or studying—is an ex-

ample of an independent criterion whileC7—at least two people eating simultaneously—

is a dependent criterion since it requires that at least two objects to satisfy the criterion

simultaneously.

4.3 Hardness Results

In this section, the hardness and inapproximation results are stated, and the necessary

proofs and reductions provided.

Theorem 4.1. The FD problem is NP-hard. This even holds when only two criteria

are used or when the length of every state sequence is 2. For any 0 < c < 1/4, the

FD problem cannot be approximated within factor of c logm in polynomial time unless

NP ⊂ DTIME(mpolylogm).

Furthermore, for bounded number of state sequences m the running times of our

algorithms are somewhat high, and we can show that there are good reasons for this.

The algorithms will only run in polynomial time ifm is constant, and this is essentially

the best we can hope for as the problem is W [1]-hard. Unless W [1] = FPT , this rules

out the existence of algorithms with time complexity ofO(f(m) ·(nk)c) for some con-

stant c and any computable function f(m), where m,n and k are the number of state

sequences, the length of the state sequences and the number of criteria, respectively.

Theorem 4.2. The FD problem parameterized in the number of state sequences is

W [1]-hard even when the number of criteria is constant.

CHAPTER 4. FLOW DIAGRAMS 103

To obtain the stated results we will perform two reductions: from the SHORTEST

COMMON SUPERSEQUENCE problem; and from the SET COVER problem.

4.3.1 Reduction from SHORTEST COMMON SUPERSEQUENCE

PROBLEM SHORTEST COMMON SUPERSEQUENCE (SCS)

Instance: A set of strings R = {r1, r2, . . . , rk} over an alphabet Σ, a positive

integer λ.

Question: Does there exist a string s ⊂ Σ∗ of length at most λ, that is a super-

sequence of each string in R?

The SCS problem has been extensively studied over the last 30 years (see [77] and

references therein). Several hardness results are known, we will use the following two.

Lemma 4.3 (Pietrzak [163]). The SCS problem parameterized in the number of strings

is W [1]-hard even when the alphabet has constant size.

Lemma 4.4 (Räihä and Ukkonen [166]). The SCS problem over a binary alphabet is

NP-complete.

The SCS problem can be reduced to the FD problem as follows. Given an instance

I = (R = {r1, . . . , rm},Σ = {c1, . . . , ck}) of SCS construct an instance of FD as

follows. Each character cl corresponds to a criterion Cl. Each string ri corresponds

to a state sequence Ti, where Ti[j] = cri[j]. Thus, each state of Ti fulfils exactly one

criterion Cj .

An algorithm for the FD problem will, given an instance, output a flow diagram

F of size `. Given F , one can compute a topologically sorted linear sequence b of

vertices in F , as shown in Figure 4.2(a). The linear sequence b has ` − 2 vertices

(omitting the start and end state of F) and it is a supersequence of each string in R. It

follows that the size of F is λ if the number of characters in the SCS of I has length

λ − 2. Note that F contains a linear sequence of vertices (after topological sort) that

correspond to a supersequence and a set of directed edges. Consequently, a solution

CHAPTER 4. FLOW DIAGRAMS 104

s

t

(a)

t

s

(b)

Figure 4.2: Examples of flow diagrams produced by the reductions: (a) From SHORT-
EST COMMON SUPERSEQUENCE. (b) From SET COVER.

for the FD problem can easily be transformed to a solution for the SCS problem but

not vice versa.

From the above reduction, together with Lemmas 4.3-4.4, we obtain Theorem 4.2

and the following lemma.

Lemma 4.5. The FD problem is NP-hard even for two criteria.

4.3.2 Reduction from SET COVER

PROBLEM SET COVER (SC)

Instance: A set of elements E = {e1, e2, . . . , em}, a set of n subsets of E,

S = {S1, S2, . . . , Sn}, and a positive integer λ.

Question: Does there exist set of λ items in S whose union equals E?

SET COVER is well known to be NP-hard, and also hard to approximate:

Lemma 4.6 (Lund and Yannakakis [145]). For any 0 < c < 1/4, the SC problem

cannot be approximated within factor of c logm in polynomial time unless NP ⊂

DTIME(mpolylogm).

We prove that the FD problem is equivalent to the SC problem using the following

reduction. Given an instance I = (E = {e1, e2, . . . , em}, S = {S1, S2, . . . , Sn}) of

SC, an instance of FD can be constructed using the following steps. Each item ei

corresponds to a state sequence Ti of length one. Each subset Sj corresponds to a

criterion Cj . If a Sj contains ei then the whole state sequence Ti fulfils criterion Cj .

CHAPTER 4. FLOW DIAGRAMS 105

An algorithm for FD given the constructed instance will output a flow diagram F

of size `, depicted in Figure 4.2(b). Given F the interior vertices of F corresponds to

a set of subsets in S whose union is E. The diagram F has ` vertices if and only there

is `− 2 subsets in S that forms a set covering of E.

From the above reduction, we obtain Theorem 4.1 and Lemmas 4.5 and 4.6.

4.4 Algorithms

In this section, we present algorithms that compute a flow diagram of minimal vertex

size, representing a set of m state sequences of length n for a set of k criteria. First, we

present an algorithm for the general case, followed by more efficient algorithms for the

case of monotone increasing and independent criteria, the case of monotone increasing

and dependent criteria, and finally two heuristic algorithms.

4.4.1 General criteria

The first algorithm is for general criteria, where we do not seek to exploit any of the

properties described in Subsection 4.2.2. Recall that an interior node v in the flow

diagram represents a criterion Cj that is fulfilled by a contiguous segment in one or

more of the state sequences. Let τ [i, j], i ≤ j, denote the subsequence of τ beginning

at the i+1-th state of τ and ending at the j-th state, where τ [i, i] is an empty sequence.

The prefix graph G is constructed as follows. G contains an (n + 1)m grid of ver-

tices, where a vertex with coordinates (x1, . . . , xm), 0 ≤ x1, . . . , xm ≤ n, represents

the set (τ1[0, x1], . . . , τm[0, xm]) of m prefix subsequences of T . An edge exists be-

tween two vertices v = (x1, . . . , xm) and v′ = (x′1, . . . , x
′
m), labeled by some criterion

Cj , if and only if, for every i, 1 ≤ i ≤ m, one of the following two conditions is

fulfilled:

• one or more τi[xi + 1, x′i] jointly fulfil Cj , or

• xi = x′i.

CHAPTER 4. FLOW DIAGRAMS 106

τ1 τ2

1 [C1] [C2]

2 [C1] [C1, C2]

3 [C3] [C3]

(a)

C2

C3

C1

0 1 2 3

0

1

3

2

τ1

τ2

vs

vt
t

s

(b)

s

C1

C2

C3 t

(c)

Figure 4.3: (a) A segmentation of T = {τ1, τ2} according to C = {C1, C2, C3}. (b) The
prefix graph G of the segmentation, showing only five edges that comprise a shortest
path in G. (c) The resulting flow diagram generated from the highlighted path in the
prefix graph.

As an example, consider the edge between (x1, x2) = (0, 0) and (x′1, x
′
2) = (0, 1) in

Figure 4.3(b). Here x1 = x′1 and τ2[x2 + 1, x′2] fulfils C2.

Finally, define two additional vertices and edges in G, that are “outside” of the

grid. Vertex vs = (−1, . . . ,−1) with an outgoing edge to (0, . . . , 0) labelled with the

“criterion” s; and vt = (n+ 1, . . . , n+ 1), which has an incoming edge labelled t from

(n, . . . , n). This completes the construction of the prefix graph G.

Now, a path in G from vs to a vertex v represents a valid segmentation of some

prefix of each state sequence, and induces a (partial) flow diagram that describes these

segmentations in the following way:

• every edge of the vs–v path induces a node in the flow diagram, labeled by the

criterion that the corresponding segments fulfil, i.e. the label of the edge in G.

• directed edges terminating at the new node are added to the flow diagram origi-

nating at each node that represents a criterion fulfilled by at least one segment in

the segmentation that immediately precedes the segments corresponding to the

new node.

The directed edges terminating at a given target node can be directly read from the

prefix graph. Consider the case where a node u 6= s is added to the flow diagram, and

is either labelled with a criterion Cj or is the sink node t. The node u corresponds

to an edge (v, v′) in the prefix graph G, labelled with the same criterion Cj or is the

CHAPTER 4. FLOW DIAGRAMS 107

distinguished edge labelled t. Edges must be added to F connecting each node repre-

senting a criterion that precedes Cj in the segmentation. The edges are manifest in G

as the sub-path of the vs–v path starting at v′′ = (x′′1, . . . , x
′′
m) such that τi[x′′i + 1, xi]

is fulfilled by a single segment in the segmentation for all i = 1, . . .m.

A geometric interpretation of this construction is that the vs–v path in G is back-

tracked until the vertex v′′ is reached, such that the line-segment v′′v is not axis-parallel

in any of them dimensions. Then, the set of edges in the v′′–v path inG corresponds to

a set of nodes in F and a directed edge from each of these nodes to u is added into F .

For example, in Figure 4.3, the node u labelled C1 in F has two incoming edges from

nodes labelled s and C2 respectively. The nodes from where these edges originated

were identified in G by backtracking along the highlighted path to a vertex that de-

scribes a line segment with (1, 0) that is not axis parallel, in this case vs. For each edge

in G traversed in the backtracking, an edge is added into F from the corresponding

node to the target u.

This construction ensures that the flow diagram represents a valid segmentation and

that each node represents at least one segment. Clearly, the length of a path (counted

as the number of edges) in a prefix graph G equals the number of nodes of the corre-

sponding flow diagram F . Thus, we are able to compute an optimal flow diagram F

by finding a shortest vs–vt path in G.

Lemma 4.7. A smallest flow diagram for a given set of state sequences is represented

by a shortest vs–vt path in G.

Proof. We show that every vs–vt path P in G represents a valid flow diagram F , with

the path length equal to the flow diagram’s cost, and vice versa. Thus, a shortest path

induces a minimal valid flow diagram for the given state sequences.

Let P := (vs =: v0, v1, . . . , v` := vt) be a vs–vt path of length ` in G. As described

in the prequel, every vs–vt path in G represents a valid flow diagram, and every ver-

tex visited by the path contributes exactly one node to the flow diagram. Thus, P

represents a valid flow diagram with exactly ` nodes.

CHAPTER 4. FLOW DIAGRAMS 108

For the other direction, let F be a valid flow diagram of a set of state sequences

{T1, . . . , Tm}, each of length n. That is, there exist segmentations {S1, . . . ,Sm} of the

state sequences such that each segmentation is represented in F in the following way:

assume the nodes of F are {s =: f0, f1, . . . , f` := t} according to some topological

ordering. Let Sj consist of the segments sj,1, . . . , sj,σj , where σj is the number of seg-

ments in Sj . Then there exists a path (s, fj,1, . . . , fj,σj , t) in F such that each segment

sj,i fulfils the criterion C(fj,i) associated with fj,i.

Let bj,i be the index in Tj at which sj,i ends, for 1 ≤ i ≤ σj , and let bj,0 := 0. Since

Sj is a segmentation of Tj , then bj,σj = n.

Let Fλ be the subdiagram of F induced by (f1, . . . , fλ), for 1 ≤ λ ≤ `. We

define xj,λ := max{bj,i | fj,i ∈ {f1, . . . , fλ}}. We show inductively that for each

λ ∈ {1, 2, . . . , `}, G contains a path from vs to the vertex vλ := (x1,λ, . . . , xm,λ) with

length λ, i.e. the number of nodes in Fλ.

Base case Note that v0 = vs and vs has a single outgoing edge—by construction—to

v1, and thus there is a path of length λ = 1 from vs to v1.

Induction step The node fλ+1 represents the segments

{Tj[xj,λ + 1, xj,λ+1] | 1 ≤ j ≤ m ∧ xj,λ 6= xj,λ+1}.

Since the flow diagram is valid, these segments fulfil the criterion C(fλ+1), and

thus G contains an edge from vλ to vλ+1. Since a path from vs to vλ of length λ

exists by the induction hypothesis, there is a path from vs to vλ+1 of length λ+1.

For every state sequence Tj , there exists an index ϕj ∈ {1, . . . , ` − 1} such that

xj,λ = n for all λ ≥ ϕj . Thus, v`−1 = (n, n, . . . , n) and G contains an edge from v`−1

to v` = vt. So, there is a path from vs to vt of length `.

Furthermore, it is often the case, and indeed likely, that there are multiple shortest

s–t paths within G. This suggests that different strategies can be used for choosing the

shortest path to use to compute the flow diagram, and moreover, the choice of strategy

CHAPTER 4. FLOW DIAGRAMS 109

may impact the properties of the flow diagram. The shortest path may be chosen

arbitrarily, or using an objective function—for example, the path that maximises the

minimum number of sequences that is advanced by each edge in the path. An analysis

of the strategies for selecting the shortest path is provided in Subsection 4.5.3.

We now consider the complexity of the algorithm. Recall that G has (n + 1)m

vertices. Each vertex has O(k(n + 1)m) outgoing edges, thus, G has O(k(n + 1)2m)

edges in total. To decide if an edge is present inG, check if the nonempty segments the

edge represents fulfil the criterion. Thus, we need to perform O(k(n + 1)2m) of these

checks. There arem segments of length at most n, and we assume the cost for checking

this is T (m,n). Thus, the cost of constructingG isO(k(n+1)2m·T (m,n)), and finding

the shortest path requires O(k(n+ 1)2m) time, yielding the following theorem.

Theorem 4.8. The algorithm described above computes a smallest flow diagram for a

set of m state sequences, each of length at most n, and k criteria in O((n + 1)2mk ·

T (m,n)) time, where T (m,n) is the time required to check if a set of m subsequences

of length at most n fulfils a criterion.

4.4.2 Monotone decreasing and independent criteria

If all criteria are monotone decreasing and independent, we can use ideas similar to

those presented in [29] to avoid constructing the full graph. From a given vertex with

coordinates (x1, . . . , xm), and given a criterion Cj , we can greedily move as far as pos-

sible along the sequences while Cj is fulfilled, since the monotonicity guarantees that

this never leads to a solution that is worse than one that represents shorter segments.

For a given criterion Cj , we can compute for each τi independently the maximum x′i

such that τi[xi + 1, x′i] fulfils Cj . This results in coordinates (x′1, . . . , x
′
m) for another

vertex, which is the optimal next vertex using Cj . By considering all criteria we obtain

k new vertices. However, unlike the case with a single state sequence, there is not

necessarily one vertex that is better than all others (i.e. furthest ending position), since

there is no total ordering on the vertices. Instead, we must consider all vertices that

are not dominated by another vertex, where a vertex p dominates a vertex p′ if each

CHAPTER 4. FLOW DIAGRAMS 110

coordinate of p is at least as large as the corresponding coordinate of p′, and at least

one of p’s coordinates is larger.

Let Vi be the set of vertices of G that are reachable from vs in exactly i steps, and

define M(V) := {v ∈ V | no vertex u ∈ V dominates v} to be the set of maximal

vertices of a vertex set V . Then a shortest vs–vt path through G can be computed

by iteratively computing M(Vi) for increasing i, until a value of i is found for which

vt ∈ M(Vi). Observe that |M(V)| = O((n + 1)m−1) for any set V of vertices in the

graph. Also note that V0 = M(V0) = vs.

Lemma 4.9. For each i ∈ {1, . . . , `}, every vertex in M(Vi) is reachable in one step

from a vertex in M(Vi−1), where ` is the length of the vs–vt path.

Proof. Assume there exists a vertex v ∈ M(Vi) that has no edge from a vertex in

M(Vi−1). Since v ∈M(Vi), v is also contained in Vi, and thus its distance from vs is i.

Thus, there must be a vertex v′ at distance i−1 from vs, i.e. v′ ∈ Vi−1, that has an edge

to v representing a criterion Cj . By assumption, v′ is not contained in M(Vi−1), and

thus there is a vertex v′′ ∈ M(Vi−1) that dominates v′. But then, by the monotonicity

of Cj , there must be a vertex reachable from v′′ that is identical to v or dominates v.

Both cases lead to a contradiction.

M(Vi) is computed by computing the farthest reachable vertex for each v ∈M(Vi−1)

and each criterion Cj , thus yielding a set Di of O(k(n+ 1)m−1) vertices. This set con-

tains M(Vi) by Lemma 4.9, so we now need to remove all vertices that are dominated

by some other vertex in the set to obtain M(Vi).

We find M(Vi) using a copy of G. Each vertex may be marked as being in Di or

dominated by a vertex in Di. We process the vertices of Di in arbitrary order. For a

vertex v, if it is not yet marked as either being inDi or dominated by a vertex inDi, we

mark it as being in Di. When a vertex is newly marked, we mark its ≤ m immediate

neighbours dominated by it as being dominated. After processing all vertices, the grid

is scanned for the vertices still marked as being in Di. These vertices are exactly

M(Vi).

CHAPTER 4. FLOW DIAGRAMS 111

When computing M(Vi), O(k(n + 1)m−1) vertices need to be considered, and the

maximum distance from vs to vt ism(n+1), so the algorithm considersO(mk(n+1)m)

vertices. We improve this bound by a factor m using the following:

Lemma 4.10. The total size of Di for all 0 ≤ i ≤ `− 1, is O(k(n+ 1)m).

Proof. If a vertex v appears in M(Vi) for some i ∈ {0, . . . , `−1}, it generates vertices

for Di+1 that dominate v, and thus v 6∈ M(Vi+j) for any j > 0. So, each of the nm

vertices appears in at most one M(Vi) and generates k candidate vertices for Di+1 (not

all unique). Hence the total size of all Di is O(knm).

Using this result, we compute allM(Vi) inO((k+m)(n+1)m) time, sinceO(k(n+

1)m) vertices are marked directly, and each of the (n+ 1)m vertices is checked at most

m times when a direct successor is marked. One copy of the grid can be reused for

each M(Vi), since each vertex of Di+1 dominates at least one vertex of M(Vi) and is

thus not yet marked while processing Dj for any j ≤ i.

Since the criteria are independent, the farthest reachable point for a given starting

point and criterion can be precomputed for each state sequence separately. Using the

monotonicity we can traverse each state sequence once per criterion and thus need to

test only O(nmk) times whether a subsequence fulfils a criterion.

Theorem 4.11. The algorithm described in this section computes a smallest flow dia-

gram for m state sequences of length n with k independent and monotone decreasing

criteria inO(mnk · T (1, n)+(k+m)(n+1)m) time, where T (1, n) is the time required

to check if a subsequence of length at most n fulfils a criterion.

4.4.3 Monotone decreasing and dependent criteria

For monotone decreasing and dependent criteria, we can use a similar approach to

that described above, however, for a given start vertex v and criterion C, there is not a

single vertex v′ that dominates all vertices reachable from v using this criterion. Instead

there may be Θ((n + 1)m−1) maximal reachable vertices from v for criterion C. The

CHAPTER 4. FLOW DIAGRAMS 112

maximal vertices can be found by testing O((n+ 1)m−1) vertices on or near the upper

envelope of the reachable vertices in O((n + 1)m−1 · T (m,n)) time. Using a similar

reasoning as in Lemma 4.10, we can show that the total size of all Di (0 ≤ i ≤ `− 1)

is O(k(n+ 1)2m−1), which gives:

Theorem 4.12. The algorithm from the previous section computes a smallest flow

diagram for m state sequences of length n with k monotone decreasing criteria in

O(k(n+ 1)2m−1 · T (m,n) +m(n+ 1)m) time, where T (m,n) is the time required to

check if a set of m subsequences of length at most n fulfils a criterion.

4.4.4 Heuristics

The hardness results presented in Section 4.3 indicate that it is unlikely that the perfor-

mance of the algorithms will be acceptable in practical situations, other than for very

small inputs. As such, we investigated heuristics that may produce usable results and

can be computed in reasonable time.

We considered two heuristic algorithms. These are based on the observation that by

limiting the number of outgoing edges in the prefix graph from the vertices in Vi—i.e.

the set of vertices reachable from vs in i steps—to a fixed size then the complexity of

the algorithm can be controlled. Given that every s–t path in a prefix graph represents

a valid segmentation of T , any path chosen in the prefix graph will induce a valid,

though not necessarily optimal flow diagram.

For some vertex v ∈ G, let E = {(v, v′) | v ∈ Vi−1} be the candidate outgoing

edges each satisfying some C ∈ C. Each such edge (v, v′) ∈ E, v = (x1, . . . , xm)

represents a set of subsequences fulfilling C in a candidate group segmentation of T :

Sv,v′ = {Tj[xj + 1, x′j] | 1 ≤ j ≤ m ∧ xj 6= x′j}.

This implies two obvious metrics for the “value” of the edge (v, v′). First, |Sv,v′| is

the number of state sequences whose prefixes are advanced by adding (v, v′) into G.

Similarly, the total number of states that are included in the corresponding prefixes by

CHAPTER 4. FLOW DIAGRAMS 113

adding (v, v′) to G can be computed by:

f(Sv,v′) :=
∑

Tj [xj+1,x′j]∈Sv,v′

x′j − xj − 1

Given v ∈ Vi−1, we consider two strategies for selecting the edges in (v, v′) to add into

G and thus determine Vi 3 v′:

Sequence heuristic For each candidate edge (v, v′), compute the number of state se-

quences that the corresponding segment advances, i.e. |Sv,v′|, and select the q

edges yielding the largest sets of state sequences.

State heuristic For each candidate edge (v, v′) determine the number of states that are

advanced by computing f(Sv,v′), and select the q edges yielding the largest such

values.

In our experiments we use q = 1 since any larger value would immediately give an

exponential worst-case running time. Using q = 1, the worst case is for each edge in

the shortest path in G to advance a single state in a single state sequence, and at each

vertex along the path in G all k criteria must be evaluated to decide on the next edge,

so k operations must be performed at a cost of T (m,n). This implies a running time

of O(kmn · T (m,n)).

4.5 Experiments

The objectives of the experiments were twofold: to empirically investigate the per-

formance of the algorithms on inputs of varying sizes and structure; and to determine

whether compact and useful flow diagrams could be produced in real application sce-

narios. We implemented the algorithms for general criteria, monotone decreasing and

independent criteria, state and sequence heuristics, described in Section 4.4, using the

Python programming language.

CHAPTER 4. FLOW DIAGRAMS 114

For the first objective, the algorithms were run on generated data sets of varying

sizes to investigate the impact of different parameterisations on the computation time

required to produce the flow diagram and the complexity of the induced flow diagram.

Furthermore, we were interested in whether flow diagrams could recover the underly-

ing structure in a given input. To this end, we induced flow diagrams from input state

sequences that were perturbations of a small number of seed sequences, and investi-

gated whether the structure of the seed sequences was identifiable in the induced flow

diagrams.

For the second objective, we considered the application of flow diagrams to two

practical problems in football analysis in order to evaluate their usefulness.

4.5.1 Performance Testing

In the second experiment, we used a state sequence generator that outputs synthetic

state sequences with assigned criteria, and tested the performance of the algorithms on

inputs of varying sizes.

The segmentations were generated using Markov-Chain Monte-Carlo sampling.

Nodes representing the criteria set of size k were arranged in a ring and a Markov chain

constructed, such that each node had a transition probability of 0.7 to remain at the

node, 0.1 to move to the adjacent node, and 0.05 to move to the node two places away.

Segmentations were computed by sampling the Markov chain starting at a random

node. Thus, simulated data sets were generated with arbitrary size m, state sequence

length n, criteria set size k.

We performed two tests on the generated segmentations. In the first, experiments

were run on the four algorithms described in Section 4.4 with varying configurations of

m, n and k to investigate the impact of the input size on the algorithm’s performance.

Two evaluation metrics were defined: we used the time to compute the prefix graph to

evaluate runtime performance of all algorithms; and the complexity in the number of

nodes of the output flow diagram was used to evaluate the sub-optimality of the heuris-

tic algorithms. To evaluate the sub-optimality, we compared the complexity of the

CHAPTER 4. FLOW DIAGRAMS 115

2 4 6 8 10 12 14 16 18 20
Criteria Set Size k

10-4

10-3

10-2

10-1

100

101

102

103

E
xe

cu
tio

n
tim

e
in

 se
c

(lo
g)

2 4 6 8 10 12 14 16 18 20
Number of State Sequences m

10-4
10-3
10-2
10-1
100
101
102
103
104

E
xe

cu
tio

n
tim

e
in

 se
c

(lo
g)

1 2 3 4 5 6 7 8 9 10
State Sequence Length n

10-4

10-3

10-2

10-1

100

101

102

103

E
xe

cu
tio

n
tim

e
in

 se
c

(lo
g)

General Criteria
Monotone Decreasing and Independent Criteria

Sequence Heuristic
State Heuristic

21 22 23 24 25 26 27 28 29 210

Criteria Set Size k
 (log2)

4
5
6
7
8
9

10
11
12

Fl
ow

 D
ia

gr
am

 C
om

pl
ex

ity

21 22 23 24 25 26 27 28 29 210

Number of State Sequences m
 (log2)

4

6

8

10

12

14

Fl
ow

 D
ia

gr
am

 C
om

pl
ex

ity

21 22 23 24 25 26 27 28 29 210

State Sequence Length n
 (log2)

0

100

200

300

400

500

600

Fl
ow

 D
ia

gr
am

 C
om

pl
ex

ity

Figure 4.4: Runtime statistics for generating flow diagram (top), and total complexity
in the number of nodes of flow diagrams produced (bottom). Parameter values of
m = 4, n = 4 and k = 10 were used, except for the parameter appearing on the x-axis
of each chart. The data points are the mean value and the error bars delimit the range
of values over the five trials run for each input size.

output flow diagram produced by the two heuristic algorithms with the baseline com-

plexity of the flow diagram produced by the exact algorithm for monotone increasing

and independent criteria.

Each experiment was repeated ten times with different randomly-generated inputs

for each trial, and the results presented are the mean values of the metrics over the

trials. Limits were set such that the algorithm was terminated if the CPU time exceeded

1 hour, or the memory required exceeded 8GB.

The results of the first test showed empirically that the exact algorithms have

CHAPTER 4. FLOW DIAGRAMS 116

time and storage complexity consistent with the theoretical worst-case bounds, Fig-

ure 4.4 (top).

For the second test, we investigated the complexity of the flow diagram induced by

inputs of varying parameterisations when using the heuristic algorithms. The objec-

tive was to examine how close the complexity was to the optimal complexity produced

using an exact algorithm. The criteria applied to the input state sequences were mono-

tone decreasing and independent, and thus the corresponding algorithm was used to

produce the baseline. Figure 4.4 (bottom) summarises the results for varying input pa-

rameterisations. The complexity of the flow diagrams produced by the two heuristic

algorithms are broadly similar, and increase at worst linearly as the input size increases.

Moreover, while the complexity is not optimal it appears to remain within a constant

factor of the optimal, suggesting that the heuristic algorithms could produce usable

flow diagrams for inputs where the exact algorithms are not tractable.

4.5.2 Perturbation Testing

The intuition that underpins the idea using flow diagrams to compactly represent state

sequences is that there is some underlying structure with respect to the criteria in the

state sequences, and that can be exploited. Within a set of m state sequences there are

g � m underlying processes that generate the sequences, and for each process, the

sequences that are generated are similar but not identical. For example, in subsubsec-

tion 4.5.4.2 we consider attacking play sequences from football matches. The states in

the sequences are actions taken by players from one team while that team is solely in

possession of the ball. The sequences are segmented using criteria based on how the

ball is moved around the playing-area. The team that generated the sequences will have

a number of different tactics that they use to attempt to score a goal, and we propose

that these tactics will manifest themselves as a series of such ball movements. The

sequences may be noisy—additional ball movements may occur—but the underlying

attack type should be apparent to the informed observer.

A flow diagram that is induced by a sequence such as this should ideally have g

CHAPTER 4. FLOW DIAGRAMS 117

paths with “heavy” weight edges that encode the sequences generated from the under-

lying process. The noise inherent in the sequences should be characterised by nodes

with low degree, and can be removed from the flow diagram to produce a more com-

pact graph, but without reducing the information inherent in the graph.

In order to test this insight, we conducted experiments on generated sequences

that could be grouped by underlying structure. We used the state sequence generator

described in Subsection 4.5.1 to construct seed sequences. The g seed sequences were

then replicated by randomly selecting a seed sequence m times to produce the m input

sequences, and the replicated sequences were perturbed by modifying the states that

each state fulfilled. A randomly chosen fraction of the segments were perturbed by

applying one of the following operations:

Changed criterion The criterion applied to a segment was replaced with another

randomly-chosen valid criterion.

