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1. Introduction

Spatial and temporal regularity of the solution process of a stochastic partial differential equation
(SPDE) of evolutionary type are investigated in this article. More precisely, it is analyzed under which
conditions on the noise term of a semilinear SPDE the solution process enjoys values in the domains
of fractional powers of the dominating linear operator of the SPDE. It turns out that the essential
constituents determining the regularity of the solution process are assumptions on the covariance op-
erator of the driving noise process of the SPDE and appropriate boundary conditions on the diffusion
coefficient. While the regularity of (affine) linear SPDEs has been intensively studied in previous re-
sults (see, e.g., N.V. Krylov and B.L. Rozovskiı̆ [7], B.L. Rozovskiı̆ [11], G. Da Prato & J. Zabczyk [4], N.V.
Krylov [6], Z. Brzeźniak [1], Z. Brzeźniak and J. van Neerven [2], S. Tindel et al. [13] and Z. Brzeźniak
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et al. [3]), the main purpose of this article is to handle possibly nonlinear diffusion coefficients in
SPDEs driven by trace class Brownian noise (see also X. Zhang [19] for a related result).

In order to illustrate the results in this article, we concentrate on the following example SPDE
in this introductory section and refer to Section 2 for our general setting and to Section 4 for
further examples of SPDEs. Let T ∈ (0,∞), let (Ω, F ,P) be a probability space with a normal fil-
tration (Ft)t∈[0,T ] and let H = L2((0,1),R) be the R-Hilbert space of equivalence classes of square
integrable functions from (0,1) to R. Moreover, let f ,b : (0,1) × R → R be two continuously differ-
entiable functions with globally bounded derivatives, let x0 : (0,1) → R be a smooth function with
limx↘0 x0(x) = limx↗1 x0(x) = 0 and let W : [0, T ] × Ω → H be a standard Q -Wiener process with
respect to (Ft)t∈[0,T ] with a covariance operator Q : H → H . It is a classical result (see, e.g., Theorem
VI.3.2 in [18]) that the covariance operator Q : H → H of the Wiener process W : [0, T ] × Ω → H
has an orthonormal basis g j ∈ H , j ∈ {0,1,2, . . .}, of eigenfunctions with summable eigenvalues
μ j ∈ [0,∞), j ∈ {0,1,2, . . .}. In order to have a more concrete example, we consider the choice
g0(x) = 1, g j(x) = √

2 cos( jπx), μ0 = 0 and μ j = j−r for all x ∈ (0,1) and all j ∈ N with a given
real number r ∈ (1,∞) in the following and refer to Section 4 for possible further examples. Then we
consider the SPDE

dXt(x) =
[

∂2

∂x2
Xt(x) + f

(
x, Xt(x)

)]
dt + b

(
x, Xt(x)

)
dWt(x) (1)

with Xt(0) = Xt(1) = 0 and X0(x) = x0(x) for t ∈ [0, T ] and x ∈ (0,1). Under the assumptions above
the SPDE (1) has a unique mild solution. Specifically, there exists an up to indistinguishability unique
adapted stochastic process X : [0, T ] × Ω → H with continuous sample paths which satisfies

Xt = e At x0 +
t∫

0

e A(t−s) F (Xs)ds +
t∫

0

e A(t−s)B(Xs)dW s, (2)

P-a.s. for all t ∈ [0, T ] where A : D(A) ⊂ H → H is the Laplacian with Dirichlet boundary con-
ditions and where F : H → H and B : H → H S(U0, H) are given by (F (v))(x) = f (x, v(x)) and
(B(v)u)(x) = b(x, v(x)) · u(x) for all x ∈ (0,1), v ∈ H and all u ∈ U0. Here U0 = Q 1/2(H) with
〈v, w〉U0 = 〈Q −1/2 v, Q −1/2 w〉H for all v, w ∈ U0 is the image R-Hilbert space of Q

1
2 (see Appendix C

in [9]).
We are then interested to know for which γ ∈ [0,∞) in dependence on the decay rate r ∈ (1,∞)

of the eigenfunctions of the covariance operator Q : H → H the solution process X : [0, T ] × Ω → H
of (1) takes values in D((−A)γ ). For the SPDE (1) it turns out that

P
[

Xt ∈ D
(
(−A)γ

)] = 1 (3)

holds for all t ∈ [0, T ] and all γ ∈ [0,
min(3,r+1)

4 ) (see Theorem 1 in Section 3 for the main result of
this article and Subsection 4.1 for the SPDE (1)). Under further assumptions on the diffusion coeffi-
cient function b : (0,1) × R → R, the solution of (1) has even more regularity which can be seen in
Subsection 4.2.

In the following we relate the results in this article with existing regularity results in the lit-
erature and also illustrate how (3) can be established. The regularity of linear SPDEs has been
intensively analyzed in the literature (see, e.g., [7,11,4,6,1,2,13,3]). For instance, in Theorem 6.19 in
[4], Da Prato and Zabczyk already showed for the SPDE (1) in the case f (x, y) = 0 for all x ∈ (0,1),
y ∈ R and b : (0,1) × R → R sufficiently small and linear in the second variable that (3) holds for
all t ∈ [0, T ] and all γ ∈ [0,

min(4,r+1)
4 ). Their key idea in Theorem 6.19 in [4] was to apply the Ba-

nach fixed point theorem in an appropriate Banach space of D((−A)γ )-valued stochastic processes for
γ ∈ [0,

min(4,r+1)
4 ). This approach is based on the fact that B : H → H S(U0, H) is linear and globally

