77 research outputs found

    Electrospun Nickel Manganite (NiMn2O4) Nanocrystalline Fibers for Humidity and Temperature Sensing

    Get PDF
    Nickel manganite nanocrystalline fibers were obtained by electrospinning and subsequent calcination at 400 degrees C. As-spun fibers were characterized by TG/DTA, Scanning Electron Microscopy and FT-IR spectroscopy analysis. X-ray diffraction and FT-IR spectroscopy analysis confirmed the formation of nickel manganite with a cubic spinel structure, while N-2 physisorption at 77 K enabled determination of the BET specific surface area as 25.3 m(2)/g and (BJH) mesopore volume as 21.5 m(2)/g. The material constant (B) of the nanocrystalline nickel manganite fibers applied by drop-casting on test interdigitated electrodes on alumina substrate, dried at room temperature, was determined as 4379 K in the 20-50 degrees C temperature range and a temperature sensitivity of -4.95%/K at room temperature (25 degrees C). The change of impedance with relative humidity was monitored at 25 and 50 degrees C for a relative humidity (RH) change of 40 to 90% in the 42 Hz pi 1 MHz frequency range. At 100 Hz and 25 degrees C, the sensitivity of 327.36 +/- 80.12 k omega/%RH was determined, showing that nickel manganite obtained by electrospinning has potential as a multifunctional material for combined humidity and temperature sensing

    Roadmap on printable electronic materials for next-generation sensors

    Get PDF
    The dissemination of sensors is key to realizing a sustainable, ā€˜intelligentā€™ world, where everyday objects and environments are equipped with sensing capabilities to advance the sustainability and quality of our livesā€”e.g., via smart homes, smart cities, smart healthcare, smart logistics, Industry 4.0, and precision agriculture. The realization of the full potential of these applications critically depends on the availability of easy-to-make, low-cost sensor technologies. Sensors based on printable electronic materials offer the ideal platform: they can be fabricated through simple methods (e.g., printing and coating) and are compatible with high-throughput roll-to-roll processing. Moreover, printable electronic materials often allow the fabrication of sensors on flexible/stretchable/biodegradable substrates, thereby enabling the deployment of sensors in unconventional settings. Fulfilling the promise of printable electronic materials for sensing will require materials and device innovations to enhance their ability to transduce external stimuliā€”light, ionizing radiation, pressure, strain, force, temperature, gas, vapours, humidity, and other chemical and biological analytes. This Roadmap brings together the viewpoints of experts in various printable sensing materialsā€”and devices thereofā€”to provide insights into the status and outlook of the field. Alongside recent materials and device innovations, the roadmap discusses the key outstanding challenges pertaining to each printable sensing technology. Finally, the Roadmap points to promising directions to overcome these challenges and thus enable ubiquitous sensing for a sustainable, ā€˜intelligentā€™ world

    Aerometry instrumentation study Final report

    Get PDF
    Techniques and instruments for meteorological measurements in Mars and Venus atmosphere

    Microheater: material, design, fabrication, temperature control, and applicationsā€”a role in COVIDā€‘19

    Get PDF
    Heating plays a vital role in science, engineering, mining, and space, where heating can be achieved via electrical, induction, infrared, or microwave radiation. For fast switching and continuous applications, hotplate or Peltier elements can be employed. However, due to bulkiness, they are inefective for portable applications or operation at remote locations. Miniaturization of heaters reduces power consumption and bulkiness, enhances the thermal response, and integrates with several sensors or microfuidic chips. The microheater has a thickness of~100 nm to~100 Ī¼m and ofers a temperature range up to 1900ā„ƒ with precise control. In recent years, due to the escalating demand for fexible electronics, thin-flm microheaters have emerged as an imperative research area. This review provides an overview of recent advancements in microheater as well as analyses diferent microheater designs, materials, fabrication, and temperature control. In addition, the applications of microheaters in gas sensing, biological, and electrical and mechanical sectors are emphasized. Moreover, the maximum temperature, voltage, power consumption, response time, and heating rate of each microheater are tabulated. Finally, we addressed the specifc key considerations for designing and fabricating a microheater as well as the importance of microheater integration in COVID-19 diagnostic kits. This review thereby provides general guidelines to researchers to integrate microheater in micro-electromechanical systems (MEMS), which may pave the way for developing rapid and large-scale SARS-CoV-2 diagnostic kits in resource-constrained clinical or home-based environments

    Computational fluid dynamics modeling and in situ physics-based monitoring of aerosol jet printing toward functional assurance of additively-manufactured, flexible and hybrid electronics