Extended segment The segment was extended such that it covered an adjacent state

to its original starting or ending state.

Added segment A new segment was added to the segmentation.

Remove segment A segment was removed from the segmentation.

Thus, two sets of state sequences were produced: the set of g seed sequences to

simulate the underlying processes in the state sequences; and the full set of m seed and

perturbed sequences to simulate the noisy manifestation of the underlying processes.

We then computed flow diagrams on both sets.

The full flow diagram will clearly contain more nodes than the seed flow diagram.

We wanted to investigate whether the seed flow diagram appears as a sub-diagram

in the full flow diagram. Furthermore, as the seed diagram will, in general, not be

known, we investigated techniques that could be used to prune the full flow diagram

such that the output would resemble the seed flow diagram. To this end, we adopted a

simple strategy to determine whether the seed flow diagram could be recovered from

CHAPTER 4. FLOW DIAGRAMS 118

20 21 22 23 24 25 26 27 28 29 210

Replication rate
(log2)

20

40

60

80

100

120

140

160

180

N
um

be
r

of
 n

od
es

Perturbation rate
0.0
0.01
0.05
0.1
0.25
0.5

20 21 22 23 24 25 26 27 28 29 210

Replication rate
(log2)

0

2

4

6

8

10

12

14

M
ea

n
in

-d
eg

re
e

Perturbation rate
0.0
0.01
0.05
0.1
0.25
0.5

Figure 4.5: Mean complexity and node in-degree for flow diagrams for perturbed in-
put state sequences. A seed set of 10 state sequences were generated, and test sets
were derived by replicating the seed sequences and applying perturbation operations
to the states. Error bars show minimum, maximum and mean results from repeating
experiment using 10 randomly generated inputs.

full flow diagram. Edges were deleted from the full flow diagram if the associated

“flow” of state sequences across the edge was below a given threshold. Nodes—and

their incident edges—were then removed if the node’s in-degree or out-degree was

zero. This process was repeated until all nodes had non-zero in- and out-degree, and

produced a pruned flow diagram.

The experiments were set up as follows. For each trial, a set of g = 10 seed

trajectories of length n = 20 using an alphabet of size k = 20 were generated. Test

sets of trajectories were generated for combinations of replication rate and perturbation

rate and used as input to the state heuristic algorithm to produce a flow diagram. Ten

trials were carried out for each combination, and the minimum, mean and maximum

complexity and mean in-degree of the resulting flow diagrams were determined. The

results are summarised in Figure 4.5.

The results suggest that the flow diagrams are able to compactly represent the un-

derlying state. As the perturbation rate and replication rate increase, the complexity of

the induced flow diagrams increases, however the increase appears to be linear even as

the replication rate increases exponentially. Even in the worst case in our experiments,

when the input were the seed sequences that had been replicated 1024 times and 50 %

CHAPTER 4. FLOW DIAGRAMS 119

of the nodes had been perturbed, the average complexity of the resulting flow diagram

was 153 compared to 43 for the seed flow diagram, i.e. only ≈ 3.5 times larger than

the seed.

The pruned flow diagrams were also inspected to determine their similarity to the

corresponding seed flow diagram. For each of the flow diagrams computed in the

experiments, pruned flow diagrams were constructed and the complexity and mean

in-degree were captured. Clearly, increasing the replication factor and perturbation

rate of the input state sequences would result in flow diagrams of higher complexity.

By choosing a pruning threshold that removes edges with a low number of associated

sequences, a flow diagram of similar complexity and in-degree distribution could be

found, see Figure 4.6. This pruning strategy was subsequently used to produce com-

pact flow diagrams for the analysis in subsubsection 4.5.4.1.

4.5.3 Shortest Path Selection

The exact algorithms described in Section 4.4 find a shortest s–t path in the prefix

graph to induce the output flow diagramF . There are typically many distinct candidate

shortest paths in the prefix graph, and the choice of the path used to induce the flow

diagram can influence various properties of the induced flow diagram. One option is

to determine the shortest path by defining an objective function to rank the candidates

and select the shortest path that is a maximiser on this function. To make this precise,

letP be the set of shortest s–t paths inG. Define an objective function f : P → R≥0 to

score each shortest path P ∈ P , and select the optimal path P ∗ = arg maxP∈P f(P).

For example, each edge in a shortest path P must advance one or more of the input

sequences, and we can annotate the edges with a count of the number of sequences

advanced. Let f(P) be the minimum edge count of advanced sequences in P , and

choose P ∗ as the path that maximizes the objective function. Each edge induces a

corresponding node in F and thus by choosing P ∗ using this objective, F has the

property that the smallest capacity of all the nodes in F is maximised. This may be

desirable if one wishes to eliminate nodes with small capacity.

CHAPTER 4. FLOW DIAGRAMS 120

s

B

3

M

3

F

R

T

D

A
C

L
3

H

E2

S2

t

S

F

K

B
3

2

J

J

M

G

A
2

C

A

E

3

2

B2

H

I

I
2

F

J E

P

D

2

M N

2

D

O N

C D

H

E T S A

(a)

s

B
20

M
23

F11

D

14

I

6

R

5

8

A11

L

23

S
5

E
20

7

F13

E

3

t

13

H

6

J7

S

5

8

7

3

J

9

K

7

B

6

N

5
6

9 Q

8

A

5

5

A20

11

G

9

C

2

10

9

14

12
3

11

5

5

9

G
7

7

9

5

8

2

11

T

2

5

8

G

2

6

10

D

4

E5

H2 J2

D6 C5

2

A
6

5

2

(b)

Figure 4.6: Flow diagrams computed from same input of 10 state sequences. (a) shows
the flow diagram computed on the seed sequences, and (b) shows the flow diagram
computed on an input where the seed sequences had been replicated 8 times and 10 %
of the states had been perturbed. Much of the structure of the seed flow diagram has
been preserved in the pruned flow diagram, suggesting that the underlying structure of
the input has been recovered.

CHAPTER 4. FLOW DIAGRAMS 121

Table 4.1: Summary of the number of shortest paths (SPs) in a prefix graph constructed
with parameters k = 10,m = 5 and n = 10 using the exact algorithm for general input.
The objective function values are calculated on the number of sequences satisfied by
the criteria associated with each edge in the path. There are large numbers of shortest
paths within the graph, and also paths that optimise a given objective function, however
the induced flow diagram in all cases has the same complexity in both number of edges
and nodes.

Obj. Fnc. # SPs # Optimal SPs Obj. Fnc. Value # FD Nodes # FD Edges
Min 1,731,423 322,028 2.00 16 26
25-th Percentile 1,731,423 146,346 2.25 16 26
Median 1,731,423 146,346 3.50 16 26
75-th Percentile 1,731,423 146,346 4.75 16 26
Mean 1,731,423 146,346 3.50 16 26

On the other hand, using an objective function of median or mean sequence count

may produce a flow diagram with different characteristics. Analogously to the greedy

strategy used in the heuristic algorithms, f(P) may be calculated using either the num-

ber of sequences, or the total number of states that are advanced by the criteria associ-

ated with each edge in the path. In this section we describe the experiments undertaken

to explore what impact the choice of objective function has on the resulting flow dia-

grams.

For a given G, there is often a large number of candidate shortest paths P in the

prefix graph. Furthermore, for a given f(P), there may also be many shortest paths

that optimise f(P), see Table 4.1. We analysed the shortest paths and induced flow di-

agrams, and found two phenomena that may explain why there are many such shortest

paths.

First, two or more distinct shortest paths in G may induce flow diagrams that are

isomorphic and have the same criteria applied to each node. As a simple example,

consider an input of two sequences τ1 and τ2, each consisting of a single state, and each

sequence is segmented with a single segment fulfilling criteria C1 and C2 respectively.

The computed prefix graph will contain two shortest paths, however both will induce

an identical flow diagram, see Figure 4.7.

Secondly, the prefix graph is a multi-graph where any two incident vertices may be

linked by multiple edges, each labelled with a different criteria. Thus, if two vertices u

CHAPTER 4. FLOW DIAGRAMS 122

τ1 τ2

1 [C1] [C2]

(a)

C1

0 1

0

1

τ1

τ2

vs

vt
t

s

C2

(b)

s

C1

C2

t

(c)

Figure 4.7: Even simple inputs can result in multiple shortest paths in the prefix graph
that, in turn, induce identical flow diagrams.

and v are incident and are connected by multiple edges, then if there exists a shortest

path using one of the multi-edges, then there will be a shortest path for each of the

multi-edges. Each set of multi-edges connecting two vertices in the prefix graph will

thus induce a set of flow diagrams that are isomorphic, other than that the node that

corresponds to the multi-edge will be labelled with a different criteria.

Clearly, the existence of many isomorphic flow diagrams, some with nodes labelled

with identical criteria, is not ideal. On the other hand, the set of candidate flow dia-

grams that are produced from a given input may contain insights into the selection of

the best candidate.

4.5.4 Tactical Analysis in Football

Sports teams will apply tactics to improve their performance, and computational meth-

ods to detect, analyse and represent tactics have been the subject of several recent

research efforts [17], [96], [140], [188], [191], [194]. See also the recent survey [94].

Two manifestations of team tactics are in the persistent and repeated occurrence of spa-

tial formations of players, and in plays — a coordinated sequence of actions by players

during an interval where a single team retains possession of the ball. We posited that

flow diagrams would be a useful tool for compactly representing both these manifes-

tations. Next, we describe the two approaches used in this section.

The input for the experiments is a database containing player trajectory and match

event data from four home matches of the Arsenal Football Club from the 2007/08

season, provided by [180]. For each player and match, there is a trajectory comprising

CHAPTER 4. FLOW DIAGRAMS 123

Table 4.2: Summary of the performance of the algorithms for the two football experi-
ments. The columns are the runtime of the algorithm, the size of the input number of
sequences (n), the total number of segments applied to the sequences, and the number
of nodes and edges in the output flow diagram.

Runtime (s) # Sequences # Segments # States # Nodes # Edges
Formation 0.08 153 1492 1238 32 98
Formation (Pruned) – – – – 14 38
Possession: Home 0.04 66 866 1157 21 38
Possession: Visiting 0.01 38 358 483 16 28

a sequence of time-stamped location points in the plane, sampled at 10 Hz and accurate

to 10 cm. The origin of the coordinate system coincides with the centre point of the

playing-area and the longer side of the playing-area is parallel to the x-axis — i.e. the

playing-area is oriented so the goals are to the left and right. In addition, for each

match, there is a log of all the match events, comprising the type, time-stamp and

location of each event.

This data is used to generate two distinct inputs for the flow diagram algorithms,

and the resulting flow diagrams are evaluated. Table 4.2 summarises the runtime per-

formance and complexity of the inputs and outputs.

4.5.4.1 Defensive Formations

The spatial formations of players in football matches are known to characterize a

team’s tactics [16], and a compact representation of how formations change over time

would be a useful tool for analysis. We investigated whether a flow diagram could pro-

vide such a compact representation of the defensive formation of a team, specifically

to show how the formation evolves during a phase of play. In our match database, all

the teams use a formation of four defensive players who orient themselves along a line

across the playing-area. Broadly speaking, the ideal is for the formation to be “flat”,

i.e. the players are positioned along a line parallel to the y-axis. However the defenders

will react to changes in circumstances, for example in response to opposition attacks,

possibly causing the formation to deform. We constructed the following flow diagram

to analyse the defensive formations used in the football matches in our database.

CHAPTER 4. FLOW DIAGRAMS 124

For each match in the database, the trajectories of the four defensive players were

re-sampled at one-second intervals to extract the point-locations of the four defend-

ers. The samples were partitioned into sequences T = {τ1, . . . , τm} corresponding to

intervals such that a single team was in possession of the ball. Let τi[j] be the j-th

state in the i-th state sequence. Each τi[j] = (p1, p2, p3, p4), where pi is the loca-

tion of a player in the plane, such that the locations are ordered by their y-coordinate:

y(pi) ≤ y(pi+1) : i ∈ {1, 2, 3}.

The criteria used to summarise the formations were derived from those presented

by Kim et al. [121]. The angles between pairs of adjacent players (along the defen-

sive line) were used to compute the formation criteria, see Figure 4.8. The scheme

in Kim et al. was extended to allow multiple criteria to be applied where the angle

between pairs of players is close to the threshold between intervals. The reason for

this was to facilitate compact results by allowing for smoothing of small variations in

contiguous states.

The criteria C applied to each state is a triple (x1, x2, x3), computed as follows.

Given two player positions p and q as points in the plane such that y(p) ≤ y(q),

let p′ be an arbitrary point on the interior of the half-line from p in the direction

of the positive y-axis, and let ∠p′pq be the angle induced by these points, and thus

denotes the angle between the two player’s positions relative to the goal-line. Let

R(−1) = [−90◦,−10◦), R(0) = (−30◦,+30◦), and R(1) = (+10◦,+90◦] be three

angular ranges. Thus, C =
{

(x1, x2, x3) : x1, x2, x3 ∈ {−1, 0, 1}
}

is the set of 27

available criteria.

Each state sequence τi ∈ T is segmented according to the criteria set C. A given

state τi[j] = (p1, p2, p3, p4) may satisfy the criteria (and thus have the formation)

(x1, x2, x3) if ∠p′ipipi+1 ∈ R(xi) for all i ∈ {1, 2, 3}.

The state heuristic algorithm was run on an input of 153 state sequences derived

from the morphology of the defensive formations of a single team in four matches

when the opposing team is attacking, and the possession ends with a shot at goal or

a tackle or foul within 30 m of goal. The induced flow diagram was then pruned by

CHAPTER 4. FLOW DIAGRAMS 125

1 2 3 4 5 6 7 8 9 10

State Timestep

(-1,0,0) (0,-1,0)

(0,0,0)

(0,-1,+1)

(0,0,+1)

Figure 4.8: Segmentation of a single state sequence τi. The formation state sequence
is used to compute the segmentation representation, where segments corresponding
to criteria span the state sequence (bottom). The “gauges” near each edge show the
intervals for the criteria, and edges in the yellow interval will result the formation
fulfilling two criteria.

removing low-volume edges associated with only a single edge, see Figure 4.9.

The resulting flow diagram produces a compact summary of the team’s defensive

strategy, and several observations can readily be made. The defenders are able to

maintain a stable (0,0,0) formation—a flat back-four—for many of the possessions. In

57 possessions (37.3 %), the defense maintained this formation for the duration. Fur-

thermore, in 14 (9.2 %) other cases, the defenders began with a flat back-four, and

then changed to another formation before returning to the original formation. The flat

back-four is generally known to be an effective formation for defenses to use when

attempting an offside trap—a defensive tactic that has the objective of trapping an op-

position player in an offside position, and thus winning a free-kick. The flow diagram

makes it clear that this team prefers a flat back-four and thus may favour the offside

trap. An insight such as this would appear be useful to a coach when analysing the

tactics of an opponent in an upcoming match.

The flow diagram also suggests that the defenders are able to maintain a stable

CHAPTER 4. FLOW DIAGRAMS 126

ts

Figure 4.9: Flow diagram for formation morphologies of 153 defensive possessions.
The flow diagram was pruned to remove edges associated with only a single state
sequence. The size of the nodes and weights of the edges are sized to reflect the “flow”
of sequences passing through them.

formation. The s–t paths within the graph are short, with a maximum path length of

5 states. This suggests that the team is well-organised defensively, and able to maintain

a preferred formation persistently, in the face various opposition attacks.

4.5.4.2 Attacking Plays

In this second experiment, we used a different formulation to produce flow diagrams

to summarise phases of attack. During a match, the team in possession of the ball

regularly attempts to reach a position where they can take a shot at goal, and will

use a variety of tactics to achieve such a position. For example, teams can vary the

intensity of an attack by pushing forward, moving laterally, making long passes, or

retreating and regrouping. We modelled attacking possessions as state sequences, seg-

mented according to criteria representing the attacking intensity and tactics employed,

and computed flow diagrams for the possessions. In particular, we were interested in

determining whether differences in tactics employed by teams when playing at home

CHAPTER 4. FLOW DIAGRAMS 127

Table 4.3: The criteria applied to the attacking sequences, including the symbols used
in the flow diagrams to represent each movement type.

C1 Backward movement: vx(τi[j]) < 1 — a sub-sequence of passes or touches that move in a
defensive direction.

C2 Lateral movement: −5 < vx(τi[j]) < 5 — passes or touches that move in a lateral direction.

C3 Forward movement: −1 < vx(τi[j]) < 12 — passes or touches that move in an attacking
direction, at a velocity in the range achievable by a player sprinting, i.e. approximately 12m/s.

C4 Fast forward movement: 8 < vx(τi[j]) — passes or touches moving in an attacking direction at a
velocity generally in excess of maximum player velocity.

C5 Long ball: 30 < dx(τi[j]) — a single pass travelling 30m in the attacking direction.

C6 Cross-field ball: 20 < dy(τi[j]) ∧ ∠τi[j] ∈ [−10, 10] ∪ [170, 190] — a single pass travelling
20m in the cross-field direction with an angle within 10◦ of the y-axis.

C7 Shot resulting in goal: a successful shot resulting in a goal.

C8 Shot not resulting in goal: a shot that does not produce a goal.

or away, see [17], are apparent in the flow diagrams.

We focus on ball events, where a player touches the ball, e.g. passes, touches,

dribbles, headers, and shots at goal. The event sequence for each match was partitioned

into sequences T = {τ1, . . . , τm} such that each τi is an event sequence where a single

team was in possession, and T includes only the sequences that end with a shot at

goal. Let τi[j] be a tuple (p, t, e) where p is the location point in the plane where an

event of type e ∈ {touch, pass , dribble, header , shot , clearance} occurred at time t.

We are interested in the movement of the ball between an event state τi[j] and the

next event state τi[j + 1], in particular, let dx(τi[j]) (resp. dy(τi[j])) be the distance

in the x-direction (resp. y-direction) between state τi[j] and the next state. Similarly,

let vx(τi[j]) (resp. vy(τi[j])) be the velocity of the ball in the x-direction (resp. y-

direction) between τi[j] and its successor state. Let ∠τi[j] be the angle defined by the

location of τi[j], τi[j + 1] and a point on the interior of the half-line from the location

of τi[j] in the positive y-direction.

Criteria were defined to characterise the movement of the ball — relative to the

goal the team is attacking — between event states in the possession sequence. The

definitions of the criteria C = {C1, . . . , C8} are presented in Table 4.3.

For a football analyst, the first four criteria are simple movements, and may not be

CHAPTER 4. FLOW DIAGRAMS 128

s t

Figure 4.10: Flow diagram for the home team. The edges with thicker stroke weight
are supported by at least ten attack sequences.

particularly interesting. The last four events are likely to be more significant: the long

ball and cross-field ball change the locus of attack; and the shot criteria represent the

objective of an attack.

The possession state sequences for the home and visiting teams were segmented

according to the criteria and the state heuristic algorithm was used to compute the

flow diagrams. The home-team input consisted of 66 sequences covered by a total

of 866 segments, and resulted in a flow diagram with 21 nodes and 38 edges, see

Figure 4.10. Similarly, the visiting-team input consisted of 39 state sequences covered

by 358 segments and the output flow diagram complexity was 16 nodes and 28 edges,

as shown in Figure 4.11.

At first glance, the differences between these flow diagrams may be difficult to

appreciate, however closer inspection reveals several interesting observations. The s–

t paths in the home-team flow diagram tend to be longer than those in the visiting

team’s, suggesting that the home team tends to retain possession of the ball for longer,

CHAPTER 4. FLOW DIAGRAMS 129

s t

Figure 4.11: Flow diagram for the visiting team. The edges with thicker stroke weight
are supported by at least ten attack sequences.

and varies the intensity of attack more often. Moreover, the nodes for cross-field passes

and long-ball passes to occur earlier in the s–t paths in the visiting team’s flow diagram.

These are both useful tactics as they alter the locus of attack, however they also carry a

higher risk. This suggests that the home team is more confident in its ability to maintain

possession for long attack possessions, and will only resort to such risky tactics later in

a possession. Furthermore, the tactics used by the team in possession are also impacted

by the defensive tactics. As Bialkowski et al. [17] found, visiting teams tend to set their

defence deeper, i.e. closer to the goal they are defending. When the visiting team is

in possession, there is thus likely to be more space behind the home team’s defensive

line, and the long ball may appear to be a more appealing tactic. The observations

made from these are consistent with our basic understanding of football tactics, and

suggest that the flow diagrams are interpretable in this application domain.

4.6 Conclusion

We introduced flow diagrams as a compact representation of a large number of state

sequences. We argued that this representation gives an intuitive summary allowing the

user to detect patterns among large sets of state sequences, and gave several algorithms

depending on the properties of the segmentation criteria. These algorithms only run

CHAPTER 4. FLOW DIAGRAMS 130

in polynomial time if the number of state sequences m is constant, which is the best

we can hope for given the problem is W [1]-hard when m is a parameter. As a result

we considered two heuristic algorithms capable of processing large data sets in rea-

sonable time, however we were unable to give an approximation bound. We tested the

algorithms experimentally to assess the utility of the flow diagram representation in a

sports analysis context, and also analysed the performance of the algorithms of inputs

of varying parameterisations.

Chapter 5

Integrated Clustering and Outlier

Detection

As data set sizes continue to explode there is an urgent need to be able to process,

browse, explore and navigate large, highly- or infinitely-dimensional data sets. Many

visualization techniques are based on some form of dimensionality reduction and are

plagued with distortion errors leading to ambiguity and misinterpretation. In this pa-

per we make a radical departure and use a principled approach based on optimization

duality to visualize and browse the data space in an unsupervised fashion.

In the specific case of trajectory analysis, there is a natural visualisation of the

trajectories in their original Euclidean space, for example in the plane, however it is

often difficult to discern much more than the general distribution of the trajectories

in the space. For all but the most simple inputs, the trajectories will often intersect

with themselves and other trajectories, and it is difficult to identify properties such as

the shape, length and orientation. This issue is particularly acute for football player

trajectories, but as we will see, can occur in other applications.

The two prominent unsupervised learning tasks of clustering and outlier detection

have traditionally been considered separately. However, there is a growing body of

work that considers them in unison. In fact the clustering and outlier detection tasks

have a “dual” relationship—a data point located deep inside a cluster is a non-outlier.

131

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 132

Conversely, the outliers are, by definition, those points that are not part of a cluster.

We model the problem as the facility location with outliers problem (FLO). The

input is a set of data points C, an establishment cost fj for setting data point j as an

exemplar, a connection cost dij for connecting data point i to exemplar j, and an outlier

allowance ` that permits exactly ` data points to be treated as outliers. The problem is

to find a set of exemplars E ⊆ C, a set of ` data points that are outliers O ∈ C, and an

assignment of the remaining n − ` data points connecting each point to an exemplar,

such that the sum of the establishment costs of the exemplars and the connection costs

of the connected data points is minimised.

This problem is known to be NP-hard [97], and furthermore cannot be approxi-

mated with in factor of 1.822 under the Euclidean metric or 3 − ε under a general

metric, unless P = NP [44]. We consider two distinct techniques for efficiently finding

a good approximate solution the FLO problem that approach the problem from signif-

icantly different perspectives: the Lagrangian heuristic algorithm (LH) and the affin-

ity propagation algorithm (AP). Both the techniques model the problem as an integer

program, but with significantly different formulations, and from these formulations

heuristic algorithms are derived. The LH algorithm uses a Lagrangian relaxation of

the FLO problem which can be solved using the subgradient algorithm [15]. The AP

algorithm is a message passing algorithm [126] based on a formulation of the problem

as a probabilistic graphical model. Both algorithms are iterative, simple to implement,

and will often efficiently find a feasible solution. Although neither algorithms offers

an optimality guarantee, or even a guarantee of finding a feasible solution, they have

been shown to work well in practice, finding near optimal solutions in a small number

of iterations.

Both formulations define a set of auxiliary variables which is used to guide the

algorithm towards a good solution: the Lagrangian dual variables for the LH algo-

rithm and the message variables for the AP algorithm. By monitoring these auxiliary

variables over the iterations of the algorithms, a time-series is generated. These time-

series produce an implicitly two-dimensional representation of data regardless of the

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 133

(a) A stable cluster (b) A less stable cluster

(c) An unstable cluster (d) The outliers

Figure 5.1: The data represented in the Lagrangian space. All figures show how the
Lagrangian multiplier changes as the algorithm iterates towards termination.

original dimensionality of the data. We claim that representation is an effective means

of visualizing the cluster properties of the input data, and can furthermore be used to

monitor performance of the heuristic algorithms.

Example Figure 5.1 shows the sequence of Lagrangian multipliers (λ) for data points

in three clusters (a)–(c) and a set of outliers (d). Several interesting observations can be

made by visual inspection: the cluster in (a) stabilizes by the 50-th iteration and thus

is likely to be more compact, while the cluster in (c) is less stable and the Lagrangian

multiplier values are oscillating until the end of the algorithm execution. The cluster

in (b) has intermediate stability relative to (a) and (c). Finally, the fact that the cluster

in (c) does not stabilize until around 320 iterations, long after the remaining clusters

and the outliers have stabilized suggests that the data point chosen as exemplar was

oscillating between two or more candidate data points.

The remainder of this chapter is structured as follows. In Section 5.1 we review

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 134

the related work to this problem. The problem is formally defined and the formula-

tions for the Lagrangian heuristic and affinity propagation algorithm are presented in

Section 5.2. For the Lagrangian heuristic algorithm we propose a modification to the

algorithm in Ott et al. [158], which we argue is an improvement. Furthermore, we

present a new affinity propagation formulation for the FLO problem, that requires

fewer variables and is more interpretable in comparison to the previous known formu-

lation in [158]. We then define the visualisation method on the auxiliary variables for

both the LH and AP algorithms.

In Section 5.3 we report on the process used to find the improved LH algorithm

as a case study to demonstrate the utility of the proposed visualisation method for un-

derstanding the execution properties of the algorithm. We used the dual visualisation

method presented in Section 5.2 to uncover an issue with the original formulation of

the LH algorithm, and to validate that the improved algorithm is free from this is-

sue. Finally, Section 5.4 contains the results of experiments to evaluate the presented

algorithms on synthetic and real datasets in order to illustrate their effectiveness. In

particular, we segment trajectories made by attacking players during a football match,

and then cluster under the flow diagram. The auxiliary variable visualisation tech-

nique is used to show several interesting observations about the obtained clusters and

outliers.

5.1 Related Work

Clustering and outlier detection have often been treated as distinct unsupervised learn-

ing tasks [4], [42]. The trend to treat them in a combined fashion is relatively recent

but is growing in interest [46], [87], [99], [158].

Some early work in this area was made to design an approximation algorithm for

the FLO problem, with a guarantee on the optimality of the solution. Jain and Vazirani

[117] used a primal-dual approach to formulate a 3-approximation for the metric facil-

ity location problem, and this algorithm was modified by Charikar et al. [44] to solve

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 135

the FLO problem. While the approach was of theoretical interest, the algorithm was

not practical for many inputs, and furthermore the optimality bound was quite large,

particularly in comparison to the results that were obtainable by heuristics.

The method of using Lagrangian relaxations on integer problems was first used by

Held and Karp [104], [105] to devise an algorithm for the travelling salesman prob-

lem. The approach was then applied to many combinatoric optimization problems—

including the facility location problem—to identify lower bounds on the objective

function value and to devise efficient algorithms, see Fisher [71] for a survey. There

have been several algorithms proposed to solve the relaxed version of the facility loca-

tion problem [12], [59]. The approach taken in this paper is based on the subgradient

algorithm [15, chap. 4], which uses the subgradient method to optimise the piece-wise

linear concave Lagrangian dual problem [174].

A fundamentally different approach to the facility location problem was presented

by Frey and Dueck [82], by formulating the problem as a factor model and defining

an energy function to optimise on the factors [124, chap. 11]. A solution to the prob-

lem can then be efficiently computed by using the sum-product algorithm [126]. This

model was subsequently refined in [88], [131].

From an optimization perspective our work is most similar to that in Ott et al. [158]

for the LH algorithm and Lazic et al. [131] for the AP algorithm. However there are

key differences: (i) our emphasis is on using the auxiliary variables to create a dual

space, and to map and browse the data in that space; (ii) at a technical level we solve

the intermediate problem for the LH algorithm in a significantly different fashion; and

(iii) we extend the factor model used by Lazic et al. to support outliers.

5.2 Method

We model the joint clustering and outlier detection task as a facility location problem

with outliers. Given an instance of the problem as:

• C = {1, . . . , n} data points,

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 136

• a vector f where fj is the exemplar establishment costs of data point j,

• a matrix d such that dij is the connection cost of assigning point i to exemplar j,

and

• a parameter ` ∈ Z≥0 that is number of outliers allowed.