Lipschitz continuous from D((−A)γ ) ⊂ H to H S(U0, D((−A)γ )) ⊂ H S(U0, H) for γ ∈ [0,
min(2,r−1)

4 )
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since b : (0,1) × R → R is assumed to be linear in its second variable. Although their method in
Theorem 6.19 in [4] works quite well for linear SPDEs, it cannot be generalized to nonlinear SPDEs of
the form (1). More formally, in the case of a nonlinear b : (0,1) × R → R, B : H → H S(U0, H) is in
general not globally Lipschitz continuous from D((−A)γ ) to H S(U0, D((−A)γ )) for γ > 0 although
b : (0,1)×R → R is assumed to have globally bounded derivatives. Therefore, a contraction argument
as in Theorem 6.19 in [4] (see also J. van Neerven et al. [17] for a related result) in a Banach space
of D((−A)γ )-valued stochastic processes for γ > 1

2 can in general not be established for nonlinear
SPDEs of the form (1). This difficulty is a key problem of regularity analysis for nonlinear SPDEs and
has been pointed out in X. Zhang [19] (see p. 456 in [19]).

We now demonstrate our approach to analyze the regularity of (1) which overcomes the lack
of Lipschitz continuity of B : H → H S(U0, H) with respect to D((−A)γ ) and H S(U0, D((−A)γ )) for
γ > 0 in the nonlinear case. First of all, by exploiting the smoothing effect of the semigroup of the
Laplacian in (2), the existence of an up to modifications unique predictable D((−A)γ )-valued solution
process X : [0, T ] × Ω → D((−A)γ ) of (1) with

sup
t∈[0,T ]

E
[‖Xt‖2

D((−A)γ )

]
< ∞ (4)

can be established immediately for all γ ∈ [0, 1
2 ) (see J. van Neerven et al. [17] for details). However,

we want to show (3) for all t ∈ [0, T ] and all γ ∈ [0,
min(3,r+1)

4 ) instead of γ ∈ [0, 1
2 ). To this end a

key estimate in our approach is the linear growth bound

∥∥B(v)
∥∥

H S(U0,D((−A)α))
� cα

(
1 + ‖v‖D((−A)α)

)
(5)

for all v ∈ D((−A)α) and all α ∈ [0,
min(1,r−1)

4 ) with cα ∈ [0,∞), α ∈ [0,
min(1,r−1)

4 ), appropriate which
we sketch below. We would like to point out here that B : H → H S(U0, H) fulfills the linear growth
bound (5) although it fails to be globally Lipschitz continuous from D((−A)α) to H S(U0, D((−A)α))

for α > 0 in general (see Section 4 for the verification of (5) in the case of SPDEs of the form (1)).
Exploiting estimate (5) in an appropriate bootstrap argument will then show (3) for all t ∈ [0, T ] and
all γ ∈ [0,

min(3,r+1)
4 ). More formally, using that the semigroup is analytic with e At(H) ⊂ D(A) for all

t ∈ (0, T ] yields

t∫
0

E
[∥∥(−A)γ e A(t−s)B(Xs)

∥∥2
H S(U0,H)

]
ds

�
t∫

0

∥∥(−A)ϑe A(t−s)
∥∥2

L(H)
E

[∥∥(−A)(γ −ϑ)B(Xs)
∥∥2

H S(U0,H)

]
ds

�
t∫

0

(t − s)−2ϑ
E

[∥∥B(Xs)
∥∥2

H S(U0,D((−A)(γ −ϑ)))

]
ds

and using estimate (5) then shows

t∫
E

[∥∥(−A)γ e A(t−s)B(Xs)
∥∥2

H S(U0,H)

]
ds
0
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�
t∫

0

(t − s)−2ϑ |c(γ −ϑ)|2E
[(

1 + ‖Xs‖D((−A)(γ −ϑ))

)2]
ds

� 2|c(γ −ϑ)|2
( t∫

0

s−2ϑ ds

)(
1 + sup

s∈[0,T ]
E

[‖Xs‖2
D((−A)(γ −ϑ))

])

�
2|c(γ −ϑ)|2(T + 1)

(1 − 2ϑ)

(
1 + sup

s∈[0,T ]
E

[‖Xs‖2
D((−A)(γ −ϑ))

])
< ∞ (6)

for all t ∈ [0, T ], ϑ ∈ (γ − min(1,r−1)
4 , 1

2 ) and all γ ∈ [ 1
2 ,

min(3,r+1)
4 ). We would like to point out that due

to (4) the right-hand side of (6) is indeed finite. Of course, (6) then shows that
∫ t

0 e A(t−s)B(Xs)dW s ,

t ∈ [0, T ], has a modification with values in D((−A)γ ) for all γ ∈ [0,
min(3,r+1)

4 ) and thus, (3) holds

for all t ∈ [0, T ] and all γ ∈ [0,
min(3,r+1)

4 ).
Regularities of nonlinear SPDEs as analyzed here have also been investigated in Zhang’s instructive

paper [19]. In contrast to the results in this article, he investigated which conditions on the coeffi-
cients and the noise of an SPDE suffice to ensure that the solution process of the SPDE is infinitely
often differentiable in the spatial variable, see Theorem 6.2 in [19]. The solution process of (1) in
which we are interested is in general not twice differentiable in the spatial variable and therefore,
Theorem 6.2 in [19] can in general not be applied to the SPDE (1) here.

The rest of this article is organized as follows. In Section 2 the setting and assumptions used
are formulated. Our main result, Theorem 1, which states existence, uniqueness and regularity of
solutions of an SPDE with nonlinear multiplicative trace class noise is presented in Section 3. This
result is illustrated by various examples in Section 4. The proof of Theorem 1 is postponed to the
final section.