    Get PDF
    Aerosol jet printing (AJP)ā€”a direct-write, additive manufacturing techniqueā€”has emerged as the process of choice particularly for the fabrication of flexible and hybrid electronics. AJP has paved the way for high-resolution device fabrication with high placement accuracy, edge definition, and adhesion. In addition, AJP accommodates a broad range of ink viscosity, and allows for printing on non-planer surfaces. Despite the unique advantages and host of strategic applications, AJP is a highly unstable and complex process, prone to gradual drifts in machine behavior and deposited material. Hence, real-time monitoring and control of AJP process is a burgeoning need. In pursuit of this goal, the objectives of the work are, as follows: (i) In situ image acquisition from the traces/lines of printed electronic devices right after deposition. To realize this objective, the AJP experimental setup was instrumented with a high-resolution charge-coupled device (CCD) camera, mounted on a variable-magnification lens (in addition to the standard imaging system, already installed on the AJ printer). (ii) In situ image processing and quantification of the trace morphology. In this regard, several customized image processing algorithms were devised to quantify/extract various aspects of the trace morphology from online images. In addition, based on the concept of shape-from-shading (SfS), several other algorithms were introduced, allowing for not only reconstruction of the 3D profile of the AJ-printed electronic traces, but also quantification of 3D morphology traits, such as thickness, cross-sectional area, and surface roughness, among others. (iii) Development of a supervised multiple-input, single-output (MISO) machine learning modelā€”based on sparse representation for classification (SRC)ā€”with the aim to estimate the device functional properties (e.g., resistance) in near real-time with an accuracy of ā‰„ 90%. (iv) Forwarding a computational fluid dynamics (CFD) model to explain the underlying aerodynamic phenomena behind aerosol transport and deposition in AJP process, observed experimentally. Overall, this doctoral dissertation paves the way for: (i) implementation of physics-based real-time monitoring and control of AJP process toward conformal material deposition and device fabrication; and (ii) optimal design of direct-write components, such as nozzles, deposition heads, virtual impactors, atomizers, etc

    NASA Tech Briefs, Fall 1980

    Get PDF
    Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovatio.ns of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences

    Incorporating nanomaterials with MEMS devices.

    Get PDF
    This dissertation demonstrates an elegant method, known as \u27micro-origami\u27 or strain architecture to design and fabricate three-dimensional MEMS structures which are assembled using actuation of a metal-oxide bilayer with conventional planar lithography. Folding allows creating complex, robust, three-dimensional shapes from two-dimensional material simply by choosing folds in the right order and orientation, small disturbances of the initial shape may also be used to produce different final shapes. These are referred to as pop-up structures in this work. The scope of this work presented the deposition of colloidal gold nanoparticles (GNPs) into conformal thin films using a microstenciling technique. Results illustrated that the gold nanoparticle deposition process can easily be integrated into current MEMS microfabrication processes. Thin films of GNPs deposited onto the surfaces of siliconbased bistable MEMS and test devices were shown to have a significant effect on the heating up of microstructures that cause them to fold. The dissertation consists of four chapters, covering details of fabrication methods, theoretical simulations, experimental work, and existing and potential applications. Chapter II illustrates how control of the folding order can generate complex three-dimensional objects from metal-oxide bilayers using this approach. By relying on the fact that narrower structures are released from the substrate first, it is possible to create multiaxis loops and interlinked objects with several sequential release steps, using a single photomask. The structures remain planar until released by dry silicon etching, making it possible to integrate them with other MEMS and microelectronic devices early in the process. Chapter III depicts the fabrication process of different types of bistable structures. It describes the principle of functioning of such structures, and simulations using CoventorWare are used to support the concept. We talk over about advantages and disadvantages of bistable structures, and discuss possible applications. Chapter IV describes fabrication procedure of nanoparticle-MEMS hybrid device. We introduce a convenient synthesis of GNPs with precisely controlled optical absorption in the NIR region by a single step reaction ofHAuCl4 and Na2S203. We take a look at different techniques to pattern gold nanoparticles on the surface of MEMS structures, and also provide a study of their thermal properties under near IR stimulation. We demonstrate the first approach of laser-driven bistable MEMS actuators for bioapplications. Finally, in Conclusion discuss the contributions of this dissertation, existent limitations and plans of the future work

    Nevada Test Site-Directed Research and Development, FY 2008 Annual Report

    No full text
    • ā€¦
    corecore