We wish to find a subset E ⊆ C of points designated as exemplars, an assignment

of n − ` data points to exactly one exemplar from E with the remaining ` data points

O ∈ C assigned as outliers, such that the assignment minimises the total establishment

cost of the exemplars and connection cost incurred by connecting the non-outlier points

to their nearest exemplar.

The primal problem can be formalized as an integer program, defined as

FLO ≡ min
x,o

∑

j

fjxjj +
∑

i

∑

j

dijxij (5.1a)

subject to xij ≤ xjj (5.1b)

oi +
∑

j

xij = 1 (5.1c)

∑

i

oi = ` (5.1d)

xij, oi ∈ {0, 1} (5.1e)

and denote the obtained minimal objective function value as Zp.

Given an assignment to x and o that are a minimiser for the problem, we can

recover the cluster and outlier assignment as follows. The selected exemplars lie on

the diagonal of x and can be recovered as {j | xjj = 1}. The assignment of points

to exemplars is recovered as {(i, j) | xij = 1} and the points selected as outliers are

{i | oi = 1}.

The constraints enforce a feasible solution:

• points can only be assigned to valid exemplars (5.1b);

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 137

• every point must be assigned to exactly one other point or be declared an outlier

(5.1c);

• exactly ` outliers have to be selected (5.1d);

• only integer solutions are allowed (5.1e).

This formulation describes the facility location problem [63] with the addition of out-

lier selection.

Furthermore, for a given assignment to x and o, hp computes the objective function

value:

hp(x,y) =
∑

j

fjxjj +
∑

i

∑

j

dijxij.

In the sequel we formalise the proposed Lagrangian heuristic and affinity propaga-

tion algorithms that solve the FLO problem.

5.2.1 Lagrangian Heuristic Algorithm

The LH algorithm is a simple iterative algorithm for finding an approximate solution to

the FLO problem. One or more of the constraints in the primal problem are relaxed to

obtain a simpler problem, which is parameterized by two sets of variables: the original

primal variables and the dual variables: the Lagrangian multipliers created during the

relaxation. The primal and relaxed problems exhibit weak duality in the sense that

for a fixed assignment to the primal variables the assignment of dual variables that is

a maximiser of the relaxed problem is a lower bound on the objective in the primal

problem, and vice versa. This suggests an approach to finding a good solution to

the primal problem by alternately solving the relaxed problem in the primal and dual

variables until such time as the gap between the primal and dual objectives are small.

The algorithm presented here is a version of the subgradient algorithm and uses this

approach.

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 138

The Relaxed Problem The first step is to relax one or more of the “tough” con-

straints of the FLO problem by removing the constraint and adding a new term to the

objective with an associated coefficient, known as the Lagrangian multiplier λ ∈ Rn.

The Lagrangian multiplier λ can be considered as the penalties incurred for the viola-

tion of each of the relaxed constraints.

For the FLO problem, we relax the constraint (5.1c): oi +
∑

j xij = 1 for each

i ∈ C and associate a Lagrange multiplier λi with the objective term to obtain the

relaxed problem FLO(λ)

FLO(λ) ≡ min
x,o

∑

j

fjxjj +
∑

i

∑

j

dijxij +
∑

i

(1− oi −
∑

j

xij)λi (5.2)

subject to xij ≤ xjj
∑

i

oi = `

xij, oi ∈ {0, 1} ∀i, j

This is a minimisation problem in the primal variables x and o, for a given λ. We

could also look to maximise the dual variables λ for FLO(λ) to find the tightest lower

bound on the relaxed objective, thus giving the dual problem FLOD

FLOD ≡ max
λ

FLO(λ) (5.3)

subject to λi free ∀i

and denote Zd as the obtained optimal objective function value for the problem. This

is an unconstrained optimisation problem on a piecewise linear objective function [15,

chap. 4] and this can be solved using the subgradient method [174], a numerical opti-

misation technique. The dual problem implies an assignment of the primal variables,

and although it does not directly help us find an optimal assignment of the primal

variables, we can use the technique as part of the heuristic subgradient algorithm, de-

scribed below.

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 139

Interpretation of Lagrangian Multipliers We use the following interpretation of

the FLO(λ) problem to reason about the algorithm, and we will show that this inter-

pretation implies an algorithm that out-performs the existing algorithm presented in

Ott et al. [158]. This interpretation closely follows a similar argument that Jain and

Vazirani [117] used in designing their primal-dual algorithm for facility location.

Intuitively, λi can be thought of as a budget that point i is willing to “expend” to

pay to connect to an exemplar j. However, j can only be an exemplar if it is connected

to by a set of points who have sufficient surplus budget—after paying the connection

cost—to cover the establishment cost of j. Thus, a point i can expend its budget λi with

an exemplar j in two ways: first by paying the connection cost dij to j; and secondly

by contributing to the establishment cost fj of j. Furthermore, ` points can be chosen

as outliers, and thus not pay to connect to any exemplar. Intuitively, a point i would be

an outlier if it has insufficient budget to connect to its nearest exemplar.

Under this interpretation, the relaxed problem (5.2) is parameterised with the bud-

gets λ that each point is willing to pay, and the objective is to choose the exemplars

that nearby points are willing to pay to connect to, and cover their share of the estab-

lishment cost, such that the total expenditure is minimised. Taking (5.2) and arranging

the terms of the objective function, we have

hd(x,o, λ) =
∑

i

(1− oi)λi +
∑

j

[
fjxjj −

∑

i

(λi − dij)xij
]

(5.4)

where hd is the objective function value obtained for a given assignment of the primal

and dual variables. This formulation gives an insight into the structure of the problem.

It would appear, at face value, that selecting outliers as the points with the largest λi

and thus minimising the first term in (5.4) would be a good strategy for finding an

optimal assignment, however there is also the opportunity cost that must be paid for

the remaining points to be connected to exemplars, and thus a more nuanced approach

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 140

is necessary. To see this, let

µj = fj −
∑

i

max
[
λi − dij, 0

]
.

The value of µj for a given λ is a measure of whether there are a sufficient number of

data points who have budget to connect to j, and pay the total establishment cost of

j. Thus if µj < 0 then j is a good candidate to be an exemplar. It should be clear,

however, that if outliers are selected where λi is relatively large, any contribution that

point i is making to a µj will be removed. There is thus a conflict in that a “large” value

of λi which implies that i is an outlier, and that i is willing to pay the connection and

a share of the establishment cost of an exemplar. Resolving this conflict is the main

insight behind the improved LH algorithm we present here, and is manifested in the

strategy for solving the relaxed problem by inspection, below.

Next, given the budget λi that data point i is willing to expend to connect to an

exemplar, let E = {j | µj < 0} be the subset of C that are “paid for” as exemplars. Let

δi = λi −min
j∈E

dij.

This value represents the total surplus (or deficit) budget that data point i has to con-

tribute to its nearest exemplar. If δi ≥ 0 then point i can connect to its nearest exemplar

and possibly contribute to the establishment cost of the exemplar, and if δi < 0 then

this indicates that i is an outlier, as it is unwilling to pay even the connection cost to its

closest exemplar.

Under this interpretation, it would appear that the ideal quantities for dual variables

would satisfy the following conditions:

Proposition 5.1. For a primal feasible assignment of x and o, the following properties

of the dual variables λ, µ and δ are desirable:

1. Each outlier i has insufficient budget to connect to the nearest exemplar, i.e.

δi < 0.

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 141

2. For each exemplar j, the total budget of all points that connect to j covers the

total connection cost and the establishment cost, with no surplus, i.e. µj = 0.

3. For each point i connected to an exemplar j, i has sufficient budget to cover

its connection cost, and makes a non-negative contribution to the establishment

cost of j, i.e. δi ≥ 0.

Although it is not possible to provide any guarantee on optimality, there is good

reason to suggest that an assignment satisfying these conditions is a good assignment.

As we will show, the strategy we use for selecting outliers, combined with these con-

ditions implies some useful properties for an obtained solution. Furthermore, we find

experimentally that these conditions are indeed met in most cases—at least up to a

small error—see Figure 5.5 and Subsection 5.4.2.

The values λi, µj and δi each give a perspective into the state of the execution of

the algorithm for each iteration, and we use these to construct time-series to monitor

the system, see Subsection 5.2.3.

The Subgradient Algorithm The LH algorithm presented here is a specific instance

of the subgradient algorithm. This algorithm seeks to obtain an assignment of the pri-

mal variables to obtain a primal objective function value that is close to the optimal

value. Starting from an initial assignment of the dual variables, the algorithm alter-

nately finds an assignment of the primal variables that approximately optimises the

relaxed objective and then an assignment of the dual variables that improves the dual

objective.

The approach taken for finding the primal and dual assignments are distinct. To

find an assignment of the primal variables, we solve by inspection to obtain, in time

polynomial in n, an assignment of x and o, that is feasible in the relaxed problem,

and induces a good—though not provably optimal—objective function value. There

is a trade-off, where optimality is sacrificed for performance, and we describe the

procedure for finding this assignment in the sequel.

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 142

The dual assignment is found by computing a subgradient si of λi for each i, and

then performing one step of the subgradient method [174], which is a gradient ascent

algorithm that finds the optimal value of a non-differentiable concave function—such

as FLO(λ). The algorithm works by computing a subgradient of the objective function

by updating λ in the direction of the subgradient s by a certain step-length θ, see

Algorithm 2. The step-length may change at each iteration, and the update rule for the

dual variables in iteration t is

λt+1
i = max(λti + θtsi, 0).

Algorithm 2 The Lagrangian Heuristic
1: procedure SUBGRADIENTALGORITHM(d, f , `, α, θ)
2: λ0 ← 0, t← 1 . Initialise
3: Ẑp ←∞, Ẑd ← −∞ . Objective estimates
4: while |Ẑp − Ẑd| > ε and t ≤ tlimit do
5: x,o, Ẑp, Ẑd ← SOLVERELAXED(λt,d, f , `) . Solve by inspection
6: for all i ∈ C do . Update subgradient
7: si ← 1− oi −

∑
j xij

8: end for
9: λt ← max

[
λt−1 + θs, 0

]
. Update λ

10: θ ← αθ . Update step-length
11: t← t+ 1
12: end while
13: return x,o
14: end procedure

Under certain technical conditions on the step-length at each iteration, the subgradi-

ent method is guaranteed to converge. One such set of conditions is that the step-length

is non-summable and diminishing:

lim
t→∞

θt = 0,
∞∑

t=1

θt =∞, θt ≥ 0.

We use the following step-length rule, which satisfies the conditions. Given an initial

step value θ0 and a decay parameter α ∈ [0, 1), we compute the step-length θt for

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 143

iteration t of the algorithm as

θt = θt−1α.

It is important to note that this convergence guarantee for the subgradient method does

not imply a similar guarantee for the subgradient algorithm, where the primal assign-

ment that obtains FLO(λ) is not necessarily optimal. However, the algorithm has been

shown to work well in practice on a variety of problems [15, chap. 4], and is numeri-

cally stable. As we will see in Section 5.4, the algorithm works well for this problem

too.

Computing the Subgradient One possible subgradient si of λi for FLO(λ) is the

derivative of FLO(λ) with respect to λi:

si = 1− oi −
∑

j

xij

For each data point i, the subgradient si is thus one less the number of times i is

assigned—either as an outlier or to an exemplar. For an assignment that is feasible

in the primal problem, we require each i to be assigned exactly once, i.e. si = 0.

Similarly, if i is under-assigned then si = 1, and if i is over-assigned the si < 0.

During the execution of the algorithm, the value of λi for the next iteration is λi + θsi,

and an under-assignment will increase λi, an over-assignment will decrease it, and a

feasible assignment will leave it unchanged. Thus, the number of times that a point i

is assigned when solving the relaxed problem signals the direction in which λi should

be updated.

Solving the Relaxed Problem by Inspection The key step that allows the Lagrangian

heuristic algorithm to find near-optimal solutions efficiently is that the relaxed prob-

lem may be solved by inspection in time polynomial in n. The goal of this step is to

find, for a fixed assignment of λ, an assignment of the primal variables x and o that is

feasible in the relaxed problem, and yields a value of the objective function hd that is

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 144

near optimal.

The assignment is found by performing the following three steps:

1. Select exemplars;

2. Select outliers;

3. Assign remaining points to exemplars;

As we observed above, choosing the outliers and exemplar assignments separately

may not give a good solution. This approach was used in Ott et al. [158], and we

present a simple modification this strategy for outlier selection, that we show yields

empirically better performance.

Exemplars are selected when the candidate point is paid for, let E = {j | µj < 0}

be the set of exemplars. Let

χi = λi − δi = min
[
λi,min

j∈E
dij
]
,

i.e. χi is the lesser of the value of λi or the distance from point i to the nearest paid-

for exemplar j ∈ E . The outliers are selected as the ` points that obtain the ` largest

values of χ: let u1, . . . , un → C be an ordering of C such that χui ≥ χui′∀i < i′, and

O = {u1, . . . , u`} be the set of outliers. This implies that a point i will not be selected

as an outlier if it is relatively close to an exemplar, regardless of the value of λi. Finally,

a point i is connected to an exemplar j ∈ E when i is a non-outlier contributing to the

establishment cost of j, and let A = {(i, j) | i ∈ C \ O, j ∈ E , δij > 0} be the set of

pairs defining the connections.

A high-level algorithm description for solving the relaxed problem by inspection is

given in Algorithm 3.

The strategy for choosing outliers, exemplars and connections between points and

exemplars may not appear obvious, but the following observation suggests that this

strategy may be sound.

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 145

Algorithm 3 Solve FLO(λ) by inspection
1: procedure SOLVERELAXED(λ,d, f , `)
2: E ← O
3: for all j ∈ C do . Determine exemplars
4: µj ← fj −

∑
i

[
max(λi − dij , 0)

]

5: if µj < 0 then
6: E ← E ∪ {j}
7: end if
8: end for
9: for all i ∈ C do . Determine outliers

10: δi ← λi −minj∈E dij
11: χi ← λi − δi
12: end for
13: u1, . . . , un ← ordering of C according to χi
14: O ← {u1, . . . , u`} . Outliers are ` points with largest χi
15: A ← {(i, j) | i ∈ C \ O, j ∈ E , δij ≥ 0} . Determine connections

16: x← 0,o← 0
17: for all (i, j) ∈ A do . Set connections
18: xij ← 1
19: end for
20: for all j ∈ E do . Set exemplars
21: xjj ← 1
22: end for
23: for all i ∈ O do . Set outliers
24: oi ← 1
25: end for

26: Ẑp =
∑

j fjxjj +
∑

i

∑
j dijxij . Estimated primal objective value

27: Ẑd = Ẑp +
∑

i

(
1− oi −

∑
j xij

)
λi . Estimated Lagrangian relaxed objective value

28: return x,o, Ẑp, Ẑd
29: end procedure

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 146

Observation 5.1. For E , A and O that is an optimising assignment for the FLO prob-

lem, the distance from any outlier i ∈ O to its nearest exemplar will not be less than

the distance of any connected data point i′ ∈ C \ O to its nearest exemplar.

Clearly, this is a necessary condition for an optimal assignment—otherwise simply

replacing i with i′ as an outlier, and connecting i to its nearest exemplar would result

in an other feasible assignment with a smaller primal objective function, contradicting

the optimality assertion.

We claim that in situations where the LH algorithm finds a feasible assignment to

the primal problem, then this condition will hold. For any connected data point i′ we

have, by construction, that

δ′i ≥ 0 ⇐⇒ min
j∈E

di′j ≤ λ′i

And since, for i′ and any outlier i

χi′ ≤ χi

⇐⇒ min
[
λi′ ,min

j∈E
di′j
]
≤ min

[
λi,min

j∈E
dij
]

⇐⇒ min
j∈E

di′j ≤ min
j∈E

dij

Furthermore, recall that u` is the `-th outlier selected. We also have that, for all

non-outliers minj∈E di′j < λu` and thus λu` is an upper bound on the connection cost

of all the connected data points.

5.2.2 Affinity Propagation

The affinity propagation algorithm is another technique for solving the discrete op-

timization problems and which approaches the problem from a completely different

perspective. The AP algorithm models the problem as a type of probabilistic graphical

model known as a factor model, which represents a Gibbs distribution of the likeli-

hood of a variable assignment. Performing maximum a posteriori (MAP) inference

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 147

x11

S11

xi1

Si1

xn1

Sn1

E1

x1j

S1j

xij

Sij

xnj

Snj

Ej

x1n

S1n

xin

Sin

xnn

Snn

En

I1

Ii

In

o1

oi

on

A

Figure 5.2: Graphical model for FLO problem. The variable nodes are drawn as
circles and the factor nodes as filled squares. Each factor function is parameterised by
one or more variables, and the corresponding variable nodes are incident to the factor
node.

on this model will therefore determine the most likely variable assignment. The factor

model variables are computed using the max-sum algorithm [126], which is simple and

interpretable, however it also offers no optimality guarantee on the solution.

The FLO problem can be modelled as an affinity propagation problem using the

following formulation, which extends the model for the uncapacitated facility location

problem by Lazic et al. [131] to include outliers. A similar model was proposed by Ott

et al. [158], however the model presented here requires fewer variables—2n(n + 1)

compared to 2n(n+ `)—and uses different factor function definitions, which result in

messages that are similar in form to the functions used in the LH algorithm.

The Affinity Propagation Formulation The factor model is a graph containing a

variable node for each variable in the primal problem, and a factor node for each

factor function on a set of the variables. Edges connect a factor node to variable nodes

where the variables that are arguments of the associated factor function. The factors

jointly describe a distribution over the possible assignments of the variables x and o,

as shown in Fig. 5.2. The MAP inference task is to find the most likely assignment

over x and o that is a maximizer for the following energy function.

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 148

FLOAP ≡max
x,o

∑

i

∑

j

Sij(xij) +
∑

j

Ej(x:j) +
∑

i

Ii(xi:, oi) + A(o)

subject to xij, oi ∈ {0, 1} ∀i, j

where

Sij(xij) =− dijxij

Ej(x:j) =

0 if
∑

i xij = 0

−fj otherwise

Ii(xi:, oi) =

0 if
∑

j xij + oi = 1

−∞ otherwise

A(o) =

0 if
∑

i oi = `

−∞ otherwise

Here, we use the notation xi: and x:j to represent the i-th row and j-th column

vector of x, respectively. The factor functions can be interpreted as imposing costs and

enforcing the constraints defined in the primal model. Specifically, the factor functions

can be interpreted as

• Sij(xij) is the negative distance charge if point i is connected to exemplar j. If

xij = 1 then this function ensures that the cost of connecting i to j is paid.

• Ej(x:j) charges the facility cost fj if any point is connected to exemplar j.

• Ii(xi:, oi) enforces the constraint that point i can only be connected to exactly

one exemplar, or be assigned as an outlier. Clearly, if the point is unassigned or

multiply assigned, then the resulting value of the energy function will trivially

be sub-optimal.

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 149

• A(o) enforces the constraint that exactly ` points must be assigned as outliers.

The energy function can be maximized using the max-sum algorithm by Kschis-

chang et al. [126] to obtain a MAP assignment of the variables. This is a message-

passing algorithm and the particular messages are derived from the following general

formulas for factor-to-variable and variable-to-factor messages [126].

µx→f (x
′) =

∑

ft∈δ(x)\f

µft→x(x
′)

µf→x(x
′) = max

xi∈δ(f)\x

[
f(x1, . . . , x = x′, . . . , xM) +

∑

k : xk∈δ(f)\x

µxk→f (xk)
]

The eight messages, shown if Fig. 5.3, were derived (see Appendix C for the full

derivation of the messages).

ρij =ηij − dij.

γij =αij − dij

τi =χi

σi =ωi

αij = min
[
0,−fj +

∑

k 6=i

max
[
ρkj, 0

]]

ηij = min
[

min
k 6=j
−γik,−σi

]

χi =−max
j
γij

ωi =−

τu`+1

if i ∈ {u1, . . . , u`}

τu` otherwise

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 150

xijSij

Ej

Ii
oi

A

−dij γij χi

ηij σi

ρij αij τi ωi

Figure 5.3: Sub-graph of the factor graph showing the messages that are passed along
each edge. Each message conveys the sending node’s belief about the value of the
variable in the incident variable node.

Of the eight derived messages, four were eliminated by substitution, leaving the fol-

lowing factor-to-variable messages.

αij =−max
[
fj −

∑

k 6=i

max
[
ηkj − dkj, 0

]
, 0
]

(5.5)

ηij =−max
[

max
k 6=j

[
αik − dik

]
, ωi

]
(5.6)

χi =−max
j

[
αij − dij

]
(5.7)

ωi =−

χu`+1

if i ∈ {u1, . . . , u`}

χu` otherwise
(5.8)

For (5.8), let u1, . . . , un → C be an ordering such that χi ≥ χk for all ui < uk.

The variables xij and oi in the model all accept values of {0, 1} and in general, each

message contains a belief about the value of the corresponding variable. However,

given that the variables are binary, it is sufficient to pass a single value that is the

difference between the beliefs, and so for a message µ(x) on a variable x ∈ {0, 1}, let

µ = µ(1)−µ(0). Thus, each message can be interpreted as µ > 0 indicating a stronger

belief that x = 1, and µ < 0 that x = 0.

Interpretation of the Message Variables The messages in the affinity propagation

model pass a value that quantifies the sending node’s degree of belief about the local

state of the model to a receiving node in its neighbourhood. We have eliminated all the

variable-to-factor messages and thus only have factor-to-variable messages which can

be interpreted as passing a degree of belief as to whether the variable node satisfies the

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 151

constraint encoded in the factor function of the sending node. The following messages

are useful when interpreting the current beliefs about the MAP assignment of variables.

• αij is a measure of the current belief that point j should be marked as an exem-

plar, and that data point i be connected to it, and is a log-probability in the range

(−∞, 0]. Frey and Dueck [82] call this value the availability of exemplar j to

accept connection from point i.

• ρij (= ηij − dij) is a measure of belief that, for each data point i, the exemplar

that it connects to will be j. This value is a log-probability ratio and Frey and

Dueck name this the responsibility, i.e. the belief that point i has that j should

be its exemplar. For a given i, if ρij � 0 for all j then i believes that it is an

outlier.

• χi is the belief that data point i is one of the ` outliers, again measured as a log-

probability ratio. In the spirit of Frey and Dueck’s nomenclature, we observe

that this measure is analogous to the availability, and name it the separation of

point i.

The Affinity Propagation Algorithm The affinity propagation algorithm is also a

simple iterative algorithm. The message beliefs are initialised to 0. The algorithm

then sends all of the messages to update the beliefs in the nodes of the model, and the

process is repeated until convergence—i.e. the beliefs of the nodes are consistent with

their neighbours.

The algorithm is not guaranteed to converge, and oscillatory behaviour is possi-

ble in the message values. This can be mitigated by dampening, where an algorithm

parameter θ ∈ [0, 1) is provided. Then at iteration t the message µ is computed as

µt = θµ′ + (1− θ)µt−1

where µ′ is computed according to the message update rule for µ.

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 152

At this point, we can recover the assignment from the variable nodes by summing

the values of the incoming labels to compute the belief and setting the variable to 1

when the belief is > 0. Specifically, let x(B)
ij = αjj + ηjj − dij be the belief that

data point i is connected to exemplar j, and let o(B)
i = χi + ωi be the belief that i

is an outlier. Select the exemplars E ≡ {j | x(B)
jj > 0} as the variables along the

diagonal who believe themselves to be exemplars. The assignment of points as outliers

is O ≡ {i | o(B)
i > 0} and the assignment of points to exemplars is A ≡ {(i, j) | i ∈

C \ O, j = arg maxj′ x
(B)
ij′ }.

The full algorithm is detailed in Algorithm 4.

5.2.3 Visualising the Auxiliary Variables

The Lagrangian heuristic and affinity propagation algorithms are similar in that they

both have a set of auxiliary variables that contain the current “belief state” of the al-

gorithm about the optimal assignment. These variables are the Lagrangian multipliers

λ in the LH algorithm and the messages α,η,χ and ω in the AP algorithm. Moreover,

both algorithms update their auxiliary variables at each iteration to refine the beliefs.

The auxiliary variables can thus be captured during each iteration of the algorithm’s

execution to create a time-series that reflects how the belief state has evolved.

We claim that these time-series are useful data that can be readily visualised to

provide insights about the execution of the algorithm, see Figure 5.1. We use this

visualisation in the case study in Section 5.3 and the experiments in Section 5.4. Fur-

thermore, additional auxiliary variables can be derived by combining the variables with

the algorithm parameters, and we outline these next.

Each time-series is a n× tmax matrix, where tmax is the number of iterations that the

algorithm ran for. We define the time series for the two algorithms here.

Lagrangian Heuristic The principal time-series captured for this algorithm are based

on the Lagrangian multipliers λi, and the derived variables µj and δi, defined above.

For each data point i at iteration t ∈ {1, . . . , tmax} the available time-series are as

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 153

Algorithm 4 The Affinity Propagation Algorithm
1: procedure AFFINITYPROPAGATION(d, f , `, θ)
2: αij , ηij ← 0 ∀i, j . Initialise messages
3: χi, ωi ← 0 ∀i
4: t← 0

5: while t < tlimit do
6: Set α′ij using (5.5) . Update messages
7: Set χ′i using (5.7)
8: Set ω′i using (5.8)
9: Set η′ij using (5.6)

10: α← θα′ + (1− θ)α . Dampen messages
11: η ← θη′ + (1− θ)η
12: χ← θχ′ + (1− θ)χ
13: ω ← θω′ + (1− θ)ω
14: end while

15: xB ← −d+ α+ η . Recover beliefs
16: oB ← χ+ ω

17: Get ordering u1, . . . , un of C according to oB

18: O ← {u1, . . . , u`}

19: x,o← 0 . Initialise assignments
20: for all i ∈ O do . Set outliers
21: oi ← 1
22: end for
23: for all j ∈ C do . Set exemplars
24: if xBjj > 0 then
25: xjj ← 1
26: end if
27: end for
28: for all i ∈ C \ O do . Connect i to most likely j
29: j ← argmaxj′ x

B
ij′

30: xij ← 1
31: end for
32: Ẑp =

∑
j fjxjj +

∑
i

∑
j dijxij . Primal objective value

33: return x,o, Ẑp
34: end procedure

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 154

follows:

• λ(S)
it represents the amount data point i is willing to expend to connect to an

exemplar in iteration t.

• δ(S)
it is the surplus (deficit) budget that data point i is willing to expend to connect

to the closest established exemplar in iteration t.

• µ(S)
jt it the total budget deficit (surplus) that all data-points are willing to con-

tribute to the establishment of an exemplar j.

Affinity Propagation Extracting time-series from the message variables is compli-

cated by the fact that several of the relevant message types such as the availability α and

the responsibility ρ are of dimensionality n× n. However, it turns out that structure of

the values in these matrices makes it possible to extract an n-dimensional vector from

which a time series can be captured, that also gives some insight into the operation of

the AP algorithm. Again, for each data point i at iteration t the captured time-series

are:

• α(S)
jt represents for point j the belief that j is an exemplar, and is thus captured

in each iteration as the diagonal values of the matrix α, i.e. α(S)
jt = {Trα}j at

iteration t.

• ρ(S)
it is the belief that data point i is connected to some exemplar, and is computed

in iteration t as ρ(S)
it = maxj ρij .

• χ(S)
jt is the belief at iteration t that i is an outlier.

5.3 Case Study: Improving the Lagrangian Heuristic

Algorithm

In this case study, we use the auxiliary variable visualisation technique introduced in

Subsection 5.2.3 to analyse the strategy for solving the relaxed problem by inspection

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 155

Figure 5.4: Objective function value obtained for LH1 and LH2 algorithms on identical
inputs and configurations, for varying values of the algorithm parameter θ. The LH2
algorithm is numerically stable for variations in θ in comparison to the LH1 algorithm,
and consistently obtains a lower objective function value. The configuration used is
from the synthetic data experiments, see Table 5.1

from the LH algorithm. We identify a sub-optimal design choice made in the algorithm

presented in Ott et al. [158] using the visualisation of the time-series of the auxiliary

variables, then make a refinement to improve the solution, and verify that it yields

improved solutions. To distinguish between the two Lagrangian heuristic algorithms,

let LH1 algorithm be the algorithm presented in [158] and let LH2 be the modified

algorithm presented in this paper.

Recall that the LH1 algorithm uses a simple strategy for selecting the data points to

assign as outliers, namely choosing the ` points whose dual variable value λi is largest.

Furthermore, any point that has been assigned as an outlier does not contribute to the

establishment cost of an exemplar.