2. Setting and assumptions

Throughout this article assume that the following setting is fulfilled.
Let T ∈ (0,∞) be a real number, let (Ω, F ,P) be a probability space with a normal filtration

(Ft)t∈[0,T ] and let (H, 〈· , ·〉H ,‖ · ‖H ) and (U , 〈· , ·〉U ,‖ · ‖U ) be two separable R-Hilbert spaces. More-
over, let Q : U → U be a trace class operator and let W : [0, T ] × Ω → U be a standard Q -Wiener
process with respect to (Ft)t∈[0,T ] .

Assumption 1 (Linear operator A). Let A : D(A) ⊂ H → H be a closed and densely defined linear oper-
ator which generates a strongly continuous analytic semigroup e At ∈ L(H), t ∈ [0,∞).

Let η ∈ [0,∞) be a nonnegative real number such that σ(A) ⊂ {λ ∈ C: Re(λ) < η} where σ(A) ⊂ C

denotes as usual the spectrum of the linear operator A : D(A) ⊂ H → H . Such a real number exists
since A is assumed to be a generator of a strongly continuous semigroup (see Assumption 1). By
Vr := D((η− A)r) ⊂ H equipped with the norm ‖v‖Vr := ‖(η− A)r v‖H for all v ∈ Vr and all r ∈ [0,∞)

we denote the R-Hilbert spaces of domains of fractional powers of the linear operator η − A : D(A) ⊂
H → H (see, e.g., Subsection 11.4.2 in Renardy and Roggers [10]).

Assumption 2 (Drift term F ). Let F : H → H be a globally Lipschitz continuous mapping.

In order to formulate the assumption on the diffusion coefficient of our SPDE, we denote
by (U0, 〈· , ·〉U0 ,‖ · ‖U0 ) the separable R-Hilbert space U0 := Q 1/2(U ) with 〈v, w〉U0 = 〈Q −1/2 v,

Q −1/2 w〉U for all v, w ∈ U0 (see, for example, Subsection 2.3.2 in [9]). Here Q −1/2 : im(Q 1/2) ⊂
U → U denotes the pseudo inverse of Q 1/2 : U → U (see, e.g., Appendix C in [9] for details).



118 A. Jentzen, M. Röckner / J. Differential Equations 252 (2012) 114–136
Assumption 3 (Diffusion term B). Let B : H → H S(U0, H) be a globally Lipschitz continuous mapping
and let α ∈ [0, 1

2 ), c ∈ [0,∞) be real numbers such that B(Vα) ⊂ H S(U0, Vα) and ‖B(v)‖H S(U0,Vα) �
c(1 + ‖v‖Vα ) for all v ∈ Vα .

Assumption 4 (Initial value ξ ). Let γ ∈ [α, 1
2 + α), p ∈ [2,∞) and let ξ : Ω → Vγ be an F0/B(Vγ )-

measurable mapping with E[‖ξ‖p
Vγ

] < ∞.

Some examples satisfying Assumptions 1–4 are presented in Section 4.

3. Main result

The assumptions in Section 2 suffice to ensure the existence of a unique Vγ -valued solution of the
SPDE (7).

Theorem 1 (Existence and regularity of the solution). Assume that the setting in Section 2 is fulfilled. Then
there exists an up to modifications unique predictable stochastic process X : [0, T ] × Ω → Vγ which fulfills
supt∈[0,T ] E[‖Xt‖p

Vγ
] < ∞, supt∈[0,T ] E[‖B(Xt)‖p

H S(U0,Vα)] < ∞ and

Xt = e Atξ +
t∫

0

e A(t−s) F (Xs)ds +
t∫

0

e A(t−s)B(Xs)dW s, (7)

P-a.s. for all t ∈ [0, T ]. Moreover, we have

sup
t1,t2∈[0,T ]

t1 =t2

(E[‖Xt2 − Xt1‖p
Vr

]) 1
p

|t2 − t1|min(γ −r, 1
2 )

< ∞ (8)

for every r ∈ [0, γ ). Additionally, the solution process Xt , t ∈ [0, T ], is even continuous with respect to

(E[‖ · ‖p
Vγ

]) 1
p .

The proof of Theorem 1 is given in Section 5. The parameters α ∈ [0, 1
2 ), γ ∈ [α, 1

2 + α) and
p ∈ [2,∞) used in Theorem 1 are given in Assumptions 3 and 4.

Estimate (8) and the continuity of the solution process Xt , t ∈ [0, T ], with respect to (E[‖ · ‖p
Vγ

]) 1
p

as asserted in Theorem 1 can also be written as

X ∈
⋂

r∈[0,γ ]
C min(γ −r, 1

2 )
([0, T ], Lp(Ω; Vr)

)
. (9)

Let us complete this section with the following remarks.
In this article we investigate predictable Vγ -valued solution processes of the SPDE (7). For results

analyzing continuity of sample paths for H-valued solution processes of SPDEs of the form (7), the
reader is referred to P. Kotelenez [5] and L. Tubaro [15], for instance.

