47,658 research outputs found

    All about A Minimal Normal Form for DNA Expressions

    Get PDF
    Algorithms and the Foundations of Software technolog

    DNA expressions : a formal notation for DNA

    Get PDF
    We describe a formal notation for DNA molecules that may contain nicks and gaps. The resulting DNA expressions denote formal DNA molecules. Different DNA expressions may denote the same molecule. Such DNA expressions are called equivalent. We examine which DNA expressions are minimal, which means that they have the shortest length among all equivalent DNA expressions. Among others, we describe how to construct a minimal DNA expression for a given molecule. We also present an efficient, recursive algorithm to rewrite a given DNA expression into an equivalent, minimal DNA expression. For many formal DNA molecules, there exists more than one minimal DNA expression. We define a minimal normal form, i.e., a set of properties such that for each formal DNA molecule, there is exactly one (minimal) DNA expression with these properties. We finally describe an efficient, two-step algorithm to rewrite an arbitrary DNA expression into this normal form.Algorithms and the Foundations of Software technolog

    Radial distribution function of semiflexible polymers

    Full text link
    We calculate the distribution function of the end--to--end distance of a semiflexible polymer with large bending rigidity. This quantity is directly observable in experiments on single semiflexible polymers (e.g., DNA, actin) and relevant to their interpretation. It is also an important starting point for analyzing the behavior of more complex systems such as networks and solutions of semiflexible polymers. To estimate the validity of the obtained analytical expressions, we also determine the distribution function numerically using Monte Carlo simulation and find good quantitative agreement.Comment: RevTeX, 4 pages, 1 figure. Also available at http://www.cip.physik.tu-muenchen.de/tumphy/d/T34/Mitarbeiter/frey.htm

    A Proof of Entropy Minimization for Outputs in Deletion Channels via Hidden Word Statistics

    Get PDF
    From the output produced by a memoryless deletion channel from a uniformly random input of known length nn, one obtains a posterior distribution on the channel input. The difference between the Shannon entropy of this distribution and that of the uniform prior measures the amount of information about the channel input which is conveyed by the output of length mm, and it is natural to ask for which outputs this is extremized. This question was posed in a previous work, where it was conjectured on the basis of experimental data that the entropy of the posterior is minimized and maximized by the constant strings 000…\texttt{000}\ldots and 111…\texttt{111}\ldots and the alternating strings 0101…\texttt{0101}\ldots and 1010…\texttt{1010}\ldots respectively. In the present work we confirm the minimization conjecture in the asymptotic limit using results from hidden word statistics. We show how the analytic-combinatorial methods of Flajolet, Szpankowski and Vall\'ee for dealing with the hidden pattern matching problem can be applied to resolve the case of fixed output length and n→∞n\rightarrow\infty, by obtaining estimates for the entropy in terms of the moments of the posterior distribution and establishing its minimization via a measure of autocorrelation.Comment: 11 pages, 2 figure

    Intermediate coherent-incoherent charge transport: DNA as a case study

    Full text link
    We study an intermediate quantum coherent-incoherent charge transport mechanism in metal-molecule-metal junctions using B\"uttiker's probe technique. This tool allows us to include incoherent effects in a controlled manner, and thus to study situations in which partial decoherence affects charge transfer dynamics. Motivated by recent experiments on intermediate coherent-incoherent charge conduction in DNA molecules [L. Xiang {\it et al.}, Nature Chem. 7, 221-226 (2015)], we focus on two representative structures: alternating (GC)n_n and stacked Gn_nCn_n sequences; the latter structure is argued to support charge delocalization within G segments, and thus an intermediate coherent-incoherent conduction. We begin our analysis with a highly simplified 1-dimensional tight-binding model, while introducing environmental effects through B\"uttiker's probes. This minimal model allows us to gain fundamental understanding of transport mechanisms and derive analytic results for molecular resistance in different limits. We then use a more detailed ladder-model Hamiltonian to represent double-stranded DNA structures---with environmental effects captured by B\"uttiker's probes. We find that hopping conduction dominates in alternating sequences, while in stacked sequences charge delocalization (visualized directly through the electronic density matrix) supports significant resonant-ballistic charge dynamics reflected by an even-odd effect and a weak distance dependence for resistance. Our analysis illustrates that lessons learned from minimal models are helpful for interpreting charge dynamics in DNA.Comment: 16 pages, 14 figure

    Mutations of fake weighted projective planes

    Full text link
    In previous work by Coates, Galkin, and the authors, the notion of mutation between lattice polytopes was introduced. Such a mutation gives rise to a deformation between the corresponding toric varieties. In this paper we study one-step mutations that correspond to deformations between weighted projective planes, giving a complete characterisation of such mutations in terms of T-singularities. We show also that the weights involved satisfy Diophantine equations, generalising results of Hacking-Prokhorov.Comment: 14 pages, 2 figure

    Fluctuating Filaments I: Statistical Mechanics of Helices

    Full text link
    We examine the effects of thermal fluctuations on thin elastic filaments with non-circular cross-section and arbitrary spontaneous curvature and torsion. Analytical expressions for orientational correlation functions and for the persistence length of helices are derived, and it is found that this length varies non-monotonically with the strength of thermal fluctuations. In the weak fluctuation regime, the local helical structure is preserved and the statistical properties are dominated by long wavelength bending and torsion modes. As the amplitude of fluctuations is increased, the helix ``melts'' and all memory of intrinsic helical structure is lost. Spontaneous twist of the cross--section leads to resonant dependence of the persistence length on the twist rate.Comment: 5 figure
    • …
    corecore