While this approach has the benefit of simplicity and often works well in practice,

it is not difficult to see that there are situations where this approach may not choose

the optimal assignment. First, the value of λi may be large as it is contributing to

the establishment cost of an exemplar, and thus assigning the data point as an outlier

would remove that contribution from the exemplar, potentially causing the cluster to

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 156

(a) LH1 outlier λ (b) LH1 outlier δ

(c) LH2 outlier λ (d) LH2 outlier δ

Figure 5.5: Time-series visualisations of the auxiliary variables from the LH1 and
LH2 algorithms executed on the same input. The time-series were smoothed using
lowess smoothing with span 25. The λ(S)it converge to larger values for the (a) LH1
algorithm than for the (c) LH2 algorithm. Furthermore, the time-series for LH2 satisfy
the conditions in Proposition 5.1. (continues...)

have insufficient contribution to cover the establishment cost. Second, observe that

once a data point is assigned as an outlier it cannot be assigned to an exemplar. This

means that the point will not be over-assigned, and thus λi will not decrease in the

subsequent iteration of the algorithm, via the mechanism of a negative subgradient.

We ran experiments to evaluate the performance of this algorithm for various values

of the parameters. We observed that the obtained objective function value is sensitive to

changes in the algorithm parameters, for example, the choice of value for θ—the initial

step-length used for computing the subgradient step, see Figure 5.4. This implies that

the algorithm is not numerically stable.

To investigate further, we investigated the operation of the algorithm on a synthetic

input where θ was set to 1
10

of the median distance in d. The time-series visualisations

are shown in Figure 5.5. It is clear from the plots that the LH1 algorithm selects

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 157

(e) LH1 exemplar µ (f) LH1 objective values

(g) LH2 exemplar µ (h) LH2 objective values

Figure 5.5: (contd.) Time-series visualisations of the auxiliary variables from the LH1
and LH2 algorithms executed on the same input.

the final outliers relatively early in its execution, and the value of λ of these outliers

can be relatively high. The outliers are stable after ≈75 iterations, see Figure 5.5(a),

however the exemplars—the distance from which the outliers are selected—are not

finalised until the algorithm nears termination, after≈300 iterations, see Figure 5.5(e).

The algorithm is thus selecting the outliers before the clusters have been finalised, and

points could thus be assigned as outliers even if an exemplar was established close

by in a subsequent iteration. The execution of the algorithm in this case appears to

be that the outliers are selected early, and then the regular facility location problem

(without outliers) is solved for the remaining points. In contrast, the LH2 algorithm is

constantly reevaluating the outliers whenever the exemplars change.

Furthermore, the final values of λi for the outliers are greater under the LH1 algo-

rithm, compared to that the LH2 algorithm, see Figure 5.5(a) and (c). As we observed

in Section 5.2.1, the values of λi for the outliers are an upper bound on the values for

the non-outliers. This gap allows for a sub-optimal solution, which is the case, as the

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 158

LH1 algorithm obtains an objective function value of 25.16, and the LH2 algorithm

obtains 24.11.

These visualisations facilitated the diagnosis of the issue with the LH1 algorithm.

Moreover, when considering the conditions in Proposition 5.1 for an optimal assign-

ment of values to λ, we can see that the LH2 algorithm finds an assignment that is

closer to the optimal than the LH1 algorithm, see Figure 5.5(d) and (g). Furthermore,

it is apparent that conditions in Proposition 5.1 appear to be satisfied in for the execu-

tion of the LH2 algorithm, as items 1 and 2 are evident in the time-series, and 3 holds

by construction. And, as Figure 5.4 shows, the improved LH2 algorithm is numerically

stable. This is in contrast to the LH1 algorithm, where the computed objective value is

sensitive to the choice of algorithm parameter θ.

5.4 Experiments

The improved formulations of the LH2 and AP algorithms for the FLO problem were

tested experimentally in order to evaluate the performance. We executed the algorithms

on a synthetic dataset to determine the quality of the obtained solutions, and compared

performance with the LH1 algorithm presented in Ott et al. [158], and the Gurobi

mixed-integer linear program solver (the LR algorithm).

Furthermore, we present auxiliary variable visualisations for two real-world datasets

based on spatial trajectories: the HURDAT2 hurricane dataset and a dataset of player

trajectories from football matches. The purpose of these experiments is to evaluate

the cluster visualisations as a technique for gaining insight into the structure of the

underlying dataset.

5.4.1 Synthetic Data

We carried out experiments on a synthetic dataset to validate the proposed algorithm.

The objective was to assess the runtime, obtained objective value and numeric stability

of the algorithm for varying input sizes, number of outlier and number of instance-level

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 159

constraints.

The synthetic dataset was characterised by the following parameters. Let c be the

number of ground-truth clusters, m be the number of samples per cluster, d be the

dimensionality of the space, σ be the parameter for the standard deviation of the distri-

bution the samples are drawn from, and let `′ be the ground-truth number of outliers.

Let n ≡ c × m + `′ be the number of generated samples. The output is a distance

matrix d ∈ Rn×n.

Define a surjective function g : {1, . . . , n} → {0, . . . , c}, such that g(j) = i

indicates that the ground-truth cluster of data point pj is i ∈ {1, . . . , c}, or that pj is

outlier if i = 0. The function g is defined as

g(j) =

dj/ne if j ≤ cm

0 if j > cm

. (5.9)

The sample points P = {p1, . . . , pn} are generated from c ground-truth cluster cen-

ters. The centers C∗ = {C1, . . . , Cc} are sampled uniformly from the unit cube [0, 1]d.

For each cluster, define a variance matrix Σj by uniformly sampling each component

from [σ, 2σ]. For each i = 1, . . . , cm, point pi ∈ P is sampled from the Gaussian

distribution N (Cg(i),Σ
1
2

g(i)), i.e. from the distribution of its associated cluster. The `

outlier points {pcm+1, . . . , pn} are sampled uniformly from [0, 1]d.

The distance matrix d is computed from the set P of n samples, such that com-

ponent dij of d denotes the distance between two samples i and j in the Euclidean

distance metric. The matrix was then normalised by dividing all entries by the median

of the non-diagonal entries, i.e. mediani,j : i 6=j
[
dij
]
.

The four algorithms were used to compute clusters for varying parameterisations,

and statistics about the execution time and output clustering quality were captured.

The parameters that configure the inputs and algorithms, and their default values, are

summarised in Table 5.1.

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 160

(a) Objective function by c (b) Iteration count by c (c) Runtime by c

(d) Objective function by n (e) Iteration count by n (f) Runtime by n

(g) Objective function by d (h) Iteration count by d (i) Runtime by d

(j) Objective function by fi (k) Iteration count by fi (l) Runtime by fi

(m) Objective function by ` (n) Iteration count by ` (o) Runtime by `

Figure 5.6: Execution statistics for varying input parameters. All other parameters are
set according to the defaults in Table 5.1.

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 161

Table 5.1: Configuration parameters used to generate the input datasets, and default
values for algorithm parameters used in experiments.

Parameter Description Default Value
c Number of ground truth cluster cen-

ters
3

m Number of sample points per clus-
ter center

50

d Dimension of sample space 3
`′ Number of outlier sample points 20
n Total number of sample points m× c+ `′

σ Standard deviation of ground truth
distribution

0.15

w Number of trials for each configu-
ration

30

fi Facility establishment cost 15
` Number of outliers to select 20
θLH Initial step-length used in La-

grangian heuristic algorithm
0.50

α Step-size used in Lagrangian
heuristic algorithm

0.99

θAP Dampening parameter used in AP
algorithm

0.80

T Iteration limit for LH1, LH2 and
AP algorithms

2000

V Time limit for LR algorithm (sec) 600

5.4.1.1 Algorithm Execution

The performance of the algorithms were experimentally evaluated by running trials

while varying the parameters to generate the input. Experiments were performed by

varying the following parameters:

• Number of ground truth cluster centers c

• Number of samples n

• Sample point dimensionality d

• Establishment cost fi

• Number of outliers `

The relative performance of the algorithms was compared using the following evalua-

tion measures:

• Objective function value obtained

• Number of iterations

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 162

• Runtime in seconds

Each experimental configuration was used to generate 30 randomly sampled inputs,

and the mean for each measure over the 30 trials for each configuration was computed.

The experimental results are summarised in Figure 5.6. The results showed that all

the algorithms obtained similar objective function values for each of the experiments,

which the LH2 algorithm marginally outperforming the LH1 algorithm, as discussed

in Section 5.3. All three heuristics had similar performance in terms of the execution

time and number of iterations, and they significantly outperformed the LR algorithm.

Figure 5.6 shows plots for the experiments when varying the parameters.

5.4.1.2 Cluster and Outlier Quality

In the next set of experiments, we evaluated the quality of the clustering and outlier

detection. The output of an execution of any algorithm is a surjection for each sam-

ple to a predicted exemplar ĝ : 1, . . . , N → 0, . . . , N , where an obtained value of

0 for ĝ(i) denotes that i is an outlier. Given the ground truth surjection g defined in

Equation (5.9), the quality of the obtained clusters and outliers are evaluated using the

following metrics.

Homogeneity, Completeness and v-measure. These metrics, presented in Rosen-

berg and Hirschberg [169], are conditional-entropy based metrics for cluster quality.

Given a contingency table A = {acj}, where acj =
∑

i I[g(i) = c ∧ ĝ(i) = j] ,

we define the conditional entropy and entropy as follows. Recall that C∗ is the set of

ground-truth clusters and E the set of predicted exemplars.

H(C|K) = −
∑

c∈C∗

∑

j∈E

acj
N

log2

acj∑
c′∈C∗ ac′j

H(C) = −
∑

c∈C∗

∑
j∈E acj

N
log2

∑
j∈E acj

N

Homogeneity quantifies the extent to which the computed clusters are pure, and

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 163

completeness is the extent to which a ground truth class is recovered in a single cluster.

They are defined as:

h =

1 , if H(C|K) = 0

1− H(C|K)
H(C)

, otherwise.

c =

1 , if H(K|C) = 0

1− H(K|C)
H(K)

, otherwise

The v-measure is the harmonic mean of h and c:

v =
hc

h+ c

Jaccard Measure The Jaccard coefficient is used to determine the extent to which

outliers are recovered, and is defined as:

J(O, Ô) =
|O ∩ Ô|
|O ∪ Ô|

where O = {i | g(i) = 0} is the set of ground-truth outliers, and Ô = {i | ĝ(i) = 0}

is the set of predicted outliers.

All the measures h,c,v and J yield a result in the range [0, 1], and 1 is optimal. The

quality measures obtained by all algorithms showed that the performance in recovering

the ground-truth assignments were very similar. The LH1 algorithm underperforms the

other algorithms at recovering the ground-truth outliers, and again this is consistent

with the analysis of the deficiency in the design of this algorithm, see Figure 5.7.

5.4.2 Dual Variable Conditions

In Section 5.2.1 we presented an interpretation of the dual variables λ in the LH al-

gorithms that implied that an optimal solution of the FLO problem would satisfy the

three properties in Proposition 5.1. During the experiments, the following statistics

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 164

(a) LH1 algorithm (b) LH2 algorithm

(c) LP algorithm (d) AP algorithm

Figure 5.7: Cluster quality results for algorithms on differing input sizes.

were captured about dual variables at the termination of the algorithm in each trial.

The objective was to determine the extent to which the LH1 and LH2 algorithms met

the conditions in Proposition 5.1.

Mean positive outliers computes the mean number of outliers that have a positive

value of δi, i.e. determine the number of violations of condition 1:

1

`

∑

i∈O

I[δi > 0]

Mean close outliers finds the mean number of outliers that are closer to an exem-

plar than the connected point that is furthest from its exemplar, i.e. satisfy the

necessary optimality condition in Observation 5.1:

1

`

∑

i∈O

I[min
j∈E

dij < max
i′∈C\O

min
j∈E

di′j]

Max. µj divergence is the maximum divergence of µj from 0 as a fraction of fj , and

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 165

Table 5.2: Summary results for all experiments of the statistics described in Subsec-
tion 5.4.2. The results are the mean value over all 30 trials for each algorithm and
experiment type, and for all statistics, a value of 0 is optimal.

Algorithm Exp. Type Mean Pos.
Outlier δi

Mean Close
Outliers

Max µj Div.

LH1 α 0.9867 0.6775 0.6106
LH1 θ 0.9795 0.7200 1.2658
LH1 ` 0.9869 0.6309 0.8013
LH1 c 0.9862 0.6725 0.6261
LH1 m 0.9745 0.5748 0.5339
LH1 f 0.9710 0.6011 1.0242
LH1 d 0.9883 0.5900 0.6036
LH2 α 0.5748 0 0.0127
LH2 θ 0.5830 0 0.0124
LH2 ` 0.5713 0 0.0128
LH2 c 0.4840 0 0.0135
LH2 m 0.3078 0 0.0166
LH2 f 0.3962 0 0.0237
LH2 d 0.5967 0 0.0121

thus tests condition 2:

max
j∈E

|µj|
fj

Here I[·] is the indicator function on the condition in the brackets. The statistics

were computed for each trial and then aggregated to compute the mean over all trials

by algorithm and experiment type. The results are in Table 5.2.

Clearly, the LH2 algorithm outperforms the LH1 algorithm under these measures.

In particular, the LH2 algorithm always finds a solution that satisfies the condition in

Observation 5.1—and derived from condition 2—that µj is close to 0. However, in the

case of the mean number of positive outliers, it appears that condition 1 is not met in

many situations. This is likely a consequence of the fact that in both algorithms, the

points that are assigned as outliers are not considered for connection to exemplars and

therefore cannot be over-assigned, which would subsequently reduce the value of λ for

the outlier.

5.4.3 Hurricane Trajectory Data

In this experiment, we used the auxiliary variable visualisation techniques for the

LH2 algorithm on a clustering of hurricane trajectories, extracted from the HURDAT2

dataset [130]. The dataset contains trajectories of North Atlantic tropical storms from

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 166

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3

(d) Cluster 4 (e) Cluster 5 (f) All Clusters

Figure 5.8: Computed clustering of hurricane trajectories with ` = 60 outliers, with
the exemplar for each cluster drawn with a thick line. The clusters are coherent in
respect to their location and shape. The trajectories assigned as outliers are shown in
Figure 5.10(b).

1851–2016. The purpose of these experiments was to explore the utility of the auxil-

iary variable visualisation on a real dataset, and some key observations are described

in the following paragraphs.

The discrete Fréchet distance [78] was computed between each pair of trajectories

using the dynamic programming algorithm by Eiter and Mannila [68] to obtain the

distance matrix d. The matrix d was then normalised by dividing all entries by the

median of the non-diagonal entries, i.e. mediani,j : i 6=j
[
dij
]
. The dataset was filtered

to contain the 280 tropical storms since 1970 that were of hurricane-strength, and the

LH2 algorithm was run with the following parameter values: f = 5; ` = 60; θ = 1/20;

and α = 0.99. The algorithm converged in 656 iterations after approximately 2.5 s and

the resulting clustering had 5 exemplars, see Figure 5.8.

Trajectory clustering can be visualised in the original space, as in Figure 5.8(f),

however the trajectories often intersect with themselves and other trajectories, and thus

can be occluded. Moreover, important features of the trajectories such as the length

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 167

Figure 5.9: Time-series plot of the mean value of λ(S)it from the hurricane trajectories
for each computed cluster, and for the outliers. Two distinct features are observable:
the value that each cluster mean converges to, and the number of iterations required to
converge, and these provide an indication of the density and coherence of the clusters,
respectively.

and direction are also difficult to discern. The time-series visualisation of the dual

variables provides an alternative visualisation of the clustering, and an analysis on

several observations of this is provided below.

Cluster formation In the first visualisation, we examine the time-series of the mean

value of λ(S)it for each cluster and for the outliers, shown in Figure 5.9. There are two

features of this time-series that are readily apparent: the value that λ(S)it converges to

for each cluster, and the number of iterations that each value takes to converge.

The mean value that each cluster converges to is the mean of the total connection

and contribution cost that each data point is willing to expend to connect to its exem-

plar. If the points in a cluster are generally relatively close to the exemplar, then the

average connection cost will be relatively small; and if there are a relatively large num-

ber of points in a cluster, then the average contribution to the connection cost will be

small. Thus, a small mean λ(S)it for a cluster suggests that the cluster has many mem-

bers and the members are relatively near the exemplar. The value is thus a measure of

the density of the cluster. Comparing the mean converged values of λ(S)it in Figure 5.9

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 168

(a) Outlier λ (b) Outliers (c) Outliers

Figure 5.10: Visualisation of HURDAT2 outliers from clustering where ` = 60. The
time-series plot in (a) shows a bifurcation in values, which suggests a natural parameter
value for the number of outliers `. The outliers are plotted in (b), with the upper cohort
in the bifurcation coloured red, and (c) shows the outliers from a clustering where
` = 24.

with the trajectories in Figure 5.8(f) there appears to be some correlation, with clusters

3 and 5 being the clusters covering the largest geographical area, and cluster 4 being a

relatively tight cluster.

The second feature that can be determined from the time-series plot is number of

iterations taken for the cluster to converge. Clusters that converge relatively quickly

tend to be well separated from the other clusters, and also from the outliers, and thus

this feature is a measure of the coherence of the cluster. Again, comparing the time-

series plot and trajectory map in Figure 5.8, it is clusters 3 and 5 that converge earliest.

Geographically, the trajectories in these clusters are coherent in their shape and length,

describing a crescent-shaped path through the Atlantic Ocean. The remaining clusters

comprise trajectories that tend to be shorter and more variable in shape.

“Natural” outlier parameter Next we consider the visualisation of the time-series

for each outlier in Figure 5.10(a). The time series shows a distinct bifurcation between

the obtained values of λ(S)it , suggesting that there may be some significant difference

between the outliers. The outliers were plotted in Figure 5.10(b), with the cohort

that obtained the larger values of λ(S)it in red. This cohort contains 24 trajectories and

appears to contain two distinct groups: trajectories that continue far into the North

Atlantic, and those that head in a westerly direction towards and over Mexico.

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 169

The bifurcation in the values of λ(S)it suggests that there may be “natural” outlier

parameter of 24, so the algorithm was re-run using the same input and the same param-

eter values other than ` = 24. The resulting outliers are plotted in Figure 5.10(c), and

clearly captures many of the same trajectories, in particular the trajectories that extend

into the North Atlantic towards Iceland.

5.4.4 Football Trajectory Data

In the second experiment on a real-world dataset, the auxiliary variables from the affin-

ity propagation algorithm were used to visualise the clusters. The input was a set of

sub-trajectories extracted from the experimental dataset football dataset described in

Section 1.2, and generated according to the following process. The raw trajectories

were partitioned into sub-trajectories where a single team was in possession during

an active phase of the match. A subset of these trajectories was selected according to

the criteria that they were generated by a midfield or attacking player from the home

team—Arsenal—and where the final event in the possession was a shot at goal by a

player. This subset of 217 trajectories was used as the input, and the discrete Fréchet

distance was computed for each pair of trajectories, to obtain the distance matrix d,

which was then normalised by dividing all entries by the median of the non-diagonal

entries.

The following parameter values were used: f = 5; ` = 20; and θ = 0.8. The algo-

rithm converged in 60 iterations after approximately 0.3 s and the resulting clustering

had 6 clusters, see Figure 5.11.

Visualising the trajectories in the original (planar) space provides some informa-

tion about the spatial arrangement of the clusters and the outliers, however again it is

difficult to determine properties such as the density and coherence of the clusters, see

Figure 5.11(a).

Visualising the clusters and outliers using the affinity propagation message time-

series provides an alternate view that provides information about the cluster formation

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 170

(a) Exemplars (b) Outliers

Figure 5.11: (a) Clusters and (b) outliers of football trajectories computed by the AP
algorithm. The colours of the clusters, shown in (a), correspond to the legend in Fig-
ure 5.12(a), and the exemplars—drawn with thick lines—appear to conform to the
positions of various roles. Of the 15 outliers shown in (b), all but two occur simul-
taneously with at least on other outlier, and simultaneous trajectories have the same
colour.

and outlier detection. The message values are the log probability ratios of the assign-

ment implied by indices of the message value [82]. The probabilities for each message

were recovered from the ratios, and displayed in the time-series in Figure 5.12.

The time-series visualisations of the AP algorithm show that the formation of clus-

ters and identification of outliers is a comparatively smoother process than that for the

LH2 algorithm. However, the time-series are also interpretable, and provide useful

information about the inputs. In the initial phase, the algorithm has insufficient in-

formation to determine of any of the data points are exemplars, and the probabilities

uniformly decrease. The probability that all points are outliers similarly increases.

After ≈10 iterations, the exemplars begin to emerge and the probability of the out-

liers stabilises, during which time the marginal decisions on which points are outliers

are made. Apparently, the impact is more pronounced for clusters 2, 3, 4 and 6, and

this effect can also be seen in Figure 5.11, where the regions of these clusters coincide

with the locations of the selected outliers.

The dip in the series for exemplar 4 at ≈45 iterations suggests that there were two

candidates for exemplar of the cluster, and the choice of exemplar had to be resolved.

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 171

(a) Exemplars (b) Outliers

Figure 5.12: Time-series visualisations of (a) α(S)
j for the exemplars, and (b) χ(S)

i for
the outliers. The y-values are the probability of that the sample point is an exemplar or
outlier, respectively. The grey lines in (a) are the time-series of all the non-exemplars,
and in (b) are the time-series of the non-outliers. The time series in (a) that converges to
≈0.56 is assigned to exemplar 4, which explains the dip in the exemplar’s time-series.

This is indeed the case, where the time-series for the non-exemplar that converges to

≈0.56 is assigned to exemplar 4, and is clearly visible in Figure 5.12(a).

5.5 Conclusion

The joint task of clustering and outlier detection are a common requirement in many

applications, and there are several efficient algorithms for this problem. However, in

cases of high- or infinite-dimensional input, it is often challenging to visualise the ob-

tained clustering to validate and interpret its utility. In this chapter we introduce the

technique of monitoring the auxiliary variables computed by two common clustering

heuristics–the Lagrangian heuristic and affinity propagation algorithms—and then vi-

sualising the resulting time series. This approach gives an implicitly two-dimensional

view of the data, and contains useful information about the execution of the algorithm

and also about the inherent clusters and outliers in the input data.

Using these visualisations, we identified a sub-optimal design choice in the La-

grangian heuristic algorithm for the joint clustering and outlier detection problem by

CHAPTER 5. CLUSTERING AND OUTLIER DETECTION 172

Ott et al. [158], and designed an improved version of this algorithm, which was ex-

perimentally shown to outperform the existing version. Furthermore, we used a novel

interpretation of the Lagrangian dual variables to determine a set of conditions for an

optimal solution, and found that the new algorithm satisfies these conditions. This

suggest that the approach is an effective tool for analysis of algorithm design and exe-

cution.

We experimentally evaluated the approach on two real datasets to cluster trajec-

tories using the LH2 and AP algorithms under the discrete Fréchet distance. The re-

sulting visualisations yielded insights that were interpretable and could be validated

in planar visualisations of the trajectory clusters. The difficulty in interpreting these

“raw” planar real datasets is apparent, and we believe that the time-series visualisation

presented in this paper is a useful complement and aid for understanding.

Chapter 6

Trajectory Clustering with Bounded

Complexity Exemplars

In Chapter 5 we presented two heuristic algorithms for the joint task of clustering and

outlier detection. The problem was modelled as the facility location problem, which

is a form of exemplar-based clustering, where for each cluster, one of the inputs is

selected as an exemplar that is in some sense a representative of the cluster. However, if

the inputs are noisy, then the exemplars will be noisy too. For example, the exemplars

from the clustering of football trajectory data described in Subsection 5.4.4 are not

smooth, see Figure 6.1. The noise may result from measurement error, or from local

deviations in direction of the traced object. When clustering trajectories under the

Fréchet distance, the noise manifests as intervals where the trajectory is not smooth,

and, in aggregate, the noise may obscure the high-level “shape” of the curve. It would

thus be preferable to find an exemplar for each cluster that is representative of the

cluster, but is also free from such noise, and this is the problem considered in this

chapter.

We investigate the problem of clustering an input set of trajectories under the

Fréchet distance, such that the input set is partitioned into k clusters, and for each

cluster we compute a smooth exemplar. This is achieved by bounding the number

of vertices in the exemplar by the value ` � n, where n is the maximum number

173

CHAPTER 6. TRAJECTORY CLUSTERING 174

Figure 6.1: Cluster exemplars obtained in experiments described in Subsection 5.4.4.
The exemplar trajectories are noisy, and this may obscure the important information
about the clusters that they represent.

of vertices in any of the input trajectories. The objective of the clustering is to find

the partition and set of exemplars, such that the maximum Fréchet distance between

a trajectory in a cluster and its corresponding exemplar is minimised. This is a (k, `)-

clustering, and we present a family of approximation algorithms for which the cost of

the optimal clustering is bounded to a multiplicative factor of the optimal cost, and

where tighter approximation bounds result in slower runtime. We show that a bounded

approximation for this problem can be achieved by first simplifying the input paths and

then clustering the simplifications.

This chapter is structured as follows. Section 6.1 describes related work to this

problem. In Section 6.2 we define the notation and terminology used in the sequel of

the chapter, and formally describe the problems for which we present algorithms. An

approximation algorithm for `-simplification is given in Section 6.3 and a family of

approximation algorithms for (k, `)-clustering in Section 6.4. The chapter concludes

in Section 6.5 with a discussion of open problems and other avenues of research.

CHAPTER 6. TRAJECTORY CLUSTERING 175

6.1 Related Work

Effective algorithms for trajectory clustering have been researched in a number of dif-

ferent fields. Gaffney and Smyth used an algorithm based on a generative mixture

model to cluster trajectories [85], [86]. Vlachos et al. [190] approached the problem by

defining a non-metric similarity function based on the longest common subsequences

appearing in the inputs, and suggest that this approach is robust to noise. Clustering

has been used to detect commuting patterns—similar parts of a single trajectory—and

Buchin et al. [33] gives several approximation algorithms for this problem. Driemel et

al. [65] studies the (k, `)-CENTER problem that we consider in this chapter, and present

an O(mn) time algorithm that computes a (1 + ε)-approximation on 1-dimensional

(time-series) paths. It does not appear that this approach will extend to paths in 2 or

more dimensions.

The approach presented here considers the sub-problems of trajectory simplifica-

tion and clustering in general metric spaces. An early contribution to address the prob-

lem of trajectory simplification was the heuristic algorithm by Douglas and Peucker

[62], and Imai and Iri presented several approximation algorithms that apply to tra-

jectories with various properties [113], [114]. For simplification with respect to the

Fréchet distance, Guibas et al. [98] presents an algorithm that for a given path P and

error bound ε, computes a minimal-link simplification. Agarwal et al. [3] considered

the problem of simplifying a curve where the vertices of the simplification are a subset

of the vertices of the input, and presented a near-linear time approximation algorithms

to compute an approximation for a given error ε whose complexity is at most that of

an optimal curve of error ε/2. A practical (1 + ε)-approximation for computing the

Fréchet distance for a family of realistic curves known as c-packed curves is given in

Driemel et al. [64], where the distance was computed on simplified curves.

Clustering in general metric spaces is a classical problem in computer science,

and there are many algorithms for the various formulation of the problem. Constant-

factor polynomial-time approximation algorithms for clustering have been presented

for the k-center [108], k-median and k-means [48], minimum diameter [91] and the

CHAPTER 6. TRAJECTORY CLUSTERING 176

facility location [117] formulations. The best known approximation bound for the k-

center clustering is 2, with the algorithm by Hochbaum and Shmoys [108] achieving

this bound. The k-center clustering problem is known to be NP-hard to approximate

within a factor of (2− α) for any positive constant α [112].

6.2 Preliminaries

We wish to cluster trajectories under the Fréchet distance, see Section 1.2. We can view

a trajectory as a polygonal path, where each location point is labelled with a time-

stamp. For ease of exposition, we will use the following terminology. Denote P =

〈p1, . . . , pn〉 as a path of length n such that each vertex pi is a point in Rd. Recall from

Subsection 1.2.2 that a trajectory is denoted by τ = 〈(s1, x1, y1), . . . , (sn, xn, yn)〉.

Clearly, there is an equivalent path P , where pi = (xi, yi) ∈ R2 for all pi ∈ P and

(si, xi, yi) ∈ τ . The complexity of a polygonal path P is defined as the number of

vertices in the path, and is denoted |P |.