If the initial value X0 = ξ of the SPDE (7) above is H-valued only, then Xt takes values in Vr for
all r < 1

2 + α and all t ∈ (0, T ] nevertheless. More formally, if Assumptions 1–3 are fulfilled and
if ξ : Ω → H is an F0/B(H)-measurable mapping with E[‖ξ‖p

H ] < ∞ for some p ∈ [2,∞), then
Theorem 1 shows the existence of a predictable solution process X : [0, T ] × Ω → H of (7) and
this process additionally satisfies P[Xt ∈ Vr] = 1 with E[‖Xt‖p

Vr
] < ∞ for all r ∈ [0, 1

2 + α) and all
t ∈ (0, T ].
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4. Examples

In this section Theorem 1 is illustrated with various examples. To this end let d ∈ N and let H =
U = L2((0,1)d,R) be the R-Hilbert space of equivalence classes of B((0,1)d)/B(R)-measurable and
Lebesgue square integrable functions from (0,1)d to R. As usual we do not distinguish between a
square integrable function from (0,1)d to R and its equivalence class in H . For simplicity we restrict
our attention to the domain (0,1)d although more complicated domains in R

d could be considered.
The scalar product and the norm in H and U are given by

〈v, w〉H = 〈v, w〉U =
∫

(0,1)d

v(x) · w(x)dx

and

‖v‖H = ‖v‖U =
( ∫

(0,1)d

∣∣v(x)
∣∣2

dx

) 1
2

for all v, w ∈ H = U . Moreover, the Euclidean norm ‖x‖
Rd := (|x1|2 + · · · + |xd|2) 1

2 for all x =
(x1, . . . , xd) ∈ R

d is used here. Additionally, the notations

‖v‖C((0,1)d,R) := sup
x∈(0,1)d

∣∣v(x)
∣∣ ∈ [0,∞]

and

‖v‖Cr((0,1)d,R) := sup
x∈(0,1)d

∣∣v(x)
∣∣ + sup

x,y∈(0,1)d

x=y

|v(x) − v(y)|
‖x − y‖r

Rd

∈ [0,∞]

for all r ∈ (0,1] and all functions v : (0,1)d → R are used in this section. We also define

‖v‖W r,2((0,1)d,R) :=
( ∫

(0,1)d

∣∣v(x)
∣∣2

dx +
∫

(0,1)d

∫
(0,1)d

|v(x) − v(y)|2
‖x − y‖(d+2r)

Rd

dx dy

) 1
2

∈ [0,∞]

for all B((0,1)d)/B(R)-measurable functions v : (0,1)d → R and all r ∈ (0,1). Finally, we denote by
v · w : (0,1)d → R the function

(v · w)(x) = v(x) · w(x), x ∈ (0,1)d,

for every v, w : (0,1)d → R. Concerning the covariance operator of the Wiener process, let J be
a countable set, let (g j) j∈J ⊂ U be an orthonormal basis of eigenfunctions of Q : U → U and let
(μ j) j∈J ⊂ [0,∞) be the corresponding family of eigenvalues (such an orthonormal basis of eigen-
functions exists since Q : U → U is a trace class operator, see Proposition 2.1.5 in [9]). In particular,
we have

Q u =
∑
j∈J

μ j〈g j, u〉U g j
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for all u ∈ U . Furthermore, we assume in this section that the eigenfunctions g j ∈ U , j ∈ J , are
continuous and satisfy

sup
j∈J

‖g j‖C((0,1)d,R) < ∞ and
∑
j∈J

(
μ j‖g j‖2

Cδ((0,1)d,R)

)
< ∞ (10)

for some δ ∈ (0,1]. We will give some concrete examples for (g j) j∈J fulfilling (10) later.
For the linear operator in Assumption 1, let κ ∈ (0,∞) be a fixed real number, let I = N

d and let
λi ∈ R, i ∈ I , and ei ∈ H , i ∈ I , be given by

λi = κπ2(|i1|2 + · · · + |id|2
)
, ei(x) = 2

d
2 sin(i1πx1) · . . . · sin(idπxd)

for all x ∈ (x1, . . . , xd) ∈ (0,1)d and all i = (i1, . . . , id) ∈ N
d . Next let

D(A) =
{

v ∈ H:
∑
i∈I

|λi|2
∣∣〈ei, v〉H

∣∣2
< ∞

}

and let

Av =
∑
i∈I

−λi〈ei, v〉H ei

for all v ∈ D(A). Hence, the linear operator A : D(A) ⊂ H → H in Assumption 1 is nothing else but
the Laplacian with Dirichlet boundary conditions times the constant κ ∈ (0,∞), i.e.

Av = κ · �v = κ

((
∂2

∂x2
1

)
v + · · · +

(
∂2

∂x2
d

)
v

)
(11)

holds for all v ∈ D(A) in this subsection (see, for instance, Subsection 3.8.1 in [12]).
In view of the drift term in Assumption 2, let f : (0,1)d × R → R be a B((0,1)d × R)/B(R)-

measurable function with
∫
(0,1)d | f (x,0)|2 dx < ∞ and

sup
x∈(0,1)d

sup
y1,y2∈R

y1 =y2

( | f (x, y1) − f (x, y2)|
|y1 − y2|

)
< ∞. (12)

Then the (in general nonlinear) operator F : H → H given by

(
F (v)

)
(x) = f

(
x, v(x)

)
, x ∈ (0,1)d, (13)

for all v ∈ H satisfies Assumption 2, i.e.

sup
v,w∈H

v =w

‖F (v) − F (w)‖H

‖v − w‖H
< ∞ (14)

holds.
We now describe a class of diffusion terms satisfying Assumption 3. To this end let q ∈ [0,∞) be a

real number and let b : (0,1)d × R → R be a function satisfying

∣∣b(x1, y1) − b(x2, y2)
∣∣ � q

(‖x1 − x2‖Rd + |y1 − y2|
)

