244 research outputs found

    A Milstein scheme for SPDEs

    Get PDF
    This article studies an infinite dimensional analog of Milstein's scheme for finite dimensional stochastic ordinary differential equations (SODEs). The Milstein scheme is known to be impressively efficient for SODEs which fulfill a certain commutativity type condition. This article introduces the infinite dimensional analog of this commutativity type condition and observes that a certain class of semilinear stochastic partial differential equation (SPDEs) with multiplicative trace class noise naturally fulfills the resulting infinite dimensional commutativity condition. In particular, a suitable infinite dimensional analog of Milstein's algorithm can be simulated efficiently for such SPDEs and requires less computational operations and random variables than previously considered algorithms for simulating such SPDEs. The analysis is supported by numerical results for a stochastic heat equation and stochastic reaction diffusion equations showing signifficant computational savings.Comment: The article is slightly revised and shortened. In particular, some numerical simulations are remove

    Mean-square stability and error analysis of implicit time-stepping schemes for linear parabolic SPDEs with multiplicative Wiener noise in the first derivative

    Full text link
    In this article, we extend a Milstein finite difference scheme introduced in [Giles & Reisinger(2011)] for a certain linear stochastic partial differential equation (SPDE), to semi- and fully implicit timestepping as introduced by [Szpruch(2010)] for SDEs. We combine standard finite difference Fourier analysis for PDEs with the linear stability analysis in [Buckwar & Sickenberger(2011)] for SDEs, to analyse the stability and accuracy. The results show that Crank-Nicolson timestepping for the principal part of the drift with a partially implicit but negatively weighted double It\^o integral gives unconditional stability over all parameter values, and converges with the expected order in the mean-square sense. This opens up the possibility of local mesh refinement in the spatial domain, and we show experimentally that this can be beneficial in the presence of reduced regularity at boundaries

    Stochastic finite differences and multilevel Monte Carlo for a class of SPDEs in finance

    Get PDF
    In this article, we propose a Milstein finite difference scheme for a stochastic partial differential equation (SPDE) describing a large particle system. We show, by means of Fourier analysis, that the discretisation on an unbounded domain is convergent of first order in the timestep and second order in the spatial grid size, and that the discretisation is stable with respect to boundary data. Numerical experiments clearly indicate that the same convergence order also holds for boundary-value problems. Multilevel path simulation, previously used for SDEs, is shown to give substantial complexity gains compared to a standard discretisation of the SPDE or direct simulation of the particle system. We derive complexity bounds and illustrate the results by an application to basket credit derivatives
    corecore