Let P [p, q] denote a minimum sub-path of P whose end-points are p and q. Fur-

thermore, we use the following to denote an ordering of points along a path. Given a

path P and two points p, q ∈ P , if p ≺ q then p is closer to the start of P than q. For-

mally, let p1 be the first vertex of P , then p ≺ q ⇐⇒ P [p1, p] (P [p1, q]. Similarly,

denote p � q ⇐⇒ P [p1, p] ⊆ P [p1, q], and � and � are similarly defined.

We use (p, q) to denote an edge in a path P between vertices p and q. The path

P is embedded in d-dimensional Euclidean space and thus (p, q) ≡ pq. We use (p, q)

to denote a line segment when doing so is unambiguous. We also define a disk as

a d-dimensional hypersphere of a given radius r.

The algorithm described in Section 6.3 makes use of tangent lines to a disk that

intersect at a point, see Figure 6.2. Given a disk D and a point p /∈ D, there exist two

tangent lines to D that intersect at p. Assume that p lies to the left of D, and perform a

radial scan centered at p and starting in the direction of the positive y-axis. Let tcw be

the first tangent line encountered on the scan in the clockwise direction, and let tccw be

CHAPTER 6. TRAJECTORY CLUSTERING 177

p

D

tcw

tccw

Figure 6.2: The tangent lines tcw and tccw of disk D according to point p. The lines are
named according to the tangent point that is first encountered in a radial sweep about
p and whose origin does not intersect with D.

the tangent line encountered on the scan in the counter-clockwise direction.

6.2.1 Simplification

We require the following definition.

Definition 6.1 (`-simplification). For a polygonal path P , an `-simplification of P is a

polygonal path S of complexity `, where there exists a homeomorphism (bicontinuous

function) µ : P → S that maps every point p ∈ P to a point µ(p) ∈ S, and the start

of P is mapped to the start of S.

Let the error of the simplification be the Fréchet distance between P and S, hence

error`(P) = dF (P, S). Given a polygonal path P , we wish to know if there exists an

`-simplification of minimal error:

PROBLEM `-SIMPLIFICATION WITH MINIMAL ε

Instance: A polygonal path P , and an integer `.

Question: Find the `-simplification S of P , such that error`(P) is minimised.

Let error∗`(P) be the optimal error obtained from a solution to the `-SIMPLIFICATION

problem with respect to P .

We will use the following definition.

CHAPTER 6. TRAJECTORY CLUSTERING 178

p1 = s1

p2
s2

pn = s`

Figure 6.3: Example of a path-restricted `-simplification S = 〈s1, s2, . . . , s`〉 of a
polygonal path P = 〈p1, p2, . . . , pn〉. Observe that each vertex si of the simplification
lies on P and that S is smoother than P .

Definition 6.2 (Path-restricted). Given a polygonal path P , a simplification

S = 〈s1, . . . , s`〉 is path-restricted if si ∈ P for all vertices si ∈ S.

In other words, all the vertices of a path-restricted simplification S of path P lie on

P , see Figure 6.3.

6.2.2 Clustering

We use the following to define the clustering problem. Given a set of input paths

P = {P1, . . . , Pm}, and an integer k, let πk : P → C define a partition of P to a set of

cluster centers C = {C1, . . . , Ck}, where πk is a surjection, i.e. every P ∈ P maps to

exactly one C ∈ C, and for each C there is at least one P that maps to it.

We use two clustering problems that differ in the domain of the centers C. In

the first we wish to find a k-center clustering, where the center of each cluster is

one of the input paths. For an input P and obtained clustering C, let costk(P) =

maxPi∈P dF (Pi, πk(Pi)) be the cost of the clustering. Finding the set of centers C and

surjection πk that minimises the cost is the following problem:

PROBLEM k-CENTER

Instance: A set of polygonal paths P = {P1, . . . , Pm} each of complexity at

most n and a positive integer k.

Question: Find the set of k exemplar paths C ⊆ P and the surjection π∗k : P →

C, such that the maximum Fréchet distance between a path P ∈ P

and its cluster center π∗k(P) is minimized.

Let cost∗k(P) be the optimal cost of the solution to the k-CENTER problem.

CHAPTER 6. TRAJECTORY CLUSTERING 179

The main results in this chapter are for the (k, `)-clustering task, formalised here.

Definition 6.3 ((k, `)-clustering). Given an input set P , and positive integers k and

`, a (k, `)-clustering is a partition of P defined by a set of k cluster centers C and a

surjection π(k,`) : P → C, and where each Cj ∈ C is a polygonal path of complexity `.

Finally, for an input P and obtained surjection π(k,`), define the cost of the cluster-

ing as the maximum Fréchet distance between a path Pi ∈ P and its assigned center

Cj ∈ C, i.e. cost(k,`)(P) = maxPi∈P dF (Pi, π(k,`)(Pi)).

The problem of finding the minimum-cost (k, `)-clustering is defined as:

PROBLEM (k, `)-CENTER

Instance: A set of polygonal paths P = {P1, . . . , Pm} each of length at most

n, and positive integers k and `.

Question: Find the set of k polygonal paths C = {C1, . . . , Ck}, each with com-

plexity ` and a surjection π∗(k,`) : P → C, such that the maximum

dF (Pi, π
∗
(k,`)(P)) for each Pi ∈ P is minimised.

Similarly, let cost∗(k,`)(P) be the cost of an optimal solution to the (k, `)-CENTER

problem.

6.3 Approximation Algorithm for the

`-SIMPLIFICATION Problem

We present an O(n log n) time greedy algorithm, that, given a polygonal path P and

a parameter ε > 0, finds a path-restricted `-simplification S of a path with maximum

error 2ε—provided that there exists an `-simplification of P with maximum error ε.

The simplification S is obtained by computing an ordered stabbing of a set of ordered

disks of radius r—whose centers lie on the vertices of P—with a polygonal path S of

complexity `. The computed simplification S is path-restricted to P , i.e. each vertex

si ∈ P , and furthermore s1 = p1 and s` = pn. We show that the Fréchet distance

CHAPTER 6. TRAJECTORY CLUSTERING 180

between P and S is no greater than r. Finally, we prove that if a path P admits an

(optimal) `-simplification of error at most ε, and ε is known, then the algorithm will

find a simplification with complexity at most ` and error at most 2ε.

The algorithm is similar in construction to the algorithm by Guibas et al. [98] for

the ordered stabbing of a set of ordered disks with a polygonal path, where the ordering

is defined as:

Definition 6.4 (Guibas et al. Definition 4). Line t hits points p1, p2, . . . , pn, with pj ∈

` ∩Dj in the correct order, for i < j, the point pj ≺ pj .

Computing the Ordered Stabbing Path To compute the ordered stabber S, disks

D1, D2, . . . , Dn of radius r are placed with centers at p1, p2, . . . , pn, and S is con-

structed such that it is path-restricted to P and stabsD1, D2, . . . , Dn in order according

to Definition 6.4.

The algorithm constructs the path by finding a sequence of ` line segments (si, si+1)—

called shortcuts—where si, si+1 ∈ P . The point s1 is initialised to p1. To find a

shortcut starting at si, point si+1 is initially placed at si and then moved along P as

far as possible, such that (si, si+1) ∩ Dj 6= ∅ for all j where pj ∈ P [si, si+1], see

Figure 6.4. We say that all such disks (or, equivalently, their centers) are charged to

shortcut (si, si+1). The process is repeated for si+1 on the disks Dj+1, . . . , Dn, until

the end-point of the final shortcut of the ordered stabber reaches the final vertex pn

of P .

Computing each Shortcut In order to find each shortcut (si, si+1) in S, we find a

stabbing line containing the point si that visits a set of the r-disks in order, starting with

the first unvisited disk. This requires the maintenance of a data structure that stores the

locus of points such that, for any point q in this locus, the line segment (si, q) contains

points d1, . . . , dj such that dk ∈ Dk for k = 1, . . . , j, and where d1, . . . , dj are visited

in order, according to Definition 6.4. This locus is called the line-stabbing wedge by

Guibas et al. and letQj denote the line-stabbing wedge after diskDj has been stabbed.

CHAPTER 6. TRAJECTORY CLUSTERING 181

si
si+1

P

pj

pj+1

pj+2

pj+3

r

pj−1

Figure 6.4: The shortcut (si, si+1) extends as far along P as possible such that
dF (P [si, si+1], (si, si+1)) < r. The distance between pj+2 and the shortcut is r, and
thus maximal.

The locus is bounded by two limiting lines tcw and tccw that intersect at si and are

not “to the left” of any the disks D1, . . . , Dk, see Figure 6.5. As we will see, the line-

stabbing wedge will either be the whole space Rd or will be a region bounded by a

chain containing two rays—each lying on a limiting line—and where the origins of the

rays are connected by O(k) arcs, each of which lie on the boundary of one of the disks

D1, . . . , Dj .

This algorithm will thus only find stabbing lines containing the point si. In contrast,

the algorithm by Guibas et al. has no such restriction. The restriction allows for a

simpler algorithm for computing the stabbing line, as the limiting lines of the wedge

always intersect at si. However, the definition of the line-stabbing wedge, the method

by which it is incrementally constructed, and the complexity of the boundary of the

wedge are broadly similar.

The line-stabbing wedge is constructed incrementally by processing each disk in

order. Let Q0 ≡ Rd. To determine whether disk Dj can be stabbed, two conditions are

tested. If the center pj of Dj is outside the line-stabbing wedge, then we stop before

adding disk Dj . Point si+1 is then set as the intersection between the line segment

(pj−1, pj) and the boundary of the line-stabbing wedge, thus completing the construc-

tion of shortcut (si, si+1).

We claim that such an intersection point always exists, and we use the following

observation.

Observation 6.1. If vertex pj of P is not contained within the line-stabbing wedge after

CHAPTER 6. TRAJECTORY CLUSTERING 182

D1

D2

D3

tcw

tccw

si

Figure 6.5: The line-stabbing wedge is the locus of points contained in lines that visit
the disks in order between si and any point in q the wedge. That is they lie between
the limit lines tcw and tccw and are not to the left of any of the disks.

pj−1 was charged, i.e. pj /∈ Qj−1, then edge (pj−1, pj) intersects with either tcw or tccw.

This is true because Dj−1 would only have been charged to the stabbing line if its

center pj−1 was inside the line stabbing wedge Qj−2. The limiting lines of Qj−2—if

they exist—could only have been updated to tangents of Dj−1 and could not be placed

so that pj−1 is outside of Qj−1.

The second condition to check is that if pj ∈ Qj−1 and j = n, i.e. Dj is the last

available disk to be stabbed, then point si+1 is set to pn, Dj is charged to shortcut

(si, si+1), and the ordered stabbing is complete.

If the conditions are not met, then disk Dj can be added to the ordered stabbing by

a line through si.

Stabbing a Disk For each diskDj , there exists a regionWj that is the locus of points

w such that for the line passing through si andw, there exists a point dj ∈ Dj for which

si ≺ dj ≺ w. The shape of the region Wj depends on whether si ∈ Dj , see Figure 6.6.

If si ∈ Dj then Wj = Rd, as a line through si and any w 6= si will also contain a point

o such that si ≺ o ≺ w. If sj /∈ Dj then Wj will be a region bounded by two rays

and an arc on the circumference of Dj , see Figure 6.6(b). Each ray lies on one of the

two tangent lines intersecting at si, originates at the point of tangency, and is directed

away from si. The arc is the smaller section of the circumference of Dj subtended by

CHAPTER 6. TRAJECTORY CLUSTERING 183

the two points of tangency, i.e. the arc that is closest to si.

The region Wj is used to update the line-stabbing wedge in each iteration. Recall

Qj−1 be the line-stabbing wedge prior to processing disk Dj . If the disk Dj intersects

the wedge Qj−1, then the wedge Qj ⊆ Qj−1 ∩Wj can be computed, described below.

Observe that the boundary of Qj , if it exists, always contains two rays and a chain

of arcs. One of the rays will lie on a clockwise tangent for some disk, and the other on

a counter-clockwise tangent for some disk. The chain of arcs will connect the origins

of the two rays, see Figure 6.5.

The disks are added in order, and at each step the line-stabbing wedge is updated

according to the following rules. To determine Qj given Wj and Qj−1, we need to

consider the following cases, illustrated in Figure 6.6.

1. Qj−1 = Rd and Wj = Rd: here Qj = Rd. This case will occur when all

D1, . . . , Dj contain the point si.

2. Qj−1 = Rd and Wj 6= Rd: in this case Qj = Wj .

3. Qj−1 6= Rd and Wj = Rd: si is in the interior of Dj , and there must exist an

k < j where si /∈ Dk. We can set Qj = Qj−1. Observe that Dj ∩Qj−1 6= ∅—if

this were not the case then pj /∈ Qj−1, which was handled by the first stopping

condition.

4. Qj−1 6= Rd and W1 6= Rd: here si is not in the interior of Dj , and the limiting

lines for Wj are the tangents that intersect at si.

The computation of Qj is trivial for cases 1–3. In case 4 the limiting lines of the

line stabbing wedge Qj must be determined by comparing the clockwise limiting lines

of Dj−1 and Wj , and by comparing the two counter-clockwise limiting lines of the

same. Here Qj will be found by comparing the clockwise (resp. counter-clockwise)

limiting lines of Wj and Qi−1 and choosing the one that obtains the smaller interior

angle with the counter-clockwise (resp. clockwise) limiting line. In other words, Qj is

limited by the lines that result in a “narrower” wedge. The chain of arcs is also updated

in case 4 if the bounding arc for Wj intersects the chain of arcs in Qj−1.

CHAPTER 6. TRAJECTORY CLUSTERING 184

si

Dj

(a) case 1

si

Dj

tcw

tccw

(b) case 2

Dj

tcw

tccw

si

(c) case 3

Dj−1
tcw

tccw

Djsi

(d) case 4

Figure 6.6: Illustration of updates to line-stabbing wedge with respect to si when disk
Dj is added.

Approximation Bound The greedy algorithm will compute a path S that is an or-

dered stabbing of a sequence of disks of radius r whose centers lie on the vertices of P ,

and where the vertices of S are path-restricted to P .

We show that, given an error ε > 0, such that the `-SIMPLIFICATION problem

admits an `-simplification of error at most ε, then the greedy algorithm will find a

simplification of error not greater than 2ε that has at most ` edges. Given an input

path P = 〈p1, . . . , pn〉 and an `-simplification O = 〈o1, . . . , o`〉 of error ε, the greedy

algorithm will find a 2-approximate simplification S = 〈s1, . . . , s′`〉 where `′ ≤ `.

Recall from Definition 6.1 that for the simplification O there exists a homeomor-

phism µ that assigns every point o ∈ O to a point p ∈ P . The induction hypothesis is

that the greedy simplification is not behindO after k < ` shortcuts, i.e. that µ(ok) ≺ sk

according to P .

The following lemma is used by the base case and inductive step.

Lemma 6.1. Consider the points si, si+1 ∈ P such that (si, si+1) is a shortcut in the

approximate simplification S of P . There exists a point o ∈ O such that µ(o) =

si. Let (oi′ , oi′+1) be the shortcut in the optimal simplification that contains o. Then

µ(oi′+1) � si+1.

Proof. Let pj, . . . , pk, j ≤ k be the vertices of P that are charged to (si, si+1), i.e.

the corresponding 2ε-disks are stabbed by (si, si+1). There must exist a shortcut

(oi′ , oi′+1) in O that contains a point o where µ(o) = si, and it is sufficient to show

CHAPTER 6. TRAJECTORY CLUSTERING 185

si = µ(o)
pj pk

si+1 = µ(oi+1)

pk+1

tcw

tccw

topt

oi′ o

oi′+1

Figure 6.7: The greedy algorithm always stays ahead of the exact algorithm. Consider
the shortcut (si, si+1) constructed using the greedy algorithm (in red). There must exist
a shortcut (oi, oi+1) (magenta) on the exact simplification that contains a point o where
µ∗(o) = si. At best, the exact shortcut must lie on topt as it must be tangent to the
ε-disks around si, pk and si+1, and thus µ∗(oi+1) � si+1.

that µ(oi′+1) � si+1. By construction, point si+1 lies on one of the limiting lines of

the line-stabbing wedge, let us assume that this is tccw. The limiting line is a tangent

to one of the 2ε-disks centered at p ∈ {pj, . . . , pk}. The shortcut (oi′ , oi′+1) must in-

tersect the ε-disks centered at si and p, and hence, at best, must be parallel to tccw,

and the distance between them will be ε. The endpoint of the optimal shortcut oi′+1

may have µ(oi′+1) = si+1 at most, however it cannot be mapped to any point further

along P , as (si+1, pk+1) is below tccw and thus must be greater than ε from the optimal

shortcut.

See Figure 6.7 for an illustration of this construction.

Lemma 6.1 allows a simple proof by induction can be made on the end-point of

each shortcut. The induction hypothesis is that for each k ∈ 1, . . . , `, we have that

µ(ok) � sk. For the base case k = 1, si = pi = µ(oi), by definition, and thus the

ordering trivially holds. For the induction step, assume that µ(ok) � sk, and we must

prove that µ(ok+1) � sk+1, which has been proven in Lemma 6.1.

Time Complexity During the execution of the algorithm on an input P with |P | = n,

each point p ∈ P will be evaluated, at most twice: it will be charged to a shortcut, and

may be the endpoint of a shortcut that crosses one of the limiting lines, in which case

it will be charged to the subsequent shortcut.

CHAPTER 6. TRAJECTORY CLUSTERING 186

The algorithm must also maintain the boundary of the line-stabbing wedge for each

shortcut. Guibas et al. [98, Lemma 9] states that it is possible to form all wedges from

a sequence of n unit radius circles in O(n log n) total time.

Thus the total time required for the greedy algorithm is O(n log n) and we thus

have the following:

Theorem 6.2. Given an input polygonal chain P where |P | = n and a constant ε > 0,

if there exists a simplification of P with error at most ε and complexity `, then the

greedy algorithm will find an `-simplification of P with error at most 2ε in O(n log n)

time.

6.4 Approximation Algorithms for the (k, `)-CENTER

Problem

Let A` be an algorithm that finds an approximate solution to the `-SIMPLIFICATION

problem on a path P of complexity n, such that the error obtained is within a factor

of K1 of the optimal error ε, where K1 ≥ 1 is a constant. Similarly, let Ak be an

algorithm that finds an approximate solution to the k-CENTER problem on a set of m

paths, such that the cost of the obtained solution is within a factor of K2 of the optimal

cost, where K2 ≥ 1 is a constant.

Now, consider the following algorithm A(k,`) for the (k, `)-CENTER problem. We

have as input P = {P1, . . . , Pm} of polygonal paths such that |Pi| ≤ n for all Pi ∈ P ,

positive integers k and `, and δ > 0. We then run algorithm Al on each P ∈ P

to obtain the set S = {S1, . . . , Sm}, such that Si ∈ S is an `-simplification of Pi.

The simplified paths S are then clustered using algorithm Ak to obtain a k-clustering

C = {Ci, . . . , Ck} where C ⊆ S.

If there exists a (k, `)-center clustering of cost δ, then applying A` and Ak will

output a (k, `)-center clustering of cost at most 2(K1 + 1)K2δ.

CHAPTER 6. TRAJECTORY CLUSTERING 187

Correctness The algorithm clearly obtains a (k, `)-center clustering of P , as the `-

simplifications S ∈ S obtained by algorithm A` ensure that |Si| = ` for all Si ∈ S,

and algorithm Ak finds a k-clustering where the C ⊆ S . Thus, we need to show that

C is, in fact, a 2(K1 + 1)K2-approximation of the cost δ of the optimal solution to the

(k, `)-CENTER problem on P .

Let C∗ = {C∗1 , . . . , C∗m} be an optimal clustering of P obtained as a solution to the

(k, `)-CENTER problem, and let π∗ be the corresponding surjection from P onto C∗.

We have for all Pi ∈ P that

dF (Pi, π
∗(Pi)) ≤ δ. (6.1)

Now consider the set of `-simplifications S of P obtained using algorithm A`, for

each Pi ∈ P and its corresponding Si ∈ S the following inequality holds:

dF (Si, π
∗(Pi)) ≤ dF (Si, Pi) + dF (Pi, π

∗(Pi)) ≤ K1ε+ δ. (6.2)

The first inequality holds because of the triangle inequality property of the Fréchet dis-

tance, and the second inequality uses the approximation bound ofA` together with (6.1).

Next, for each center C∗j ∈ C∗ of the optimal solution, choose any Si ∈ S where

i ∈ {i ∈ 1, . . . , n | π∗(Pi) = C∗j }, and set Cj = Si. Let C = {C1, . . . , Ck} be the

set of simplified centers thus chosen. We then have, for each Pi and corresponding Si,

that

dF (Si, Cj) ≤ dF (Si, C
∗
j) + dF (C∗j , Cj) ≤ 2(K1ε+ δ). (6.3)

Again, the first inequality holds because of the triangle-inequality property of the

Fréchet distance, and since Cj was chosen as one of the `-simplifications in the cluster

of C∗j then both the distances are bounded by (6.2).

The inequalities in (6.1)–(6.3) are upper-bounded by both δ and ε. Next, we see that

ε has an upper bound of δ. Given that δ is the optimal cost of a solution to the (k, `)-

CENTER problem with respect to P , and S∗i is the solution to the `-SIMPLIFICATION

CHAPTER 6. TRAJECTORY CLUSTERING 188

problem for each Pi ∈ P , then dF (C∗j , Pi) ≥ dF (S∗i , Pi) for all Pi ∈ P . Thus, we have

ε = dF (S∗i , Pi) ≤ dF (C∗j , Pi) = δ. (6.4)

The inequality holds as C∗j is a feasible `-simplification of Pi and thus must have

a Fréchet distance to Pi that is at least as large as the distance to the optimal `-

simplification S∗i to Pi.

With these observations, we are now able to prove an approximation bound for the

algorithm. Substituting (6.4) into (6.3) we have

dF (Si, Cj) ≤ 2(K1ε+ δ) = 2(K1 + 1)δ. (6.5)

Thus, there exists a k-center clustering with respect to S that is a 2(K1+1)-approximation

of the optimal solution to the (k, `)-CENTER problem with respect to P .

From this and the fact that algorithmAk obtains aK2-approximation of the solution

to the k-CENTER problem, we have the following result.

Lemma 6.3. If there exists a solution to (k, `)-CENTER problem with respect to P of

cost δ then the algorithm Ak with respect to S obtains a 2(K1 + 1)K2-approximation.

Time Complexity Let T`(n) and Tk(m) be the running time of algorithms A` and

Ak respectively. The approximation algorithm A(k,`) for the (k, `)-CENTER problem

executes A` on each of the m input paths, and then executes Ak on the resulting m

shortcuts. Thus, we have:

Lemma 6.4. The overall running time of algorithm A(k,`) is mT`(n) + Tk(m).

6.4.1 Results

In the analysis of algorithm Ak,`, we assumed the existence of approximation algo-

rithms A` and Ak for the `-SIMPLIFICATION and k-CENTER problems, respectively.

CHAPTER 6. TRAJECTORY CLUSTERING 189

Table 6.1: Approximation factor and time complexity obtained for algorithms for the
(k, `)-CENTER problem for a given δ.

A` Ak K1 K2 Approximation Running Time

Guibas Brute-force 1 1 4 O(mn2 log2 n+m(m`2 log `+ km))
Guibas Hochbaum 1 2 8 O(mn2 log2 n+ km`2 log `)
Greedy Brute-force 2 1 6 O(mn logn+m(m`2 log `+ km))
Greedy Hochbaum 2 2 12 O(mn logn+ km`2 log `)

We can obtain the results for algorithm Ak,` by replacing A` and Ak with known al-

gorithms for these problems. By substituting the approximation factors and running

times for the algorithms into Lemma 6.3 and Lemma 6.4, results for approximations

of the (k, `)-CENTER problem are obtained.

However, we are unaware of any exact or approximate algorithms for the `-simplifi-

cation problem. For a given ε, if an `-simplification exists, the algorithm by Guibas

et al. [98] gives an exact result for the `-SIMPLIFICATION problem in O(n2 log2 n)

running time, and the greedy algorithm in Section 6.3 gives a 2-approximation for the

problem in O(n log n) time. To utilise these algorithms, consider the following:

Definition 6.5 ((k, `, δ)-clustering). Given a set of polygonal pathsP , positive integers

k and `, and δ > 0, a (k, `, δ)-clustering is a (k, `)-clustering of cost at most δ.

Lemmas 6.3 and 6.4 imply the following lemma for (k, `, δ)-clustering.

Lemma 6.5. Given a set of polygonal paths P , positive integers k and `, and δ > 0, if

there exists a solution to the (k, `)-CENTER problem with cost no greater than δ, then

algorithmA(k,`) outputs a (k, `, 2(K1+1)K2δ)-clustering inO(mT`(n)+Tk(m)) time.

The k-CENTER problem can be solved exactly in O(m(mTd(n) + km)) time using

a brute force algorithm, and a 2-approximation can be obtained in O(kmTd(n)) time

using the algorithm by Hochbaum and Shmoys [108]. Here Td(n) is the cost of com-

putation of the distance between inputs, and for the Fréchet distance this is O(`2 log `)

using the algorithm by Alt and Godau [7]. A small improvement may also be ob-

tained using the algorithm by Buchin et al. [34] to compute the Fréchet distance in

O(`2(log log `)2) time in the word RAM model of computation.

CHAPTER 6. TRAJECTORY CLUSTERING 190

Substituting these known algorithms for A` and Ak as required, Lemma 6.5 gives

the results in Table 6.1.

6.5 Conclusion

This chapter investigates the problem of finding an exemplar-based clustering of a

set of polygonal paths—such as trajectories—that is of minimal cost and where the

computed exemplars are smooth. The smoothness of the exemplars is enforced by

restricting the exemplars to be paths of a bounded complexity in the number of edges.

We formalise this as the (k, `)-CENTER problem, and for a given error δ and show

that it is possible to obtain a bounded approximation by first simplifying the input

paths and then clustering the simplifications. A greedy algorithm for computing a 2-

approximation of the `-SIMPLIFICATION problem is presented, and using this, along

with previously known algorithms for simplification and clustering, we are able to

provide a family of bounded approximation results with varying running times.

The `-simplification algorithms used in these results rely on the assumption that an

upper bound on the simplification error ε is known. This is not a realistic assumption

in practical situations, and efficiently determining this value is an open problem.

Chapter 7

Conclusion

The availability of large trajectory datasets on players in football matches and other

invasion sports has motivated a consequent need for algorithms and tools to analyse

and extract information from them. The main insight is that the tactics, strategies

and objectives of the players are, to a certain extent, realisable from the trajectories.

Teammates will coordinate their movements to achieve shared objectives, and at the

same time the opposition players will move in an adversarial manner, and there is thus

a rich latent structure within the trajectory data to be exploited.

There is also an apparent need for tools that can efficiently identify and present

this underlying structure for tactical and strategic sports analysis. Professional sports

is a significant industry, and tools to improve player and team performance—even

marginally—can have a significant effect. The ability to identify patterns and struc-

ture in team play will be beneficial to team management for tasks such as player as-

sessment and recruitment, opposition analysis and planning and strategic planning.

Tasks that have heretofore been labour-intensive manual tasks could be partially or

fully automated, such as video match analysis. Similarly, secondary industries such

as broadcasting and fan engagement could improve their offering by providing analy-

ses and visualisations that are automatically generated. The algorithms and techniques

described here also have application in other domains, such as behavioural ecology,

urban and city planning.

191

CHAPTER 7. CONCLUSION 192

The object tracking systems that generate trajectory data have only recently prolif-

erated, and the research into algorithms and tools to exploit the data is at an early stage.

There are many open problems for which there is no consensus on the best approaches

to solving them.

It is in this context that we present the contributions described in this thesis. Each

contribution describes an algorithmic approach to extracting information from the

same underlying input of player trajectory and event log data.

In Chapter 3 we presented a framework that used machine learning algorithms to

address the classification problem of labelling each pass made during a football match

with a rating of the quality of the pass. The insight that motivated this approach was

that by computing geometric data structures it would be possible to incorporate higher-

level structure about the state of play when the pass was made, and from this derive

predictor variables that would be important to the learned classifier. The framework we

constructed was able to achieve 90 % accuracy on the classification task. Moreover, we

found that the predictor variables constructed from geometric data structures such as

the dominant region were of high importance to the classifiers when making the rating.

The subjective nature of the classification task meant that there was no “right” answer,

and we found that the learned classifier would obtain a similar level of agreement with

an expert observer as the level of agreement between two experts.

The research in Chapter 4 investigated a method for summarising a set of state

sequences—of which trajectories are a specific example—in a compact structure that

could be readily visualised. The goal was to segment the state sequences according to

a set of criteria describing properties of the states, and then to produce a group seg-

mentation using a flow diagram of a minimal number of nodes, such that for each state

sequence, a valid segmentation was represented in the flow diagram as an s–t path.