(15)
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for all x1, x2 ∈ (0,1)d and all y1, y2 ∈ R. In addition, we assume for simplicity that∫
(0,1)d |b(x,0)|2 dx � q2. Then let B : H → H S(U0, H) be the (in general nonlinear) operator given

by

(
B(v)u

)
(x) = (

b(·, v) · u
)
(x) = b

(
x, v(x)

) · u(x), x ∈ (0,1)d, (16)

for all v ∈ H and all u ∈ U0 ⊂ U . We now check step by step that B : H → H S(U0, H) given by (16)
satisfies Assumption 3. First of all, B is well defined. Indeed, we obviously have U0 ⊂ L∞((0,1)d,R)

continuously due to (10) and therefore, B(v) : U0 → H is a bounded linear operator from U0 to H for
every v ∈ H . Moreover, we have

∥∥B(v)
∥∥2

H S(U0,H)
=

∑
j∈J

∥∥B(v)
√

μ j g j
∥∥2

H =
∑
j∈J

μ j
∥∥B(v)g j

∥∥2
H

=
∑
j∈J

μ j

( ∫
(0,1)d

∣∣b(
x, v(x)

) · g j(x)
∣∣2

dx

)

�
∑
j∈J

μ j

( ∫
(0,1)d

∣∣b(
x, v(x)

)∣∣2
dx

)(
sup

x∈(0,1)d

∣∣g j(x)
∣∣2

)

and hence

∥∥B(v)
∥∥

H S(U0,H)
�

∥∥b(·, v)
∥∥

H

( ∑
j∈J

μ j

) 1
2 (

sup
j∈J

‖g j‖C((0,1)d,R)

)

= ∥∥b(·, v)
∥∥

H

√
Tr(Q )

(
sup
j∈J

‖g j‖C((0,1)d,R)

)
< ∞

for all v ∈ H which shows that B : H → H S(U0, H) is well defined. Moreover, B : H → H S(U0, H) is
globally Lipschitz continuous. More precisely, we have

∥∥B(v) − B(w)
∥∥2

H S(U0,H)

=
∑
j∈J

μ j
∥∥(

B(v) − B(w)
)

g j
∥∥2

H

=
∑
j∈J

μ j

( ∫
(0,1)d

∣∣b(
x, v(x)

) − b
(
x, w(x)

)∣∣2∣∣g j(x)
∣∣2

dx

)

�
( ∑

j∈J
μ j

)( ∫
(0,1)d

∣∣b(
x, v(x)

) − b
(
x, w(x)

)∣∣2
dx

)(
sup
j∈J

‖g j‖2
C((0,1)d,R)

)

and therefore

∥∥B(v) − B(w)
∥∥

H S(U0,H)
� q‖v − w‖H

( ∑
j∈J

μ j

) 1
2 (

sup
j∈J

‖g j‖C((0,1)d,R)

)

= q
√

Tr(Q )
(

sup
j∈J

‖g j‖C((0,1)d,R)

)
‖v − w‖H
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for all v, w ∈ H . Hence, it remains to check

B(Vα) ⊂ H S(U0, Vα) and
∥∥B(v)

∥∥
H S(U0,Vα)

� c
(
1 + ‖v‖Vα

)
(17)

for every v ∈ Vα for appropriate α ∈ [0, 1
2 ), c ∈ [0,∞). In order to verify (17), several preparations are

needed. First, we review appropriate characterizations of the spaces (Vr,‖ · ‖Vr ), r ∈ (0, 1
2 ), from the

literature. More formally, it is known that

Vr = {
v ∈ H: ‖v‖W 2r,2((0,1)d,R) < ∞}

(18)

holds for all r ∈ (0, 1
4 ), that

Vr = {
v ∈ H: ‖v‖W 2r,2((0,1)d,R) < ∞, v|∂(0,1)d ≡ 0

}
(19)

holds for all r ∈ ( 1
4 , 1

2 ) and that there are real numbers Cr ∈ [1,∞), r ∈ (0, 1
2 ), such that

1

Cr
‖v‖W 2r,2((0,1)d,R) � ‖v‖Vr � Cr‖v‖W 2r,2((0,1)d,R) (20)

holds for all v ∈ Vr and all r ∈ (0, 1
2 ) (see, e.g., A. Lunardi [8] or also (A.46) in [4]). In particular, (18)

shows

‖v‖W 2r,2((0,1)d,R) < ∞ �⇒ v ∈ Vr (21)

for all B((0,1)d)/B(R)-measurable functions v : (0,1)d → R and all r ∈ (0, 1
4 ). We remark that (21)

does not hold for all r ∈ ( 1
4 , 1

2 ) instead of r ∈ (0, 1
4 ) since a B((0,1)d)/B(R)-measurable function

v : (0,1)d → R with ‖v‖W 2r,2((0,1)d,R) < ∞ for some r ∈ (0, 1
2 ) does, in general, not fulfill the Dirichlet

boundary conditions in (19). In the next step observe that

‖v · w‖2
W r,2((0,1)d,R)

�
∫

(0,1)d

∣∣v(x) · w(x)
∣∣2

dx +
∫

(0,1)d

∫
(0,1)d

|v(x) · w(x) − v(y) · w(y)|2
‖x − y‖(d+2r)

Rd

dx dy

� ‖v‖2
H‖w‖2

C((0,1)d,R)
+ 2‖w‖2

C((0,1)d,R)

∫
(0,1)d

∫
(0,1)d

|v(x) − v(y)|2
‖x − y‖(d+2r)

Rd

dx dy

+ 2
∫

(0,1)d

∫
(0,1)d

|v(y)|2|w(x) − w(y)|2
‖x − y‖(d+2r)

Rd

dx dy

� 2‖v‖2
W r,2((0,1)d,R)