This problem was found to be NP-hard and also hard to approximate, and hence two

heuristic algorithms were designed that were found to work well in practice—inducing

flow diagrams that were close to optimal in the number of nodes they contained. We

evaluated the utility of this approach on two use-cases using football data and found

CHAPTER 7. CONCLUSION 193

that the resulting flow diagrams were interpretable and that several well-known insights

into football strategy were apparent.

Chapter 5 presented algorithms for the joint task of clustering and outlier detection.

The clustering problem was modelled as the facility location problem, and two heuris-

tic algorithms were designed, and were based on distinct integer program formulations

of the problem, one using Lagrangian relaxation and the other using affinity propaga-

tion. We observed that both algorithms were iterative and maintained their state in a set

of auxiliary variables, and that by monitoring these variables at each iteration of the

algorithm execution, a time-series of the state was captured. These time-series yield an

implicitly two-dimensional representation of the clustered points and of the outliers—

regardless of the dimensionality of the input. The visualisation offers insights into the

structure of the input and also the execution of the algorithm, and we were able to use

this technique to identify an improved design for the Lagrangian heuristic algorithm.

This improved algorithm was found to outperform other techniques, and furthermore

the induced time-series visualisations on real trajectory datasets revealed interesting

insights into the structure of the input data.

The trajectory clustering problem was also considered in Chapter 6 but from a very

different perspective. We observed that exemplar-based clustering of trajectories—

such as those computed by the algorithms in Chapter 5—obtain exemplars for each

cluster that are one of the input trajectories, and thus may be noisy, which may make

them harder to visualise and interpret. To overcome this, we investigated the (k, `)-

CENTER problem that finds clusters and associated exemplars that have bounded com-

plexity, and thus will be robust to noise. The chapter contained a formal analysis of

the problem and presented an algorithmic framework for the problem. Using previ-

ously known algorithms for trajectory simplification and clustering, we obtained four

approximation algorithms with bounded costs relative to the optimum cost.

The contributions in this thesis fit into a taxonomy of problems and tasks for spatio-

temporal analysis of invasion sports, presented in Chapter 2. This taxonomy, was

based on the systematic survey of research carried out on player trajectory data from

CHAPTER 7. CONCLUSION 194

a number of sporting codes. In this survey, we identified a number of open problems,

and we expand on these here to speculate on the directions that we believe that research

in this area will take.

We anticipate that in future, the input trajectory data will contain a much richer

set of location points. Currently the location points typically contain a two- or three-

dimensional point location, but it is likely that in future additional details will be avail-

able, such as the direction that a player is facing. Furthermore, multiple parts of the

player could be tracked and thus the player’s pose at each location point could be as-

certained. Consequently, the input trajectory data will contain more information, and

hence present more challenges as to how to process and exploit this additional infor-

mation.

Currently, the object tracking systems require intensive post-processing to output

the trajectories, and thus many of the current analytic approaches are offline processes.

There is an apparent demand for real-time analysis during matches, and thus analytic

tools that operate in a streaming or online model will be required. Such algorithms

will need to execute in near-linear time, and while there has been some research on

fundamental problems such as curve simplification in this setting [1], [64], this remains

an open field.

Finally, the techniques for extracting information from spatio-temporal data are

currently fragmented and there is a need for common data structures and a common

language through which queries can be made against a trajectory database. Tasks such

as trajectory querying, clustering and segmentation are currently addressed using algo-

rithms that rely on specific data structures. These algorithms exploit many of the same

properties, and a unified data structure that supported algorithms that were competi-

tive with those on bespoke structures would be an important contribution. Similarly,

a unified language for trajectory query and analysis would facilitate the adoption of

the techniques and algorithms discussed in Chapter 2. Such a language would need to

support queries on the spatial and structural properties of the trajectories and should be

CHAPTER 7. CONCLUSION 195

extensible to domain-specific requests. The language would also support more sophis-

ticated queries and would help to unify the heretofore disparate techniques currently

available for trajectory analysis.

In conclusion, there are many open problems—both fundamental and applied—

in the area of trajectory analysis and mining, and advances in this area could have a

significant impact. These problems have interested researchers from many fields, and

we can expect innovative and diverse contributions to the state of the art in the near

future.

Appendix A

Input Match Data Details

A.1 Event Types

The following list event types are used in the event logs.

Table A.1: List of events and their types used in event logs.

Event Name Event Type Event Name Event Type

Ball Out Of Play Technical event Goalkeeper Save Catch Player event

Block Player event Goalkeeper Throw Player event

Clearance Player event Handball Player event

Corner Cross Player event Header Player event

Corner Pass Player event Header Shot Player event

Cross Player event Indirect Free Kick Pass Player event

Direct Free Kick Cross Player event Kick Off Technical event

Direct Free Kick Pass Player event Offside Technical event

Direct Free Kick Shot Player event Own Goal Player event

Dribble Player event Pass Player event

Drop Ball Player event Penalty Shot Player event

End Of Half Technical event Post Player event

Foul Technical event Shot Player event

Goal Player event Start Of Half Technical event

Goal Kick Player event Stoppage Technical event

Goalkeeper Catch Player event Substitution Technical event

Goalkeeper Kick Player event Tackle Player event

Goalkeeper Pick Up Player event Throw In Player event

Goalkeeper Punch Player event Touch Player event

Goalkeeper Save Player event Yellow Card Technical event

196

Appendix B

Pass Classifier Feature Descriptions

The features functions used to compute the predictor variables are briefly described in

the Table B.1.

Table B.1: The feature functions implemented for the pass classification model.

Feature Name Description Variable Class Variable Type Domain

Half The half of the match that
the pass occurred in.

N/A Discrete {1, 2}

Time-stamp The time-stamp of the
pass in the half.

N/A Discrete N

Player Sequence ID A unique identifier of the
player possession
sequence.

Sequential Discrete N

Player Sequence Index The ordinal position
within the player
possession sequence
when the pass event
occurred.

Sequential Discrete N

Possession Sequence ID The unique identifier of
the team possession
sequence.

Sequential Discrete N

Possession Sequence
Index

The ordinal position
within the team
possession sequence
when the pass event
occurred.

Sequential Discrete N

Possession Start Flag Indicator that the event is
the first event in the team
possession sequence.

Sequential Binary {0, 1}

Possession End Flag Indicator that the event is
the final event in the team
possession sequence.

Sequential Binary {0, 1}

197

APPENDIX B. PASS CLASSIFIER FEATURE DESCRIPTIONS 198

Table B.1: (contd.) The feature functions.

Feature Name Description Variable Class Variable Type Domain

Possession First Action Event type of the first
action in the possession
sequence.

Sequential Categoric

Play Sequence ID The unique identifier of
the play sequence.

Sequential Discrete N

Play Sequence Index The ordinal position
within the play sequence
when the pass event
occurred.

Sequential Discrete N

Play Start Flag Indicator that the event is
the first event in the play
sequence.

Sequential Binary {0, 1}

Play End Flag Indicator that the event is
the final event in the play
sequence.

Sequential Binary {0, 1}

Play First Action Event type of the first
action in the play
sequence.

Sequential Categoric

Passing Player The name of the player
who makes the pass.

N/A Categoric

Receiving Player The name of the player
who receives the pass.

N/A Categoric

Passing Player
X-coordinate

The x-coordinate of the
passing player.

Geometric Discrete Z

Passing Player
Y-coordinate

The y-coordinate of the
passing player.

Geometric Discrete Z

Receiving Player
X-coordinate

The x-coordinate of the
receiving player.

Geometric Discrete Z

Receiving Player
Y-coordinate

The y-coordinate of the
receiving player.

Geometric Discrete Z

Dominant Region -
Passer

The total area of the
passing player’s
dominant region in mm2.

Strategic Continuous R

Dominant Region -
Receiver

The total area of the
receiving player’s
dominant region in mm2.

Strategic Continuous R

Dominant Region Net
Change - Passer

The difference in the area
in the passing player’s
dominant region in mm2

between when the pass
was made and when it
was received.

Strategic Continuous R

Dominant Region Net
Change - Reciever

The difference in the area
in the receiving player’s
dominant region in mm2

between when the pass
was made and when it
was received.

Strategic Continuous R

APPENDIX B. PASS CLASSIFIER FEATURE DESCRIPTIONS 199

Table B.1: (contd.) The feature functions.

Feature Name Description Variable Class Variable Type Domain

Dominant Region - Team The total area of the
receiving player’s team’s
dominant region in mm2.

Strategic Continuous R

Dominant Region Net
Change - Team

The difference in the area
in the receiving player’s
team’s dominant region
in mm2 between when
the pass was made and
when it was received.

Strategic Continuous R

Passer Pressure The pressure exerted on
the passing player using
the pressure measure
defined by [183].

Physiological Continuous R

Receiver Pressure The pressure exerted on
the receiving player using
the pressure measure
defined by [183].

Physiological Continuous R

Passer-Receiver Pressure
Net Change

The net change in the
pressure exerted on the
passing player and the
receiving player using the
pressure measure defined
by [183].

Physiological Continuous R

Distance To Goal The distance in mm from
the passing player’s
position to the centre of
the goal that the player is
attacking.

Geometric Continuous R

Opposition To Goal The number of opposition
players in the funnel
between the passing
player and the goal the
player is attacking.

Geometric Discrete N

Opposition To Goal Net
Change

The difference in the
number of opposition
players in the funnel
between the passing
player and the goal the
player is attacking from
when the pass is made to
when it is received.

Geometric Discrete N

Opposition To Goal-line The number of
opposition players
between the passing
player and the goal-line
he/she is attacking.

Geometric Discrete N

APPENDIX B. PASS CLASSIFIER FEATURE DESCRIPTIONS 200

Table B.1: (contd.) The feature functions.

Feature Name Description Variable Class Variable Type Domain

Opposition To Goal-line
Net Change

The difference in the
number of opposition
players in the area
between the passing
player and the goal-line,
and the receiving player
and the goal-line.

Geometric Discrete N

Teammates To Goal-line The number of
teammates between the
player making the pass
and the goal-line the
player is defending.

Geometric Discrete N

Teammates To Goal-line
Net Change

The difference in the
number of teammates
between the passing
player and the goal-line,
and the receiving player
and the goal-line.

Geometric Discrete N

Opposition To Receiver The number of
opposition players in the
reachable area between
the passing player and the
receiving player.

Geometric Discrete N

Controlled By Receiver Indicator to determine
whether the receiving
player controlled the
pass, either by making
two or more touches or
by passing the ball again.

Physiological Binary {0, 1}

Supporting Players The number of
teammates of the passing
player who are open to
receive the pass.

Physiological Discrete N

Pass Distance The distance in mm of
the pass.

Geometric Continuous R

Pass Speed The speed of the pass in
m/sec.

Geometric Continuous R

Pass Angle The angle of the
trajectory of the pass.

Geometric Continuous [−π, π]

Facing Angle The angle that the
passing player is facing
when the pass is made.

Geometric Continuous [−π, π]

Receiver Angle The difference between
the angle that the
receiving player is facing
and the angle to the point
where the pass is
received.

Geometric Continuous [−π, π]

APPENDIX B. PASS CLASSIFIER FEATURE DESCRIPTIONS 201

Table B.1: (contd.) The feature functions.

Feature Name Description Variable Class Variable Type Domain

Reachable Angle The angle of the “cone”
that the passer must pass
the ball through in order
that the receiver can
reach the ball before any
other player, given the
speed of the pass.

Geometric Continuous [−π, π]

Distance From Nearest
Touchline

The distance in mm to
the touchline nearest to
the passing player.

Geometric Continuous R

Distance From Defensive
Goal-line

The distance in mm to the
goal-line that the passing
player is defending.

Geometric Continuous R

Distance From Attacking
Goal-line

The distance in mm to the
goal-line that the passing
player is attacking.

Geometric Continuous R

Receiver Distance To
Ball

The distance in mm from
the location of the
receiving player when the
pass is made to the
location of the point
where the ball is received.

Geometric Continuous R

Passer Touch Count The total number of
touch events made by the
passing player prior to
the pass.

Sequential Discrete N

Passer Distance The total distance in mm
travelled by the passing
player prior to the pass.

Sequential Continuous R

Passer Possession Time The total time in ms that
the passing player is in
possession prior to the
pass being made.

Sequential Discrete N

Receiver Touch Count The total number of
touch events made by the
receiving player after
receiving the pass.

Sequential Discrete N

Receiver Distance The total distance in mm
travelled by the receiving
player after receiving the
pass.

Sequential Continuous R

Receiver Possession
Time

The total time in ms that
the receiving player is in
possession after receiving
the pass.

Sequential Discrete N

Appendix C

Affinity Propagation Message

Formulation

The messages described in Subsection 5.2.2 were derived as follows. The two general

message forms depend on whether the message is from a factor node with function f

to a variable node with variable x, or vice versa.

µx→f (x
′) =

∑

ft∈δ(x)\f

µft→x(x
′) (C.1)

µf→x(x
′) = max

xi∈δ(f)\x

[
f(x1, . . . , x = x′, . . . , xM) +

∑

k : xk∈δ(f)\x

µxk→f (xk)
]

(C.2)

Here δ(v) is the neighbourhood of v, i.e. all nodes that are incident to v. Informally,

a message from a node x to f is the sum of all messages to x from all its incident

nodes, except f . A message from a node f to x is the maximum value over all variable

assignments of the factor function plus the values of all messages into f from nodes

that are incident to f .

The general form (C.1) is used to derive messages ρij , γij , σi and τi, and (C.2) is

used to derive αij , ηij , χij and ωij .

202

APPENDIX C. AFFINITY PROPAGATION MESSAGE FORMULATION 203

C.1 Variable-to-factor Messages

We first derive the messages that originate at variables. Using (C.1), we have

ρij(1) =ηij(1)− dij(1)

ρij(0) =ηij(0)− dij(0)

And thus

ρij =ρij(1)− ρij(0)

=ηij(1)− ηij(0)− dij(1) + dij(0)

=ηij − dij.

Similarly

γij =αij − dij

τi =χi

σi =ωi

C.2 Factor-to-variable Messages

The factor-to-variable messages are derived using (C.2). For these messages, the de-

rived functions can be different for each of the values of x, and thus the derivation is

more complicated.

APPENDIX C. AFFINITY PROPAGATION MESSAGE FORMULATION 204

Message αij: The update rule for αij(1) follows. When xij = 1, then Ej = −fj and

all other variables xkj : k 6= i can be either 1 or 0.

αij(1) = max
xkj : k 6=i

[
Ej(xij, . . . , xij = 1, . . . , xnj) +

∑

t6=i

ρtj(xtj)
]

=−fj + max
xkj : k 6=i

[∑

t6=i

ρtj(xtj)
]

=−fj +
∑

k 6=i

[
max
xkj

ρkj(xkj)
]

For xij = 0, we need to find the maximizer of two values obtained first when all

xkj = 0, k 6= j and then when xkj can be either 0 or 1.

αij(0) = max
xkj : k 6=i

[
Ej(xij, . . . , xij = 0, . . . , xnj) +

∑

t6=i

ρtj(xtj)
]

= max
[
0 +

∑

k 6=i

ρkj(0),−fj +
∑

k 6=i

[
max
xkj

ρkj(xkj)
]]

Computing the difference is thus

αij =ρij(1)− ρij(0)

=−fj +
∑

k 6=i

[
max
xkj

ρkj(xkj)
]
−max

[∑

k 6=i

ρkj(0),−fj +
∑

k 6=i

[
max
xkj

ρkj(xkj)
]]

= min
[
−fj +

∑

k 6=i

[
max
xkj

[
ρkj(xkj)− ρkj(0)

]
, 0
]

= min
[
0,−fj +

∑

k 6=i

max
[
ρkj, 0

]]

Messages ηij and σi: The update rules for ηij and σi are derived by a similar se-

quence of operations. First we consider ηij = 1, observing that unless exactly one of

x:j ∪ {oi} has value 1, then the factor function will be trivially sub-optimal.

APPENDIX C. AFFINITY PROPAGATION MESSAGE FORMULATION 205

ηij(1) = max
{xik : k 6=j}∪{oi}

[
Ii(xi1, . . . , xij = 1, . . . , xin, oi) +

∑

k 6=j

γik(xik) + σi(oi)
]

=
∑

k 6=j

γik(0) + σi(0)

For ηij(0), the maximal assignment will have exactly one of the remaining variables

with value 1.

ηij(0) = max
{xik : k 6=j}∪{oi}

[
Ii(xi1, . . . , xij = 0, . . . , xin, oi) +

∑

t6=j

γit(xit) + σi(oi)
]

= max
[

max
k 6=j

[
γik(1) +

∑

t/∈{j,k}

γit(0) + σi(0)
]
,
∑

t6=j

γit(0) + σi(1)
]

ηij is the difference between the two.

ηij =ηij(1)− ηij(0)

=
∑

k 6=j

γik(0) + σi(0)−

max
[

max
k 6=j

[
γik(1) +

∑

t/∈{j,k}

γit(0) + σi(0)
]
,
∑

t6=j

γit(0) + σi(1)
]

= min
[

min
k 6=j

[
γik(0)− γik(1)

]
, σi(0)− σi(1)

]

= min
[

min
k 6=j
−γik,−σi

]

In a similar manner, χi can be derived.

χi =χi(1)− χi(0) =−max
j
γij

Message ωi: The update rule for ωi requires that two cases be handled in order to

derive the message, however the resulting message is relatively simple.

APPENDIX C. AFFINITY PROPAGATION MESSAGE FORMULATION 206

ωi(1) = max
ok : k 6=i

[
A(o1, . . . , oi = 1, . . . , on) +

∑

t6=i

τt(ot)
]

and

ωi(0) = max
ok : k 6=i

[
A(o1, . . . , oi = 0, . . . , on) +

∑

t6=i

τt(ot)
]

The factor function A(o) will be trivially suboptimal unless exactly ` of the vari-

ables in o are set to 1, and thus we need to find such a set C∗ ∈ C where |C∗| = ` that

maximises ω. Recall that C = {1, . . . , n} is the set of all indices and let T` = {C ⊂

C | |C| = `} be the set of all subsets of C of cardinality `. Consider the function

h∗(`) = max
C∈T`

[∑

t∈C

τt(1) +
∑

t∈C\C

τt(0)
]
,

and let C∗` ∈ T` be a set that maximises h∗(`). Furthermore let u1, . . . , un → C be an

ordering such that τui ≥ τuj for all ui < uj . In other words u1, . . . , un order the values

of τui in decreasing order. We need the following lemma.

Lemma C.1. The value of h∗(`) is the sum of the ` largest values of τi, i.e. h∗(`) =
∑`

k=1 τuk and thus C∗` = {u1, u2, . . . , u`}.

Proof. To prove a contradiction, assume that C∗` is a maximizer for h∗(`) and contains

an index uk, such that k > `. There must exist a um /∈ C∗` such that m <= `.

Consider the objective function value if uk is replaced with um. We have

h∗(`)− τuk(1) + τuk(0) + τum(1)− τum(0) <h∗(`)

h∗(`)− τuk + τum <h∗(`)

τum <τuk

APPENDIX C. AFFINITY PROPAGATION MESSAGE FORMULATION 207

However m ≤ ` < k, thus contradicting the definition of the ordering on ui.

To compute ωi(1) and ωi(0), consider an ordering u1, . . . , un. Then i is either a

member of u1, . . . , u`—i.e. the indices yielding the ` largest values of τi—or not, and

each case must be handled separately.

1. i ∈ {u1, . . . , u`} We can restate the message formula for ωi(1) and ωi(0) in

terms of C∗` as ωi≤:

ωi≤(1) =
∑

k∈C∗` \{`}

τk(1) +
∑

k∈C\C∗`

τk(0)

ωi≤(0) =
∑

k∈C∗`+1\{`}

τk(1) +
∑

k∈C\C∗`+1

τk(0)

And thus we can compute

ωi≤ =ωi≤(1)− ωi≤(0)

=
∑

k∈C∗` \{`}

τk(1)−
∑

k∈C∗`+1\{`}

τk(1) +
∑

k∈C\C∗`

τk(0)−
∑

k∈C\C∗`+1

τk(0)

=− τu`+1
(1) + τu`+1

(0)

=− τu`+1

2. i /∈ {u1, . . . , u`} In a similar manner, we have ωi>:

ωi>(1) =
∑

k∈C∗`−1

τk(1) +
∑

k∈C\(C∗`−1∪{i})

τk(0)

ωi>(0) =
∑

k∈C∗`

τk(1) +
∑

k∈C\(C∗` ∪{i})

τk(0)

APPENDIX C. AFFINITY PROPAGATION MESSAGE FORMULATION 208

And thus we can compute

ωi> =ωi>(1)− ωi>(0)

=− τu`(1) + τu`(0)

=− τu`

Finally we can combine the two cases:

ωi = −

τu`+1

if i ∈ {u1, . . . , u`}

τu` otherwise
(C.3)

Bibliography

[1] M. A. Abam, M. de Berg, P. Hachenberger, and A. Zarei, “Streaming algo-
rithms for line simplification,” Discrete & Computational Geometry, vol. 43,
no. 3, pp. 497–515, 2010. DOI: 10.1007/s00454-008-9132-4.

[2] N. Adams, “Issue information—special issue: Sports analytics,” Statistical Anal-
ysis and Data Mining: The ASA Data Science Journal, vol. 9, no. 5, pp. i–iv,
Sep. 2016. DOI: 10.1002/sam.11292.

[3] P. K. Agarwal, S. Har-Peled, N. H. Mustafa, and Y. Wang, “Near-linear time
approximation algorithms for curve simplification,” Algorithmica, vol. 42, no. 3-
4, pp. 203–219, May 2005. DOI: 10.1007/s00453-005-1165-y.

[4] C. C. Aggarwal, Outlier Analysis. Springer International Publishing AG, Jan. 6,
2017. DOI: 10.1007/978-3-319-47578-3.

[5] S. P. A. Alewijnse, K. Buchin, M. Buchin, A. Kölzsch, H. Kruckenberg, and
M. A. Westenberg, “A framework for trajectory segmentation by stable crite-
ria,” in Proceedings of the 22nd. ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems (SIGSPATIAL ’14), ACM,
Nov. 2014, pp. 351–360. DOI: 10.1145/2666310.2666415.

[6] H. Alt, A. Efrat, G. Rote, and C. Wenk, “Matching planar maps,” Journal of
Algorithms, vol. 49, no. 2, pp. 262–283, Nov. 2003. DOI: 10.1016/s0196-
6774(03)00085-3.

[7] H. Alt and M. Godau, “Computing the fréchet distance between two polygonal
curves,” International Journal of Computational Geometry and Applications,
vol. 5, pp. 75–91, 1995. DOI: 10.1142/S0218195995000064.

[8] B. Aronov, A. Driemel, M. J. van Kreveld, M. Löffler, and F. Staals, “Seg-
mentation of trajectories on nonmonotone criteria,” ACM Transactions on Al-
gorithms, vol. 12, no. 2, pp. 1897–1911, 2016. DOI: 10.1145/2660772.

[9] S. Baccianella, A. Esuli, and F. Sebastiani, “Evaluation measures for ordinal
regression,” in Proceedings of the 9th. International Conference on Intelligent
Systems Design and Applications, IEEE, 2009, pp. 283–287. DOI: 10.1109/
ISDA.2009.230.

209

https://doi.org/10.1007/s00454-008-9132-4
https://doi.org/10.1002/sam.11292
https://doi.org/10.1007/s00453-005-1165-y
https://doi.org/10.1007/978-3-319-47578-3
https://doi.org/10.1145/2666310.2666415
https://doi.org/10.1016/s0196-6774(03)00085-3
https://doi.org/10.1016/s0196-6774(03)00085-3
https://doi.org/10.1142/S0218195995000064
https://doi.org/10.1145/2660772
https://doi.org/10.1109/ISDA.2009.230
https://doi.org/10.1109/ISDA.2009.230

BIBLIOGRAPHY 210

[10] P. Balkundi and D. A. Harrison, “Ties, leaders, and time in teams: Strong in-
ference about network structures effects on team viability and performance,”
Academy of Management Journal, vol. 49, no. 1, pp. 49–68, Feb. 2006. DOI:
10.5465/AMJ.2006.20785500.

[11] A. Bavelas, “Communication patterns in task-oriented groups,” The Journal of
the Acoustical Society of America, vol. 22, no. 6, pp. 725–730, 1950.

[12] J. Beasley, “Lagrangean heuristics for location problems,” European Journal
of Operational Research, vol. 65, no. 3, pp. 383–399, 1993. DOI: http://
dx.doi.org/10.1016/0377-2217(93)90118-7.

[13] M. Beetz, N. von Hoyningen-Huene, B. Kirchlechner, S. Gedikli, F. Siles, M.
Durus, and M. Lames, “ASPOGAMO: Automated sports games analysis mod-
els,” International Journal of Computer Science in Sport, vol. 8, no. 1, pp. 1–
21, 2009.

[14] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational
Geometry. Heidelberg, Germany: Springer Berlin Heidelberg, Mar. 7, 2008.

[15] D. Bertsimas and R. Weismantel, Optimization over Integers. Athena Scien-
tific, 2005.

[16] A. Bialkowski, P. Lucey, G. P. K. Carr, Y. Yue, and I. Matthews, “Win at home
and draw away: Automatic formation analysis highlighting the differences in
home and away team behaviors,” in Proceedings of the 8th. Annual MIT Sloan
Sports Analytics Conference, MIT, Feb. 2014, pp. 1–7.

[17] A. Bialkowski, P. Lucey, G. P. K. Carr, Y. Yue, S. Sridharan, and I. Matthews,
“Identifying team style in soccer using formations learned from spatiotemporal
tracking data,” in Proceedings of the IEEE International Conference on Data
Mining Workshops (ICDM Workshops), IEEE, Dec. 2014, pp. 9–14. DOI: 10.
1109/ICDMW.2014.167.

[18] A. Bialkowski, P. Lucey, P. Carr, Y. Yue, S. Sridharan, and I. Matthews, “Large-
scale analysis of soccer matches using spatiotemporal tracking data,” in Pro-
ceedings of the IEEE International Conference on Data Mining (ICDM ’14),
IEEE, Dec. 2014, pp. 725–730. DOI: 10.1109/ICDM.2014.133.

[19] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” The Jour-
nal of Machine Learning Research, vol. 3, pp. 993–1022, Mar. 2003.

[20] F. Bonchi, C. Castillo, D. Donato, and A. Gionis, “Taxonomy-driven lumping
for sequence mining,” Data Mining and Knowledge Discovery, vol. 19, no. 2,
pp. 227–244, Jul. 2009. DOI: 10.1007/s10618-009-0141-6.

[21] S. P. Borgatti, “Centrality and network flow,” Social Networks, vol. 27, no. 1,
pp. 55–71, Jan. 2005. DOI: 10.1016/j.socnet.2004.11.008.

https://doi.org/10.5465/AMJ.2006.20785500
https://doi.org/http://dx.doi.org/10.1016/0377-2217(93)90118-7
https://doi.org/http://dx.doi.org/10.1016/0377-2217(93)90118-7
https://doi.org/10.1109/ICDMW.2014.167
https://doi.org/10.1109/ICDMW.2014.167
https://doi.org/10.1109/ICDM.2014.133
https://doi.org/10.1007/s10618-009-0141-6
https://doi.org/10.1016/j.socnet.2004.11.008

BIBLIOGRAPHY 211

[22] A. Borrie, G. K. Jonsson, and M. S. Magnusson, “Temporal pattern analy-
sis and its applicability in sport: An explanation and exemplar data.,” Jour-
nal of Sports Sciences, vol. 20, no. 10, pp. 845–52, 2002. DOI: 10.1080/
026404102320675675.

[23] J. Bourbousson, G. Poizat, J. Saury, and C. Seve, “Team coordination in bas-
ketball: Description of the cognitive connections among teammates,” Journal
of Applied Sport Psychology, vol. 22, no. 2, pp. 150–166, Apr. 2010. DOI:
10.1080/10413201003664657.

[24] J. Bourbousson, C. Sève, and T. McGarry, “Space-time coordination dynamics
in basketball: Part 1. intra- and inter-couplings among player dyads,” Journal
of Sports Sciences, vol. 28, no. 3, pp. 339–347, Feb. 2010. DOI: 10.1080/
02640410903503632.

[25] P. Bradley, P. O’Donoghue, B. Wooster, and P. Tordoff, “The reliability of Pro-
Zone MatchViewer: A video-based technical performance analysis system,”
International Journal of Performance Analysis in Sport, vol. 7, no. 3, pp. 117–
129, 2007.