‖w‖2
C((0,1)d,R)

+ 2‖v‖2
H

(
sup

x,y∈(0,1)d

x=y

|w(x) − w(y)|2
‖x − y‖2δ

Rd

)( ∫
(−1,1)d

‖y‖(2δ−d−2r) dy

)

for all v ∈ H , r ∈ (0,1) and all B((0,1)d)/B(R)-measurable functions w : (0,1)d → R. The estimate
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∫
(−1,1)d

‖x‖z
Rd dx �

∫
{y∈Rd: ‖y‖

Rd �
√

d}

‖x‖z
Rd dx = π

d
2 d

Γ ( d
2 + 1)

√
d∫

0

r(z+d−1) dr � 3d

√
d∫

0

r(z+d−1) dr

= 3dd
(z+d)

2

(z + d)
� (3d)d

(d + z)
(22)

for all z ∈ (−d,d) therefore gives

‖v · w‖W r,2((0,1)d,R)

�
√

2‖v‖W r,2((0,1)d,R)

(
‖w‖C((0,1)d,R) + sup

x,y∈(0,1)d

x=y

|w(x) − w(y)|
‖x − y‖δ

Rd

· (3d)
d
2√

2δ − 2r

)

�
(

(3d)
d
2√

δ − r

)
‖v‖W r,2((0,1)d,R)‖w‖Cδ((0,1)d,R) (23)

for all B((0,1)d)/B(R)-measurable functions v, w : (0,1)d → R and all r ∈ (0, δ) (see also Section 4.2
in H. Triebel [14]). In addition, note that the estimate (a +b)2 � 2a2 +2b2 for all a,b ∈ R and inequal-
ity (15) imply

∥∥b(·, v)
∥∥2

W r,2((0,1)d,R)

=
∫

(0,1)d

∣∣b(
x, v(x)

)∣∣2
dx +

∫
(0,1)d

∫
(0,1)d

|b(x, v(x)) − b(y, v(y))|2
‖x − y‖(d+2r)

Rd

dx dy

�
∫

(0,1)d

(
q
∣∣v(x)

∣∣ + ∣∣b(x,0)
∣∣)2

dx + 2
∫

(0,1)d

∫
(0,1)d

|b(x, v(x)) − b(x, v(y))|2
‖x − y‖(d+2r)

Rd

dx dy

+ 2
∫

(0,1)d

∫
(0,1)d

|b(x, v(y)) − b(y, v(y))|2
‖x − y‖(d+2r)

Rd

dx dy

� 2q2‖v‖2
W r,2((0,1)d,R)

+ 2q2 + 2q2
∫

(0,1)d

∫
(0,1)d

‖x − y‖(2−d−2r)
Rd dx dy

for all B((0,1)d)/B(R)-measurable functions v : (0,1)d → R and all r ∈ (0,1). Inequality (22) there-
fore shows

∥∥b(·, v)
∥∥2

W r,2((0,1)d,R)
� 2q2‖v‖2

W r,2((0,1)d,R)
+ 2q2 + q2 (3d)d

(1 − r)

� q2
(

2‖v‖2
W r,2((0,1)d,R)

+ 2(3d)d

(1 − r)

)

�
(

q2 2(3d)d

(1 − r)

)(‖v‖2
W r,2((0,1)d,R)

+ 1
)
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this finally yields

∥∥b(·, v)
∥∥

W r,2((0,1)d,R)
�

(
q(3d)d

(1 − r)

)(
1 + ‖v‖W r,2((0,1)d,R)

)
(24)

for all B((0,1)d)/B(R)-measurable functions v : (0,1)d → R and all r ∈ (0,1). Combining (20) and
(24) then, in particular, shows

∥∥b(·, v)
∥∥

W 2r,2((0,1)d,R)
�

(
qCr(3d)d

(1 − 2r)

)(
1 + ‖v‖Vr

)
< ∞ (25)

for all v ∈ Vr and all r ∈ (0, 1
2 ). Next we combine (23), (25) and (10) to obtain

( ∑
j∈J

μ j
∥∥B(v)g j

∥∥2
W 2r,2((0,1)d,R)

) 1
2

�
(

(3d)
d
2√

δ − 2r

)( ∑
j∈J

μ j‖g j‖2
Cδ((0,1)d,R)

) 1
2 ∥∥b(·, v)

∥∥
W 2r,2((0,1)d,R)

�
(

q Cr(3d)2d

(δ − 2r)2

)( ∑
j∈J

μ j‖g j‖2
Cδ((0,1)d,R)

) 1
2 (

1 + ‖v‖Vr

)
< ∞ (26)

for all v ∈ Vr and all r ∈ (0, δ
2 ). The Cauchy–Schwartz inequality and estimate (26) then imply

∥∥B(v)u
∥∥

W 2r,2((0,1)d,R)
=

∥∥∥∥B(v)

( ∑
j∈J̃

μ j〈g j, u〉U0 g j

)∥∥∥∥
W 2r,2((0,1)d,R)

�
∑
j∈J̃

(
μ j

∣∣〈g j, u〉U0

∣∣∥∥B(v)g j
∥∥

W 2r,2((0,1)d,R)

)

�
( ∑

j∈J̃

∣∣〈√μ j g j, u〉U0

∣∣2
) 1

2
( ∑

j∈J̃

μ j
∥∥B(v)g j

∥∥2
W 2r,2((0,1)d,R)

) 1
2

�
(

q Cr(3d)2d

(δ − 2r)2

)( ∑
j∈J

μ j‖g j‖2
Cδ((0,1)d,R)