[26] D. Braess, A. Nagurney, and T. Wakolbinger, “On a paradox of traffic plan-
ning,” Transportation Science, vol. 39, no. 4, pp. 446–450, Nov. 2005. DOI:
10.1287/trsc.1050.0127.

[27] U. Brefeld and A. Zimmermann, “Guest editorial: Special issue on sports an-
alytics,” Data Mining and Knowledge Discovery, Jul. 2017. DOI: 10.1007/
s10618-017-0530-1.

[28] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search
engine,” Computer Networks and ISDN Systems, vol. 30, no. 1-7, pp. 107–117,
Apr. 1998. DOI: 10.1016/S0169-7552(98)00110-X.

[29] K. Buchin, M. Buchin, J. Gudmundsson, M. Löffler, and J. Luo, “Detecting
commuting patterns by clustering subtrajectories,” International Journal on
Computational Geometry and Applications, vol. 21, no. 3, pp. 253–282, 2011.
DOI: 10.1142/S0218195911003652.

[30] K. Buchin, M. Buchin, M. J. van Kreveld, M. Löffler, R. I. Silveira, C. Wenk,
and L. Wiratma, “Median trajectories,” Algorithmica, vol. 66, no. 3, pp. 595–
614, 2013.

[31] K. Buchin, M. Buchin, J. Gudmundsson, M. Horton, and S. Sijben, “Compact
flow diagrams for state sequences,” in Proceedings of the 15th. International
Symposium on Experimental Algorithms (SEA ’16), ser. Lecture Notes in Com-
puter Science, vol. 9685, Springer, Jun. 2016, pp. 89–104. DOI: 10.1007/
978-3-319-38851-9_7.

[32] ——, “Compact flow diagrams for state sequences,” Journal of Experimental
Algorithmics, vol. 22, pp. 1–23, Dec. 2017. DOI: 10.1145/3150525.

https://doi.org/10.1080/026404102320675675
https://doi.org/10.1080/026404102320675675
https://doi.org/10.1080/10413201003664657
https://doi.org/10.1080/02640410903503632
https://doi.org/10.1080/02640410903503632
https://doi.org/10.1287/trsc.1050.0127
https://doi.org/10.1007/s10618-017-0530-1
https://doi.org/10.1007/s10618-017-0530-1
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1142/S0218195911003652
https://doi.org/10.1007/978-3-319-38851-9_7
https://doi.org/10.1007/978-3-319-38851-9_7
https://doi.org/10.1145/3150525

BIBLIOGRAPHY 212

[33] K. Buchin, M. Buchin, J. Gudmundsson, M. Löffler, and J. Luo, “Detecting
commuting patterns by clustering subtrajectories,” International Journal of
Computational Geometry & Applications, vol. 21, no. 03, pp. 253–282, Jun.
2011. DOI: 10.1142/s0218195911003652.

[34] K. Buchin, M. Buchin, W. Meulemans, and W. Mulzer, “Four soviets walk the
dog: Improved bounds for computing the fréchet distance,” Discrete & Com-
putational Geometry, vol. 58, no. 1, pp. 180–216, Feb. 2017. DOI: 10.1007/
s00454-017-9878-7.

[35] M. Buchin, A. Driemel, M. van Kreveld, and V. Sacristan, “Segmenting tra-
jectories: A framework and algorithms using spatiotemporal criteria,” Journal
of Spatial Information Science, vol. 3, pp. 33–63, 2011. DOI: 10.5311/
JOSIS.2011.3.66.

[36] M. Buchin, H. Kruckenberg, and A. Kölzsch, “Segmenting trajectories based
on movement states,” in Proceedings of the Advances in Spatial Data Han-
dling: Geospatial Dynamics, Geosimulation and Exploratory Visualization (SDH),
Springer-Verlag, 2013, pp. 15–25.

[37] O. F. Camerino, J. Chaverri, M. T. Anguera, and G. K. Jonsson, “Dynamics
of the game in soccer: Detection of t-patterns,” en, European Journal of Sport
Science, vol. 12, no. 3, pp. 216–224, May 2012. DOI: 10.1080/17461391.
2011.566362.

[38] H. Cao, O. Wolfson, and G. Trajcevski, “Spatio-temporal data reduction with
deterministic error bounds,” The VLDB Journal, vol. 15, no. 3, pp. 211–228,
2006. DOI: 10.1007/s00778-005-0163-7.

[39] L. Cao and J. Krumm, “From GPS traces to a routable road map,” in Proceed-
ings of the 17th. ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems (GIS ’09), ACM Press, 2009. DOI: 10.
1145/1653771.1653776.

[40] Catapult Sports Ltd. (2015). Catapult USA - Wearable Technology for Elite
Sports, [Online]. Available: http://www.catapultsports.com/ (vis-
ited on 11/17/2015).

[41] D. Cervone, A. D’Amour, L. Bornn, and K. Goldsberry, “POINTWISE: Pre-
dicting points and valuing decisions in real time with NBA optical tracking
data,” in Proceedings of the 9th. Annual MIT Sloan Sports Analytics Confer-
ence, MIT, Feb. 2014, pp. 1–9.

[42] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM
computing surveys (CSUR), vol. 41, no. 3, p. 15, 2009.

[43] Y.-H. Chang, R. Maheswaran, J. Su, S. Kwok, T. Levy, A. Wexler, and K.
Squire, “Quantifying shot quality in the NBA,” in Proceedings of the 8th. An-
nual MIT Sloan Sports Analytics Conference, Feb. 2014.

https://doi.org/10.1142/s0218195911003652
https://doi.org/10.1007/s00454-017-9878-7
https://doi.org/10.1007/s00454-017-9878-7
https://doi.org/10.5311/JOSIS.2011.3.66
https://doi.org/10.5311/JOSIS.2011.3.66
https://doi.org/10.1080/17461391.2011.566362
https://doi.org/10.1080/17461391.2011.566362
https://doi.org/10.1007/s00778-005-0163-7
https://doi.org/10.1145/1653771.1653776
https://doi.org/10.1145/1653771.1653776
http://www.catapultsports.com/

BIBLIOGRAPHY 213

[44] M. Charikar, S. Khuller, D. M. Mount, and G. Narasimhan, “Algorithms for fa-
cility location problems with outliers,” in Proceedings of the 12th. Annual Sym-
posium on Discrete Algorithms, S. R. Kosaraju, Ed., ACM/SIAM, Jan. 2001,
pp. 642–651.

[45] S. Chawla, J. Estephan, J. Gudmundsson, and M. Horton, “Classification of
passes in football matches using spatiotemporal data,” ACM Transactions on
Spatial Algorithms and Systems, vol. 3, no. 2, pp. 1–30, Aug. 2017. DOI: 10.
1145/3105576.

[46] S. Chawla and A. Gionis, “k-means--: A unified approach to clustering and
outlier detection,” in Proceedings of the 13th. SIAM International Conference
on Data Mining, Society for Industrial & Applied Mathematics (SIAM), May
2013, pp. 189–197. DOI: 10.1137/1.9781611972832.21.

[47] J. Chen, H. M. Le, P. Carr, Y. Yue, and J. J. Little, “Learning online smooth
predictors for realtime camera planning using recurrent decision trees,” in 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE,
Jun. 2016. DOI: 10.1109/cvpr.2016.507.

[48] K. Chen, “On coresets for k-median and k-means clustering in metric and eu-
clidean spaces and their applications,” SIAM Journal on Computing, vol. 39,
no. 3, pp. 923–947, Jan. 2009. DOI: 10.1137/070699007.

[49] ChyronHego Corporation. (2015). Tracab Player Tracking System, [Online].
Available: http://chyronhego.com/sports- data/player-
tracking (visited on 08/28/2017).

[50] P. Cintia, F. Giannotti, L. Pappalardo, D. Pedreschi, and M. Malvaldi, “The
harsh rule of the goals: Data-driven performance indicators for football teams,”
in Proceedings of the IEEE International Conference on Data Science and
Advanced Analytics (DSAA), IEEE, Oct. 2015, pp. 1–10. DOI: 10.1109/
DSAA.2015.7344823.

[51] F. M. Clemente, M. S. Couceiro, F. M. L. Martins, and R. S. Mendes, “Us-
ing network metrics to investigate football team players’ connections: A pilot
study,” Motriz: Revista de Educação Fı́sica, vol. 20, no. 3, pp. 262–271, Sep.
2014. DOI: 10.1590/S1980-65742014000300004.

[52] ——, “Using network metrics in soccer: A macro-analysis,” Journal of Human
Kinetics, vol. 45, no. March, pp. 123–134, 2015. DOI: 10.1515/hukin-
2015-0013.

[53] F. M. Clemente, F. Manuel, L. Martins, M. S. Couceiro, R. S. Mendes, and A. J.
Figueiredo, “A network approach to characterize the teammates interactions
on football: A single match analysis,” Cuadernos de Psicologı́a del Deporte,
vol. 14, no. 3, pp. 141–148, 2014.

https://doi.org/10.1145/3105576
https://doi.org/10.1145/3105576
https://doi.org/10.1137/1.9781611972832.21
https://doi.org/10.1109/cvpr.2016.507
https://doi.org/10.1137/070699007
http://chyronhego.com/sports-data/player-tracking
http://chyronhego.com/sports-data/player-tracking
https://doi.org/10.1109/DSAA.2015.7344823
https://doi.org/10.1109/DSAA.2015.7344823
https://doi.org/10.1590/S1980-65742014000300004
https://doi.org/10.1515/hukin-2015-0013
https://doi.org/10.1515/hukin-2015-0013

BIBLIOGRAPHY 214

[54] F. M. Clemente, F. M. L. Martins, M. S. Couceiro, R. S. Mendes, and A. J.
Figueiredo, “Inspecting teammates coverage during attacking plays in a foot-
ball game: A case study,” International Journal of Performance Analysis in
Sport, vol. 14, no. 2, pp. 384–400, 2014.

[55] F. M. Clemente, F. M. L. Martins, D. Kalamaras, J. Oliveira, P. Oliveira, and
R. S. Mendes, “The social network analysis of switzerland football team on
FIFA World Cup 2014,” Acta Kinesiologica, vol. 9, pp. 25–30, 2015.

[56] F. M. Clemente, F. Silva, F. M. L. Martins, D. Kalamaras, and R. S. Mendes,
“Performance analysis tool for network analysis on team sports: A case study
of FIFA Soccer World Cup 2014,” en, Proceedings of the Institution of Me-
chanical Engineers, Part P: Journal of Sports Engineering and Technology,
vol. 229, no. 3, pp. 1–13, Jul. 2015. DOI: 10.1177/1754337115597335.

[57] J. Cohen, “Weighted kappa: Nominal scale agreement provision for scaled dis-
agreement or partial credit,” Psychological Bulletin, vol. 70, no. 4, pp. 213–
220, 1968.

[58] H. Collignon, N. Sultan, and C. Santander. (Jul. 2011). The sports market,
[Online]. Available: https://www.atkearney.com/documents/
10192/6f46b880-f8d1-4909-9960-cc605bb1ff34 (visited on
08/03/2017).

[59] G. Cornuejols, R. Sridharan, and J. Thizy, “A comparison of heuristics and re-
laxations for the capacitated plant location problem,” European Journal of Op-
erational Research, vol. 50, no. 3, pp. 280–297, Feb. 1991. DOI: 10.1016/
0377-2217(91)90261-s.

[60] C. Cotta, A. M. Mora, J. J. Merelo, and C. Merelo-Molina, “A network analysis
of the 2010 FIFA world cup champion team play,” Journal of Systems Science
and Complexity, vol. 26, pp. 21–42, 2013. DOI: 10.1007/s11424-013-
2291-2.

[61] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from
incomplete data via the EM algorithm,” Journal of the Royal Statistical Society.
Series B (Methodological), vol. 39, no. 1, pp. 1–38, 1977.

[62] D. Douglas and T. Peucker, “Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature,” Cartographica:
The International Journal for Geographic Information and Geovisualization,
vol. 10, no. 2, pp. 112–122, Dec. 1973. DOI: 10.3138/fm57- 6770-
u75u-7727.

[63] Z. Drezner and H. W. Hamacher, Eds., Facility Location: Applications and
Theory. Springer, 2002.

[64] A. Driemel, S. Har-Peled, and C. Wenk, “Approximating the fréchet distance
for realistic curves in near linear time,” Discrete & Computational Geometry,
vol. 48, no. 1, pp. 94–127, 2012. DOI: 10.1007/s00454-012-9402-z.

https://doi.org/10.1177/1754337115597335
https://www.atkearney.com/documents/10192/6f46b880-f8d1-4909-9960-cc605bb1ff34
https://www.atkearney.com/documents/10192/6f46b880-f8d1-4909-9960-cc605bb1ff34
https://doi.org/10.1016/0377-2217(91)90261-s
https://doi.org/10.1016/0377-2217(91)90261-s
https://doi.org/10.1007/s11424-013-2291-2
https://doi.org/10.1007/s11424-013-2291-2
https://doi.org/10.3138/fm57-6770-u75u-7727
https://doi.org/10.3138/fm57-6770-u75u-7727
https://doi.org/10.1007/s00454-012-9402-z

BIBLIOGRAPHY 215

[65] A. Driemel, A. Krivošija, and C. Sohler, “Clustering time series under the
fréchet distance,” in Proceedings of the27th. Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA ’16), Society for Industrial and Applied Math-
ematics, Jan. 2016, pp. 766–785. DOI: 10.1137/1.9781611974331.
ch55.

[66] J. Duch, J. S. Waitzman, and L. A. N. Amaral, “Quantifying the performance
of individual players in a team activity,” PLoS ONE, vol. 5, no. 6, E. Scalas,
Ed., e10937, Jun. 2010. DOI: 10.1371/journal.pone.0010937.

[67] N. Eagle, Y.-A. de Montjoye, and L. M. Bettencourt, “Community computing:
Comparisons between rural and urban societies using mobile phone data,” in
Proceedings of the International Conference on Computational Science and
Engineering, IEEE, 2009. DOI: 10.1109/cse.2009.91.

[68] T. Eiter and H. Mannila, “Computing discrete fréchet distance,” Unpublished
work, 1994.

[69] J. H. Fewell, D. Armbruster, J. Ingraham, A. Petersen, and J. S. Waters, “Bas-
ketball teams as strategic networks,” PLoS ONE, vol. 7, no. 11, e47445, 2012.

[70] FIFA. (2017). Castrol Index, [Online]. Available: http://www.fifa.
com/worldcup/statistics/castrol-index/index.html (vis-
ited on 08/04/2017).

[71] M. L. Fisher, “The lagrangian relaxation method for solving integer program-
ming problems,” Management Science, vol. 27, no. 1, pp. 1–18, Jan. 1981. DOI:
10.1287/mnsc.27.1.1.

[72] S. Fonseca, J. Milho, B. Travassos, and D. Araújo, “Spatial dynamics of team
sports exposed by voronoi diagrams,” Human Movement Science, vol. 31, no. 6,
pp. 1652–1659, 2012. DOI: 10.1016/j.humov.2012.04.006.

[73] S. Fortune, “A sweepline algorithm for voronoi diagrams,” Algorithmica, vol. 2,
pp. 153–174, 1987. DOI: 10.1007/BF01840357.

[74] A. Franks, A. Miller, L. Bornn, and K. Goldsberry, “Characterizing the spa-
tial structure of defensive skill in professional basketball,” The Annals of Ap-
plied Statistics, vol. 9, no. 1, pp. 94–121, Mar. 2015. DOI: 10.1214/14-
AOAS799.

[75] ——, “Counterpoints: Advanced defensive metrics for NBA basketball,” in
Proceedings of the 9th. Annual MIT Sloan Sports Analytics Conference, MIT,
2015, pp. 1–8.

[76] I. M. Franks and G. Miller, “Eyewitness testimony in sport,” Journal of Sport
Behavior, vol. 9, no. 1, pp. 38–46, 1986.

[77] C. B. Fraser and R. W. Irving, “Approximation algorithms for the shortest com-
mon supersequence,” Nordic Journal of Computing, vol. 2, no. 3, pp. 303–325,
1995.

https://doi.org/10.1137/1.9781611974331.ch55
https://doi.org/10.1137/1.9781611974331.ch55
https://doi.org/10.1371/journal.pone.0010937
https://doi.org/10.1109/cse.2009.91
http://www.fifa.com/worldcup/statistics/castrol-index/index.html
http://www.fifa.com/worldcup/statistics/castrol-index/index.html
https://doi.org/10.1287/mnsc.27.1.1
https://doi.org/10.1016/j.humov.2012.04.006
https://doi.org/10.1007/BF01840357
https://doi.org/10.1214/14-AOAS799
https://doi.org/10.1214/14-AOAS799

BIBLIOGRAPHY 216

[78] M. M. Fréchet, “Sur quelques points du calcul fonctionnel,” Rendiconti del
Circolo Matematico di Palermo, vol. 22, no. 1, pp. 1–72, 1906. DOI: 10.
1007/bf03018603.

[79] L. C. Freeman, “A set of measures of centrality based on betweenness,” So-
ciometry, vol. 40, no. 1, pp. 35–41, Mar. 1977. DOI: 10.2307/3033543.

[80] ——, “Centrality in social networks conceptual clarification,” Social Networks,
vol. 1, no. 3, pp. 215–239, Jan. 1978. DOI: 10.1016/0378-8733(78)
90021-7.

[81] W. Frencken, K. Lemmink, N. Delleman, and C. Visscher, “Oscillations of
centroid position and surface area of soccer teams in small-sided games,” Eu-
ropean Journal of Sport Science, vol. 11, no. 4, pp. 215–223, Jul. 2011. DOI:
10.1080/17461391.2010.499967.

[82] B. J. Frey and D. Dueck, “Clustering by passing messages between data points,”
Science, vol. 315, no. 5814, pp. 972–976, Feb. 2007. DOI: 10.1126/science.
1136800. eprint: http://science.sciencemag.org/content/
315/5814/972.full.pdf.

[83] M. J. Fry and J. W. Ohlmann, “Introduction to the special issue on analytics in
sports, part i: General sports applications,” Interfaces, vol. 42, no. 2, pp. 105–
108, Apr. 2012. DOI: 10.1287/inte.1120.0633.

[84] A. Fujimura and K. Sugihara, “Geometric analysis and quantitative evaluation
of sport teamwork,” Systems and Computers in Japan, vol. 36, no. 6, pp. 49–
58, 2005. DOI: 10.1002/scj.20254.

[85] S. J. Gaffney, A. W. Robertson, P. Smyth, S. J. Camargo, and M. Ghil, “Prob-
abilistic clustering of extratropical cyclones using regression mixture models,”
Climate Dynamics, vol. 29, no. 4, pp. 423–440, Mar. 2007. DOI: 10.1007/
s00382-007-0235-z.

[86] S. J. Gaffney and P. Smyth, “Trajectory clustering with mixtures of regression
models,” in Proceedings of the 5th. ACM SIGKDD international conference
on Knowledge discovery and data mining (KDD ’99), ACM Press, 1999. DOI:
10.1145/312129.312198.

[87] G. Gan and M. K.-P. Ng, “k-means clustering with outlier removal,” Pattern
Recognition Letters, vol. 90, pp. 8–14, 2017.

[88] I. E. Givoni and B. J. Frey, “A binary variable model for affinity propaga-
tion,” Neural Computation, vol. 21, no. 6, pp. 1589–1600, Jun. 2009. DOI:
10.1162/neco.2009.05-08-785.

[89] K. Goldsberry, “Courtvision: New visual and spatial analytics for the NBA,” in
Proceedings of the 6th. Annual MIT Sloan Sports Analytics Conference, MIT,
Mar. 2012, pp. 1–7.

https://doi.org/10.1007/bf03018603
https://doi.org/10.1007/bf03018603
https://doi.org/10.2307/3033543
https://doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1080/17461391.2010.499967
https://doi.org/10.1126/science.1136800
https://doi.org/10.1126/science.1136800
http://science.sciencemag.org/content/315/5814/972.full.pdf
http://science.sciencemag.org/content/315/5814/972.full.pdf
https://doi.org/10.1287/inte.1120.0633
https://doi.org/10.1002/scj.20254
https://doi.org/10.1007/s00382-007-0235-z
https://doi.org/10.1007/s00382-007-0235-z
https://doi.org/10.1145/312129.312198
https://doi.org/10.1162/neco.2009.05-08-785

BIBLIOGRAPHY 217

[90] K. Goldsberry and E. Weiss, “The dwight effect: A new ensemble of interior
defense analytics for the NBA,” in Proc. 7th. Annual MIT Sloan Sports Ana-
lytics Conference, MIT, Feb. 2013, pp. 1–11.

[91] T. F. Gonzalez, “Clustering to minimize the maximum intercluster distance,”
Theoretical Computer Science, vol. 38, pp. 293–306, 1985. DOI: 10.1016/
0304-3975(85)90224-5.

[92] P. Gould and A. Gatrell, “A structural analysis of a game: The liverpool v
manchester united cup final of 1977,” Social Networks, vol. 2, no. 3, pp. 253–
273, Jan. 1979. DOI: 10.1016/0378-8733(79)90017-0.

[93] T. U. Grund, “Network structure and team performance: The case of English
Premier League soccer teams,” Social Networks, vol. 34, no. 4, pp. 682–690,
2012. DOI: 10.1016/j.socnet.2012.08.004.

[94] J. Gudmundsson and M. Horton, “Spatio-temporal analysis of team sports,”
ACM Computing Surveys, vol. 50, no. 2, 22:1–22:34, 2017. DOI: 10.1145/
3054132.

[95] J. Gudmundsson and T. Wolle, “Football analysis using spatio-temporal tools,”
in Proceedings of the 20th. International Conference on Advances in Geo-
graphic Information Systems (SIGSPATIAL ’12), ACM, Nov. 2012, pp. 566–
569. DOI: 10.1145/2424321.2424417.

[96] ——, “Football analysis using spatio-temporal tools,” Computers, Environ-
ment and Urban Systems, vol. 47, pp. 16–27, 2014. DOI: 10.1016/j.
compenvurbsys.2013.09.004.

[97] S. Guha and S. Khuller, “Greedy strikes back: Improved facility location algo-
rithms,” Journal of Algorithms, vol. 31, no. 1, pp. 228–248, Apr. 1999. DOI:
10.1006/jagm.1998.0993.

[98] L. J. Guibas, J. Hershberger, J. S. B. Mitchell, and J. Snoeyink, “Approximating
polygons and subdivisions with minimum link paths,” International Journal of
Computational Geometry & Applications, vol. 3, no. 04, pp. 383–415, Dec.
1993. DOI: 10.1142/S0218195993000257.

[99] S. Gupta, R. Kumar, K. Lu, B. Moseley, and S. Vassilvitskii, “Local search
methods for k-means with outliers,” Proceedings of the VLDB Endowment,
vol. 10, no. 7, pp. 757–768, 2017.

[100] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,”
Journal of Machine Learning Research, vol. 3, pp. 1157–1182, 2003.

[101] H. Haken, J. A. S. Kelso, and H. Bunz, “A theoretical model of phase tran-
sitions in human hand movements,” Biological Cybernetics, vol. 51, no. 5,
pp. 347–356, Feb. 1985. DOI: 10.1007/BF00336922.

[102] C.-S. Han, S.-X. Jia, L. Zhang, and C.-C. Shu, “Sub-trajectory clustering algo-
rithm based on speed restriction,” Computer Engineering, vol. 37, no. 7, 2011.

https://doi.org/10.1016/0304-3975(85)90224-5
https://doi.org/10.1016/0304-3975(85)90224-5
https://doi.org/10.1016/0378-8733(79)90017-0
https://doi.org/10.1016/j.socnet.2012.08.004
https://doi.org/10.1145/3054132
https://doi.org/10.1145/3054132
https://doi.org/10.1145/2424321.2424417
https://doi.org/10.1016/j.compenvurbsys.2013.09.004
https://doi.org/10.1016/j.compenvurbsys.2013.09.004
https://doi.org/10.1006/jagm.1998.0993
https://doi.org/10.1142/S0218195993000257
https://doi.org/10.1007/BF00336922

BIBLIOGRAPHY 218

[103] F. Hausdorff, Mengenlehre. Walter de Gruyter, 1927.

[104] M. Held and R. M. Karp, “The traveling-salesman problem and minimum
spanning trees,” Operations Research, vol. 18, no. 6, pp. 1138–1162, Dec.
1970. DOI: 10.1287/opre.18.6.1138.

[105] ——, “The traveling-salesman problem and minimum spanning trees: Part II,”
Mathematical Programming, vol. 1, no. 1, pp. 6–25, Dec. 1971. DOI: 10.
1007/bf01584070.

[106] A. Hervieu and P. Bouthemy, “Understanding sports video using players tra-
jectories,” in Intelligent Video Event Analysis and Understanding, ser. Stud-
ies in Computational Intelligence, J. Zhang, L. Shao, L. Zhang, and G. A.
Jones, Eds., vol. 332, Springer Berlin Heidelberg, 2011, pp. 125–153. DOI:
10.1007/978-3-642-17554-1_7.

[107] A. Hervieu, P. Bouthemy, and J.-P. L. Cadre, “Trajectory-based handball video
understanding,” in Proceeding of the ACM International Conference on Image
and Video Retrieval (CIVR ’09), ACM Press, Jul. 2009, p. 1.

[108] D. S. Hochbaum and D. B. Shmoys, “A best possible heuristic for the k-center
problem,” Mathematics of Operations Research, vol. 10, no. 2, pp. 180–184,
May 1985. DOI: 10.1287/moor.10.2.180.

[109] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Com-
putation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997. DOI: 10.1162/neco.
1997.9.8.1735.

[110] M. Horton, “Automated classification of passes in football matches,” Masters
by Coursework Thesis, The University of Sydney, 2013.

[111] M. Horton, J. Gudmundsson, S. Chawla, and J. Estephan, “Automated classifi-
cation of passing in football,” in Proceedings of the 19th. Pacific-Asia Confer-
ence on Advances in Knowledge Discovery and Data Mining (PAKDD ’15),
Part II, ser. Lecture Notes in Computer Science, vol. 9078, Springer, May
2015, pp. 319–330. DOI: 10.1007/978-3-319-18032-8_25.

[112] W.-L. Hsu and G. L. Nemhauser, “Easy and hard bottleneck location prob-
lems,” Discrete Applied Mathematics, vol. 1, no. 3, pp. 209–215, Nov. 1979.
DOI: 10.1016/0166-218x(79)90044-1.

[113] H. Imai and M. Iri, “Computational-geometric methods for polygonal approxi-
mations of a curve,” Computer Vision, Graphics, and Image Processing, vol. 36,
no. 1, pp. 31–41, Oct. 1986. DOI: 10.1016/s0734-189x(86)80027-5.

[114] ——, “Polygonal approximations of a curve,” Computational Morphology,
pp. 71–86, 1988.

[115] Impire AG. (Aug. 2017). Impire AG, [Online]. Available: http://www.
bundesliga-datenbank.de/en/products/ (visited on 08/28/2017).

https://doi.org/10.1287/opre.18.6.1138
https://doi.org/10.1007/bf01584070
https://doi.org/10.1007/bf01584070
https://doi.org/10.1007/978-3-642-17554-1_7
https://doi.org/10.1287/moor.10.2.180
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/978-3-319-18032-8_25
https://doi.org/10.1016/0166-218x(79)90044-1
https://doi.org/10.1016/s0734-189x(86)80027-5
http://www.bundesliga-datenbank.de/en/products/
http://www.bundesliga-datenbank.de/en/products/

BIBLIOGRAPHY 219

[116] S. S. Intille and A. F. Bobick, “A framework for recognizing multi-agent action
from visual evidence,” in Proceedings of the 16th. National Conference on
Artificial Intelligence and Eleventh Conference on Innovative Applications of
Artificial Intelligence, AAAI Press / The MIT Press, Jul. 1999, pp. 518–525.

[117] K. Jain and V. V. Vazirani, “Approximation algorithms for metric facility lo-
cation and k-median problems using the primal-dual schema and lagrangian
relaxation,” Journal of the ACM, vol. 48, no. 2, pp. 274–296, Mar. 2001. DOI:
10.1145/375827.375845.

[118] H. Janetzko, D. Sacha, M. Stein, T. Schreck, D. A. Keim, and O. Deussen,
“Feature-driven visual analytics of soccer data,” in Proceedings of the IEEE
Conference on Visual Analytics Science and Technology (VAST ’14), IEEE,
Oct. 2014, pp. 13–22. DOI: 10.1109/VAST.2014.7042477.

[119] R. Jenatton, J. Audibert, and F. R. Bach, “Structured variable selection with
sparsity-inducing norms,” Journal of Machine Learning Research, vol. 12,
pp. 2777–2824, 2011.

[120] C. Kang, J. Hwang, and K. Li, “Trajectory analysis for soccer players,” in
Workshops Proceedings of the 6th. IEEE International Conference on Data
Mining (ICDM ’06), IEEE Computer Society, Dec. 2006, pp. 377–381. DOI:
10.1109/ICDMW.2006.160.

[121] H.-C. Kim, O. Kwon, and K.-J. Li, “Spatial and spatiotemporal analysis of soc-
cer,” in Proceedings of the 19th. ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, ACM, Nov. 2011, pp. 385–
388. DOI: 10.1145/2093973.2094029.

[122] K. Kim, M. Grundmann, A. Shamir, I. Matthews, J. Hodgins, and I. Essa, “Mo-
tion fields to predict play evolution in dynamic sport scenes,” in Pro. IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR ’10), IEEE, Jun. 2010, pp. 840–847. DOI: 10.1109/CVPR.2010.
5540128.

[123] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa, “RoboCup,” in
Proceedings of the 1st. International Conference on Autonomous Agents (AG-
ENTS’97), ACM Press, Feb. 1997, pp. 340–347. DOI: 10.1145/267658.
267738.

[124] D. Kollar and N. Friedman, Probabilistic Graphical Models: Principles and
Techniques. The MIT Press, 2009.

[125] J. B. Kruskal, “On the shortest spanning subtree of a graph and the traveling
salesman problem,” Proceedings of the American Mathematical Society, vol. 7,
no. 1, pp. 48–50, 1956.

[126] F. R. Kschischang, B. J. Frey, and H. Loeliger, “Factor graphs and the sum-
product algorithm,” IEEE Transactions on Information Theory, vol. 47, no. 2,
pp. 498–519, Feb. 2001. DOI: 10.1109/18.910572.

https://doi.org/10.1145/375827.375845
https://doi.org/10.1109/VAST.2014.7042477
https://doi.org/10.1109/ICDMW.2006.160
https://doi.org/10.1145/2093973.2094029
https://doi.org/10.1109/CVPR.2010.5540128
https://doi.org/10.1109/CVPR.2010.5540128
https://doi.org/10.1145/267658.267738
https://doi.org/10.1145/267658.267738
https://doi.org/10.1109/18.910572

BIBLIOGRAPHY 220

[127] J. Kubatko, D. Oliver, K. Pelton, and D. T. Rosenbaum, “A starting point
for analyzing basketball statistics,” Journal of Quantitative Analysis in Sports,
vol. 3, no. 3, pp. 1–22, Jan. 2007. DOI: 10.2202/1559-0410.1070.

[128] H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval Re-
search Logistics (NRL), vol. 52, no. 1, pp. 7–21, 2005.

[129] D. Lamoreaux, “Baseball in the late nineteenth century: The source of its ap-
peal,” The Journal of Popular Culture, vol. 11, no. 3, pp. 597–613, 1977. DOI:
10.1111/j.0022-3840.1977.00597.x.

[130] C. Landsea, J. Franklin, and J. Beven. (Apr. 2014). The revised atlantic hur-
ricane database (HURDAT2), [Online]. Available: http://www.aoml.
noaa . gov / hrd / hurdat / newhurdat - format . pdf (visited on
08/28/2017).

[131] N. Lazic, B. J. Frey, and P. Aarabi, “Solving the uncapacitated facility loca-
tion problem using message passing algorithms,” in Proceedings of the 13th.
International Conference on Artificial Intelligence and Statistics (AISTATS),
ser. JMLR Proceedings, vol. 9, JMLR.org, May 2010, pp. 429–436.

[132] H. M. Le, P. Carr, Y. Yue, and P. Lucey, “Data-driven ghosting using deep imi-
tation learning,” in Proceedings of the 11th. Annual MIT Sloan Sports Analytics
Conference, MIT, Feb. 2015, pp. 1–8.

[133] H. M. Le, Y. Yue, P. Carr, and P. Lucey, “Coordinated multi-agent imitation
learning,” in Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, D. Precup
and Y. W. Teh, Eds., ser. Proceedings of Machine Learning Research, vol. 70,
PMLR, 2017, pp. 1995–2003.

[134] M. Lewis, Moneyball: The Art of Winning an Unfair Game. WW Norton and
Company, 2004.

[135] R. Li and R. Chellappa, “Group motion segmentation using a spatio-temporal
driving force model,” in Proc. IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR ’10), IEEE, Jun. 2010, pp. 2038–
2045. DOI: 10.1109/CVPR.2010.5539880.

[136] R. Li, R. Chellappa, and S. K. Zhou, “Learning multi-modal densities on dis-
criminative temporal interaction manifold for group activity recognition,” in
Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR
’09), IEEE, Jun. 2009, pp. 2450–2457. DOI: 10 . 1109 / CVPR . 2009 .
5206676.

[137] Y. S. Lincoln and E. G. Guba, Naturalistic Inquiry. SAGE Publications, Inc,
Apr. 11, 1985, vol. 75, 416 pp.

https://doi.org/10.2202/1559-0410.1070
https://doi.org/10.1111/j.0022-3840.1977.00597.x
http://www.aoml.noaa.gov/hrd/hurdat/newhurdat-format.pdf
http://www.aoml.noaa.gov/hrd/hurdat/newhurdat-format.pdf
https://doi.org/10.1109/CVPR.2010.5539880
https://doi.org/10.1109/CVPR.2009.5206676
https://doi.org/10.1109/CVPR.2009.5206676

BIBLIOGRAPHY 221

[138] W. Liu and S. Chawla, “A quadratic mean based supervised learning model for
managing data skewness,” in Proceedings of the 11th. SIAM International Con-
ference on Data Mining (SDM ’11), SIAM / Omnipress, Apr. 2011, pp. 188–
198. DOI: 10.1137/1.9781611972818.17.

[139] P. Lucey, A. Bialkowski, G. P. K. Carr, E. Foote, and I. Matthews, “Charac-
terizing multi-agent team behavior from partial team tracings: Evidence from
the English Premier League,” in Proceedings of the 26th. AAAI Conference on
Artificial Intelligence, AAAI Press, Jul. 2012.

[140] P. Lucey, A. Bialkowski, G. P. K. Carr, S. Morgan, I. Matthews, and Y. Sheikh,
“Representing and discovering adversarial team behaviors using player roles,”
in Proceedings of the 26th. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR ’13), IEEE, Jun. 2013, pp. 2706–2713. DOI: 10.1109/
CVPR.2013.349.

[141] P. Lucey, A. Bialkowski, G. P. K. Carr, Y. Yue, and I. Matthews, “How to get
an open shot?: Analyzing team movement in basketball using tracking data,” in
Proceedings of the 8th. Annual MIT Sloan Sports Analytics Conference Con-
ference, MIT, Feb. 2014, pp. 1–10.

[142] P. Lucey, A. Bialkowski, M. Monfort, P. Carr, and I. Matthews, “‘‘quality vs
quantity”: Improved shot prediction in soccer using strategic features from spa-
tiotemporal data,” in Proceedings of the 8th. Annual MIT Sloan Sports Analyt-
ics Conference, MIT, Feb. 2014, pp. 1–9.

[143] P. Lucey, D. Oliver, G. P. K. Carr, J. Roth, and I. Matthews, “Assessing team
strategy using spatiotemporal data,” in Proceedings of the 19th. ACM Inter-
national Conference on Knowledge Discovery and Data Mining, (KDD ’13),
ACM, Aug. 2013, pp. 1366–1374. DOI: 10.1145/2487575.2488191.

[144] P. Lucey, Y. Yue, J. Wiens, and S. Morgan. (2016). SIGKDD 2016 Work-
shop on Large Scale Sports Analytics, [Online]. Available: http://www.
large-scale-sports-analytics.org/ (visited on 08/26/2016).

[145] C. Lund and M. Yannakakis, “On the hardness of approximating minimization
problems,” Journal of the ACM, vol. 41, no. 5, pp. 960–981, 1994. DOI: 10.
1145/185675.306789.

[146] R. Maheswaran, Y.-H. Chang, A. Henehan, and S. Danesis, “Deconstructing
the rebound with optical tracking data,” in Proceedings of the 6th. Annual MIT
Sloan Sports Analytics Conference, Feb. 2012.

[147] R. Maheswaran, Y.-H. Chang, J. Su, S. Kwok, T. Levy, A. Wexler, and N.
Hollingsworth, “The three dimensions of rebounding,” in Proceedings of the
8th. Annual MIT Sloan Sports Analytics Conference, Feb. 2014.

[148] P. McCullagh, “Regression models for ordinal data,” Journal of the Royal Sta-
tistical Society. Series B (Methodological), vol. 42, no. 2, pp. 109–142, 1980.

https://doi.org/10.1137/1.9781611972818.17
https://doi.org/10.1109/CVPR.2013.349
https://doi.org/10.1109/CVPR.2013.349
https://doi.org/10.1145/2487575.2488191
http://www.large-scale-sports-analytics.org/
http://www.large-scale-sports-analytics.org/
https://doi.org/10.1145/185675.306789
https://doi.org/10.1145/185675.306789

BIBLIOGRAPHY 222

[149] ——, “Generalized linear models,” European Journal of Operational Research,
vol. 16, no. 3, pp. 285–292, Jun. 1984. DOI: http://dx.doi.org/10.
1016/0377-2217(84)90282-0.

[150] A. Miller, L. Bornn, R. P. Adams, and K. Goldsberry, “Factorized point process
intensities: A spatial analysis of professional basketball,” in Proceedings of the
31st. International Conference on Machine Learning, (ICML ’14), JMLR.org,
Jun. 2014, pp. 235–243.

[151] R. von Mises and H. Pollaczek-Geiringer, “Praktische verfahren der gleichungs-
auflösung,” Journal of Applied Mathematics and Mechanics / Zeitschrift für
Angewandte Mathematik und Mechanik, vol. 9, no. 2, pp. 152–164, 1929. DOI:
10.1002/zamm.19290090206.

[152] MIT Sloan EMS Club. (2017). MIT Sloan Sports Analytics Conference, [On-
line]. Available: https : / / www . sloansportsconference . com/
(visited on 08/03/2017).

[153] R. Nakanishi, J. Maeno, K. Murakami, and T. Naruse, “An approximate com-
putation of the dominant region diagram for the real-time analysis of group
behaviors,” in Proceedings of the 13th. Annual RoboCup International Sym-
posium, Springer, Jun. 2009, pp. 228–239. DOI: 10.1007/978-3-642-
11876-0_20.

[154] T. Narizuka, K. Yamamoto, and Y. Yamazaki, “Statistical properties of position-
dependent ball-passing networks in football games,” Physica A: Statistical Me-
chanics and its Applications, vol. 412, pp. 157–168, Oct. 2014. DOI: 10.
1016/j.physa.2014.06.037.

[155] M. E. J. Newman, Networks: An Introduction. Oxford University Press, Mar.
2010, p. 784.

[156] M. Ojala and G. C. Garriga, “Permutation tests for studying classifier perfor-
mance,” Journal of Machine Learning Research, vol. 11, pp. 1833–1863, 2010.

[157] Opta Sports Ltd. (2015). Opta Live Performance Data, [Online]. Available:
http://www.optasports.com/about/what-we-do/live-
performance-data.aspx (visited on 08/01/2017).

[158] L. Ott, L. X. Pang, F. T. Ramos, and S. Chawla, “On integrated clustering
and outlier detection,” in Advances in Neural Information Processing Systems
27: Annual Conference on Neural Information Processing Systems, Dec. 2014,
pp. 1359–1367.

[159] P. Passos, K. Davids, D. Araújo, N. Paz, J. Minguéns, and J. Mendes, “Net-
works as a novel tool for studying team ball sports as complex social systems,”
Journal of Science and Medicine in Sport, vol. 14, no. 2, pp. 170–176, Mar.
2011. DOI: 10.1016/j.jsams.2010.10.459.

https://doi.org/http://dx.doi.org/10.1016/0377-2217(84)90282-0
https://doi.org/http://dx.doi.org/10.1016/0377-2217(84)90282-0
https://doi.org/10.1002/zamm.19290090206
https://www.sloansportsconference.com/
https://doi.org/10.1007/978-3-642-11876-0_20
https://doi.org/10.1007/978-3-642-11876-0_20
https://doi.org/10.1016/j.physa.2014.06.037
https://doi.org/10.1016/j.physa.2014.06.037
http://www.optasports.com/about/what-we-do/live-performance-data.aspx
http://www.optasports.com/about/what-we-do/live-performance-data.aspx
https://doi.org/10.1016/j.jsams.2010.10.459

BIBLIOGRAPHY 223

[160] J. L. Peña and H. Touchette, “A network theory analysis of football strategies,”
in Proc. Euromech Physics of Sports Conference, LÉditions de l’École Poly-
technique, Apr. 2012, pp. 517–528.

[161] C. Perin, R. Vuillemot, and J.-D. Fekete, “SoccerStories: A kick-off for visual
soccer analysis,” IEEE Transactions on Visualization and Computer Graphics,
vol. 19, no. 12, pp. 2506–2515, 2013. DOI: 10.1109/TVCG.2013.192.

[162] M. Perše, M. Kristan, S. Kovačič, G. Vučkovič, and J. Perš, “A trajectory-
based analysis of coordinated team activity in a basketball game,” Computer
Vision and Image Understanding, vol. 113, no. 5, pp. 612–621, May 2009.
DOI: 10.1016/j.cviu.2008.03.001.

[163] K. Pietrzak, “On the parameterized complexity of the fixed alphabet shortest
common supersequence and longest common subsequence problems,” Journal
of Computer and System Sciences, vol. 67, no. 4, pp. 757–771, 2003. DOI:
10.1016/S0022-0000(03)00078-3.

[164] H. Pileggi, C. D. Stolper, J. M. Boyle, and J. T. Stasko, “SnapShot: Visual-
ization to propel ice hockey analytics,” IEEE Transactions on Visualization
and Computer Graphics, vol. 18, no. 12, pp. 2819–2828, Dec. 2012. DOI:
10.1109/TVCG.2012.263.

[165] P. Power, H. Ruiz, X. Wei, and P. Lucey, “Not all passes are created equal:
Objectively measuring the risk and reward of passes in soccer from tracking
data,” in Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining - KDD ’17, ACM Press, Aug. 2017.
DOI: 10.1145/3097983.3098051.

[166] K. Räihä and E. Ukkonen, “The shortest common supersequence problem
over binary alphabet is np-complete,” Theoretical Computer Science, vol. 16,
pp. 187–198, 1981. DOI: 10.1016/0304-3975(81)90075-X.

[167] C. Reep and B. Benjamin, “Skill and chance in association football,” Journal
of the Royal Statistical Society. Series A (General), vol. 131, no. 4, pp. 581–
585, 1968. DOI: 10.2307/2343726.

[168] B. J. Reich, J. S. Hodges, B. P. Carlin, and A. M. Reich, “A spatial analysis of
basketball shot chart data,” The American Statistician, vol. 60, no. 1, pp. 3–12,
Feb. 2006. DOI: 10.1198/000313006X90305.

[169] A. Rosenberg and J. Hirschberg, “V-measure: A conditional entropy-based ex-
ternal cluster evaluation measure,” in Proceedings of the Joint Conference on
Empirical Methods in Natural Language Processing and Computational Nat-
ural Language Learning, ACL, Jun. 2007, pp. 410–420.

[170] W. Rossmann, Lie Groups: An Introduction Through Linear Groups. Oxford
University Press, 2002, p. 265.

https://doi.org/10.1109/TVCG.2013.192
https://doi.org/10.1016/j.cviu.2008.03.001
https://doi.org/10.1016/S0022-0000(03)00078-3
https://doi.org/10.1109/TVCG.2012.263
https://doi.org/10.1145/3097983.3098051
https://doi.org/10.1016/0304-3975(81)90075-X
https://doi.org/10.2307/2343726
https://doi.org/10.1198/000313006X90305

BIBLIOGRAPHY 224

[171] H. Ruiz, P. Power, X. Wei, and P. Lucey, “‘the leicester city fairytale?’: Utiliz-
ing new soccer analytics tools to compare performance in the 15/16 & 16/17
epl seasons,” in Proceedings of the 23rd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining - KDD ’17, ACM Press, Aug.
2017. DOI: 10.1145/3097983.3098121.

[172] C. Seiffert, T. M. Khoshgoftaar, J. V. Hulse, and A. Napolitano, “RUSBoost:
A hybrid approach to alleviating class imbalance,” IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part A, vol. 40, no. 1, pp. 185–197, 2010. DOI:
10.1109/TSMCA.2009.2029559.

[173] C. E. Shannon, “A mathematical theory of communication,” Mobile Comput-
ing and Communications Review, vol. 5, no. 1, pp. 3–55, 2001. DOI: 10.
1145/584091.584093.

[174] N. Z. Shor, Minimization Methods for Non-Differentiable Functions and Ap-
plications (Springer Series in Computational Mathematics). Springer-Verlag
New York, Inc., 1985.

[175] A. Shortridge, K. Goldsberry, and M. Adams, “Creating space to shoot: Quan-
tifying spatial relative field goal efficiency in basketball,” Journal of Quanti-
tative Analysis in Sports, vol. 10, no. 3, pp. 303–313, Jan. 2014. DOI: 10.
1515/jqas-2013-0094.

[176] B. Skinner, “The price of anarchy in basketball,” Journal of Quantitative Anal-
ysis in Sports, vol. 6, no. 1, pp. 1–16, Jan. 2010. DOI: 10.2202/1559-
0410.1217.

[177] Sports Reference LLC. (2017). Sports reference, [Online]. Available: https:
//www.sports-reference.com/ (visited on 08/04/2017).

[178] SportVision Inc. (2015). NHL, sportvision test program to track players, puck,
[Online]. Available: http://www.sportvision.com/news/nhl-
sportvision-test-program-track-players-puck (visited on
08/28/2017).

[179] STATS LLC. (2017). Basketball player tracking for pro teams, [Online]. Avail-
able: https://www.stats.com/sportvu-basketball/ (visited
on 08/01/2017).

[180] ——, (Jul. 2017). STATS SportVU R© football player tracking, [Online]. Avail-
able: https://www.stats.com/sportvu-football/ (visited on
07/01/2017).

[181] M. Stein, J. Häußler, D. Jäckle, H. Janetzko, T. Schreck, and D. Keim, “Visual
soccer analytics: Understanding the characteristics of collective team move-
ment based on feature-driven analysis and abstraction,” ISPRS International
Journal of Geo-Information, vol. 4, no. 4, pp. 2159–2184, Oct. 2015. DOI:
10.3390/ijgi4042159.

https://doi.org/10.1145/3097983.3098121
https://doi.org/10.1109/TSMCA.2009.2029559
https://doi.org/10.1145/584091.584093
https://doi.org/10.1145/584091.584093
https://doi.org/10.1515/jqas-2013-0094
https://doi.org/10.1515/jqas-2013-0094
https://doi.org/10.2202/1559-0410.1217
https://doi.org/10.2202/1559-0410.1217
https://www.sports-reference.com/
https://www.sports-reference.com/
http://www.sportvision.com/news/nhl-sportvision-test-program-track-players-puck
http://www.sportvision.com/news/nhl-sportvision-test-program-track-players-puck
https://www.stats.com/sportvu-basketball/
https://www.stats.com/sportvu-football/
https://doi.org/10.3390/ijgi4042159

BIBLIOGRAPHY 225

[182] T. Taki and J. Hasegawa, “Dominant region: A basic feature for group motion
analysis and its application to teamwork evaluation in soccer games,” in Proc.
6th. IS&T/SPIE Conference on Videometrics, International Society for Optics
and Photonics, Dec. 1998, pp. 48–57. DOI: 10.1117/12.333797.

[183] ——, “Visualization of dominant region in team games and its application to
teamwork analysis,” in Proceedings of the IEEE International Conference on
Computer Graphics, IEEE, Jun. 2000, pp. 227–235. DOI: 10.1109/CGI.
2000.852338.

[184] T. Taki, J. Hasegawa, and T. Fukumura, “Development of motion analysis
system for quantitative evaluation of teamwork in soccer games,” in Proceed-
ings of the International Conference on Image Processing, IEEE, Sep. 1996,
pp. 815–818. DOI: 10.1109/ICIP.1996.560865.

[185] H. C. Tijms, Stochastic Modeling and Analysis: A Computational Approach
(Probability & Mathematical Statistics). John Wiley & Sons, Inc., 1986.

[186] M. R. Tora, J. Chen, and J. J. Little, “Classification of puck possession events
in ice hockey,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), IEEE, Jul. 2017. DOI: 10.1109/cvprw.
2017.24.

[187] F. Ueda, H. Masaaki, and H. Hiroyuki, “The causal relationship between dom-
inant region and offense-defense performance—focusing on the time of ball
acquisition,” Football Science, vol. 11, pp. 1–17, 2014.

[188] J. Van Haaren, V. Dzyuba, S. Hannosset, and J. Davis, “Automatically dis-
covering offensive patterns in soccer match data,” in Proceedings of the 14th.
International Symposium of Advances in Intelligent Data Analysis (IDA’15),
ser. Lecture Notes in Computer Science, vol. 9385, Springer, Oct. 2015, pp. 286–
297. DOI: 10.1007/978-3-319-24465-5_25.

[189] V. N. Vapnik, The Nature of Statistical Learning Theory. Springer-Verlag,
1995, p. 188.

[190] M. Vlachos, D. Gunopulos, and G. Kollios, “Discovering similar multidimen-
sional trajectories,” in Proceedings of the 18th. International Conference on
Data Engineering (ICDE ’02), R. Agrawal and K. R. Dittrich, Eds., IEEE
Computer Society, Feb. 2002, pp. 673–684. DOI: 10.1109/ICDE.2002.
994784.

[191] Q. Wang, H. Zhu, W. Hu, Z. Shen, and Y. Yao, “Discerning tactical patterns
for professional soccer teams,” in Proceedings of the 21st. ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining (KDD’15),
ACM, Aug. 2015, pp. 2197–2206. DOI: 10.1145/2783258.2788577.

[192] S. Wasserman and K. Faust, Social Network Analysis: Methods and Applica-
tions. Structural Analysis in the Social Sciences. Cambridge University Press,
1997.

https://doi.org/10.1117/12.333797
https://doi.org/10.1109/CGI.2000.852338
https://doi.org/10.1109/CGI.2000.852338
https://doi.org/10.1109/ICIP.1996.560865
https://doi.org/10.1109/cvprw.2017.24
https://doi.org/10.1109/cvprw.2017.24
https://doi.org/10.1007/978-3-319-24465-5_25
https://doi.org/10.1109/ICDE.2002.994784
https://doi.org/10.1109/ICDE.2002.994784
https://doi.org/10.1145/2783258.2788577

BIBLIOGRAPHY 226

[193] X. Wei, P. Lucey, S. Vidas, S. Morgan, and S. Sridharan, “Forecasting events
using an augmented hidden conditional random field,” in Proceedings of the
12th. Asian Conference on Computer Vision, ser. Lecture Notes in Computer
Science, vol. 9006, Springer International Publishing, Nov. 2015, pp. 569–582.
DOI: 10.1007/978-3-319-16817-3_37.

[194] X. Wei, L. Sha, P. Lucey, S. Morgan, and S. Sridharan, “Large-scale analysis
of formations in soccer,” in Proceedings of the International Conference on
Digital Image Computing: Techniques and Applications (DICTA), IEEE, Nov.
2013, pp. 1–8. DOI: 10.1109/DICTA.2013.6691503.

[195] P. Weiner, “Linear pattern matching algorithms,” in Proceedings of the 14th.
Annual Symposium on Switching and Automata Theory, IEEE Computer Soci-
ety, Oct. 1973, pp. 1–11. DOI: 10.1109/SWAT.1973.13.

[196] J. Wiens, G. Balakrishnan, J. Brooks, and J. Guttag, “To crash or not to crash:
A quantitative look at the relationship between offensive rebounding and tran-
sition defense in the NBA,” in Proceedings of the 6th. Annual MIT Sloan Sports
Analytics Conference, MIT, Mar. 2013, pp. 1–7.

[197] J. Wilson, Inverting the Pyramid: The History of Football Tactics. Hachette
UK, 2010.

[198] Y. Yue, P. Lucey, G. P. K. Carr, A. Bialkowski, and I. Matthews, “Learning fine-
grained spatial models for dynamic sports play prediction,” in Proceedings of
the IEEE International Conference on Data Mining (ICDM’14), IEEE, Dec.
2014, pp. 670–679. DOI: 10.1109/ICDM.2014.106.

[199] S. Zheng, Y. Yue, and J. Hobbs, “Generating long-term trajectories using deep
hierarchical networks,” in Advances in Neural Information Processing Sys-
tems 29: Annual Conference on Neural Information Processing Systems 2016,
December 5-10, 2016, Barcelona, Spain, D. D. Lee, M. Sugiyama, U. von
Luxburg, I. Guyon, and R. Garnett, Eds., 2016, pp. 1543–1551.

[200] Y. Zheng and X. Zhou, Computing with Spatial Trajectories. Springer Publish-
ing Company, Incorporated, 2011, p. 333.

https://doi.org/10.1007/978-3-319-16817-3_37
https://doi.org/10.1109/DICTA.2013.6691503
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1109/ICDM.2014.106

	Abstract
	Statement of Originality
	Acknowledgements
	List of Publications
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Spatio-temporal Sports Data
	Preliminaries
	Object Trajectories
	Event Logs
	Mappings
	Distance Measures
	Experimental Data set

	Organisation and Contributions

	Spatio-temporal Sports Analysis: A Survey
	Playing Area Subdivision
	Intensity Matrices and Maps
	Low-rank Factor Matrices
	Movement Models and Dominant Regions
	Motion Model
	Dominant Regions
	Further Applications

	Network Techniques for Team Performance Analysis
	Centrality
	Degree centrality
	Betweenness Centrality
	Closeness Centrality
	Eigenvector Centrality and PageRank

	Clustering Coefficients
	Density and Heterogeneity
	Entropy, Topological Depth, Price-of-Anarchy and Power Law Distributions

	Data Mining
	Applying Labels to Events
	Predicting Future Event Types and Locations
	Identifying Formations
	Identifying Plays and Tactical Group Movement
	Temporally Segmenting the Game

	Performance Metrics
	Offensive Performance
	Defensive Performance

	Visualisation
	Applicability of Approaches to Other Sports
	Conclusion

	Classification of Passes in Football Matches Using Spatio-temporal Data
	Related Work
	Preliminaries
	Predictor Variables
	Learning Algorithm and Classification Function
	Evaluation Functions
	Problem Statement

	Predictor Variables
	Feature Functions
	Player Motion Model
	The Dominant Region
	Discrete Algorithm to Approximate Dominant Region

	Label Data
	Labelling Process
	Process Validation
	Analysis of Classification Results

	Learning Algorithms
	Experiments
	Setup
	Results

	Analysis
	Classifier Performance
	Predictor Variable Importance
	Inter-Rater Agreement
	Limitations of Experimental Setup

	Conclusion

	Summarising State Sequences with Flow Diagrams
	Related work
	Preliminaries
	Problem Definition
	Properties of Criteria

	Hardness Results
	Reduction from Shortest Common Supersequence
	Reduction from Set Cover

	Algorithms
	General criteria
	Monotone decreasing and independent criteria
	Monotone decreasing and dependent criteria
	Heuristics

	Experiments
	Performance Testing
	Perturbation Testing
	Shortest Path Selection
	Tactical Analysis in Football
	Defensive Formations
	Attacking Plays

	Conclusion

	Integrated Clustering and Outlier Detection
	Related Work
	Method
	Lagrangian Heuristic Algorithm
	Affinity Propagation
	Visualising the Auxiliary Variables

	Case Study: Improving the Lagrangian Heuristic Algorithm
	Experiments
	Synthetic Data
	Algorithm Execution
	Cluster and Outlier Quality

	Dual Variable Conditions
	Hurricane Trajectory Data
	Football Trajectory Data

	Conclusion

	Trajectory Clustering with Bounded Complexity Exemplars
	Related Work
	Preliminaries
	Simplification
	Clustering

	Approximation Algorithm for the-Simplification Problem
	Approximation Algorithms for the (k,)-Center Problem
	Results

	Conclusion

	Conclusion
	Input Match Data Details
	Event Types

	Pass Classifier Feature Descriptions
	Affinity Propagation Message Formulation
	Variable-to-factor Messages
	Factor-to-variable Messages