) 1
2 (

1 + ‖v‖Vr

)‖u‖U0

< ∞ (27)

for all v ∈ Vr , r ∈ (0, δ
2 ), u ∈ U0 with u = ∑

j∈J̃ μ j〈g j, u〉U0 g j and all finite subsets J̃ ⊂ J of J . This
and (21) then show that B(v)u ∈ Vr and that

∥∥B(v)u
∥∥

Vr
�

(
q|Cr |2(3d)2d

(δ − 2r)2

)( ∑
j∈J

μ j‖g j‖2
Cδ((0,1)d,R)

) 1
2 (

1 + ‖v‖Vr

)‖u‖U0 (28)

for all v ∈ Vr , r ∈ (0,min( 1
4 , δ

2 )) and all u ∈ U0. Therefore, we obtain that B(v) ∈ L(U0, Vr) for all
v ∈ Vr and all r ∈ (0,min( 1

4 , δ
2 )). Hence, (20) and (26) give
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∑
j∈J

(
μ j

∥∥B(v)g j
∥∥2

Vr

)
�

(
q|Cr |2(3d)2d

(δ − 2r)2

)2( ∑
j∈J

μ j‖g j‖2
Cδ((0,1)d,R)

)(
1 + ‖v‖Vr

)2
< ∞ (29)

for all v ∈ Vr and all r ∈ (0,min( 1
4 , δ

2 ). Therefore, we obtain B(v) ∈ H S(U0, Vr) and

∥∥B(v)
∥∥

H S(U0,Vr)
�

(
q|Cr |2(3d)2d

(δ − 2r)2

)( ∑
j∈J

μ j‖g j‖2
Cδ((0,1)d,R)

) 1
2 (

1 + ‖v‖Vr

)
< ∞ (30)

for all v ∈ Vr and all r ∈ (0,min( 1
4 , δ

2 )). This finally shows that Assumption 3 is fulfilled for all α ∈
[0,min( 1

4 , δ
2 )).

Concerning the initial value in Assumption 4, let x0 : [0,1]d → R be a twice continuously differen-
tiable function with x0|∂(0,1)d ≡ 0. Then the F0/B(Vγ )-measurable mapping ξ : Ω → Vγ given by

ξ(ω) = x0 for all ω ∈ Ω fulfills Assumption 4 for all γ ∈ [α, 1
2 + α) and all p ∈ [2,∞).

Having constructed examples of Assumptions 1–4, we now formulate the SPDE (7) in the setting
of this section. More formally, under the setting above the SPDE (7) reduces to

dXt(x) = [
κ�Xt(x) + f

(
x, Xt(x)

)]
dt + b

(
x, Xt(x)

)
dWt(x) (31)

with Xt |∂(0,1)d ≡ 0 and X0(x) = x0(x) for t ∈ [0, T ] and x ∈ (0,1)d . Moreover, we define a family β j :
[0, T ] × Ω → R, j ∈ {k ∈ J | μk = 0}, of independent standard Brownian motions by

β
j

t (ω) := 1√
μ j

〈
g j, Wt(ω)

〉
U

for all ω ∈ Ω , t ∈ [0, T ] and all j ∈ J with μ j = 0. Using this notation, the SPDE (31) can be written
as

dXt(x) = [
κ�Xt(x) + f

(
x, Xt(x)

)]
dt +

∑
j∈J

μ j =0

[√
μ jb

(
x, Xt(x)

)
g j(x)

]
dβ

j
t (32)

with Xt |∂(0,1)d ≡ 0 and X0(x) = x0(x) for t ∈ [0, T ] and x ∈ (0,1)d . Finally, due to (30), Theorem 1
shows the existence of an up to modifications unique predictable stochastic process X : [0, T ] ×
Ω → Vγ fulfilling (32) for any γ ∈ [0,

min(3,2δ+2)
4 ).

At this point we would like to thank an anonymous referee for pointing out to us that Theorem 1
can be generalized to SPDEs on UMD Banach spaces with type 2 by exploiting the results in van
Neerven et al. [16]. In such a Banach space framework the state space Lq((0,1)2,R) with possibly
large q ∈ [2,∞) can be considered instead of the Hilbert space H = L2((0,1)d,R). By using appro-
priate Sobolev embeddings we then expect that one can even show that the solution process of the
SPDE (32) enjoys values in the space C2γ ((0,1)d,R) of continuous differentiable functions from (0,1)d

to R with (2γ − 1)-Hölder continuous derivatives for any γ ∈ ( 1
2 ,

min(3,2δ+2)
4 ). The precise regularity

study of the SPDE (32) in such a Banach space framework instead of the Hilbert space framework
considered here remains an open question for future research.

In the next step we illustrate Theorem 1 using (27) and (30) in the following three more concrete
examples.
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4.1. A one dimensional stochastic reaction diffusion equation

Consider the situation described above in the case d = 1. In this subsection we want to give a
concrete example for (g j) j∈J and (μ j) j∈J so that (10) is fulfilled and all above applies. Let J =
{0,1,2, . . .}, let g0(x) = 1 and let g j(x) = √

2 cos( jπx) for all x ∈ (0,1) and all j ∈ N. Moreover, let
ρ ∈ (1,∞) and ν ∈ (0,∞) be given real numbers, let μ0 = 0 and let μ j = ν

jρ for all j ∈ N. This choice
ensures that (10) is fulfilled. Indeed, we have

∑
j∈J

μ j‖g j‖2
Cδ((0,1)d,R)

=
∞∑
j=1

ν

jρ
‖g j‖2

Cδ((0,1)d,R)

=
∞∑
j=1

2ν

jρ

(
1 + sup

x,y∈(0,1)
x=y

| cos( jπx) − cos( jπ y)|
|x − y|δ

)2

�
∞∑
j=1

2ν

jρ

(
1 + sup

x,y∈(0,1)
x=y

2(1−δ)| cos( jπx) − cos( jπ y)|δ
|x − y|δ

)2

and hence

∑
j∈J

μ j‖g j‖2
Cδ((0,1)d,R)

�
∞∑
j=1

2ν

jρ
(
1 + 2(1−δ)( jπ)δ

)2

�
∞∑
j=1

2ν

jρ
(
1 + π jδ

)2

� 8νπ2

( ∞∑
j=1

j(2δ−ρ)

)
< ∞ (33)

for all δ ∈ (0,
ρ−1

2 ). Assumption 3 is thus fulfilled for every α ∈ (0,min( 1
4 ,

ρ−1
4 )) = (0,

min(1,ρ−1)
4 )

(see (30)). Here the SPDE (32) reduces to

dXt(x) =
[
κ

∂2

∂x2
Xt(x) + f

(
x, Xt(x)

)]
dt +

∞∑
j=1

[√
2ν

j
ρ
2

b
(
x, Xt(x)

)
cos( jπx)

]
dβ

j
t (34)

with Xt(0) = Xt(1) = 0 and X0(x) = x0(x) for t ∈ [0, T ] and x ∈ (0,1). Theorem 1 finally yields the
existence of an up to modifications unique stochastic process X : [0, T ] × Ω → Vγ fulfilling (34) for

any γ ∈ [0,
min(3,ρ+1)

4 ). Under further assumptions on b : (0,1) × R → R, the solution of (34) enjoys
even more regularity which is demonstrated in the following subsection.

4.2. More regularity for a one dimensional stochastic reaction diffusion equation

Consider the situation of Subsection 4.1 with ρ = 3. Hence, (33) shows that (10) holds for all
δ ∈ (0,1). Therefore, (30) gives that Assumption 3 is fulfilled for all α ∈ [0, 1

4 ). However, we now
additionally assume that the diffusion coefficient b : (0,1) × R → R respects the Dirichlet boundary
conditions in (32), i.e., we assume that

lim
x↘0

b(x, x) = lim
x↗1

b(x, x − 1) = 0 (35)
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holds. Under this additional assumption more regularity for the solution process of (32) can be estab-
lished. More precisely, (35), (19) and (27) yield that B(v)u ∈ Vr and that

∥∥B(v)u
∥∥

Vr
�

(
q|Cr |2(3d)2d

(δ − 2r)2

)( ∑
j∈J

μ j‖g j‖2
Cδ((0,1)d,R)

) 1
2 (

1 + ‖v‖Vr

)‖u‖U0 (36)

for all v ∈ Vr , r ∈ ( 1
4 , 1

2 ) and all u ∈ U0. This implies that B(v) ∈ L(U0, Vr) for all v ∈ Vr and all
r ∈ ( 1

4 , 1
2 ). Hence, (20) and (26) give

∑
j∈J

(
μ j

∥∥B(v)g j
∥∥2

Vr

)
�

(
q|Cr |2(3d)2d

(δ − 2r)2

)2( ∑
j∈J

μ j‖g j‖2
Cδ((0,1)d,R)

)(
1 + ‖v‖Vr

)2
< ∞ (37)

for all v ∈ Vr and all r ∈ ( 1
4 , 1

2 ). Thus, Assumption 3 is here even fulfilled for all α ∈ [0, 1
2 ). Theorem 1

finally shows that, under condition (35), the SPDE

dXt(x) =
[
κ

∂2

∂x2
Xt(x) + f

(
x, Xt(x)

)]
dt +

∞∑
j=1

[√
2ν

j
3
2

b
(
x, Xt(x)

)
cos( jπx)

]
dβ

j
t

with Xt(0) = Xt(1) = 0 and X0(x) = x0(x) for t ∈ [0, T ] and x ∈ (0,1) admits an up to modifications
unique predictable solution process X : [0, T ] × Ω → Vγ for any γ ∈ [0,1).

4.3. Stochastic reaction diffusion equations with commutative noise

Consider the situation before Subsection 4.1 and assume that the eigenfunctions of the linear op-
erator A : D(A) ⊂ H → H and of the covariance operator Q : U = H → H coincide. More formally, let
J = I = N

d , let g j = e j for all j ∈ J , let ρ ∈ (d,d + 2) and ν ∈ (0,∞) be given real numbers and let
μ j = ν( j1 + · · · + jd)

−ρ for all j ∈ ( j1, . . . , jd) ∈ J = N
d . We now check condition (10). To this end

note that

∥∥g′
j(x)

∥∥
L(Rd,R)

= sup
v∈R

d

‖v‖
Rd �1

∣∣g′
j(x)v

∣∣ � sup
v∈R

d

‖v‖
Rd �1

(
d∑

k=1

∣∣∣∣
(

∂ g j

∂xk

)
(x)

∣∣∣∣ · |vk|
)

�
(

d∑
k=1

∣∣∣∣
(

∂ g j

∂xk

)
(x)

∣∣∣∣
2
) 1

2

�
(

d∑
k=1

π2| jk|22d

) 1
2

= 2
d
2 π

(
d∑

k=1

| jk|2
) 1

2

holds for all x ∈ (0,1)d and all j ∈ ( j1, . . . , jd) ∈ J . This implies

∣∣g j(x) − g j(y)
∣∣ �

1∫
0

∣∣g′
j

(
x + r(y − x)

)
(y − x)

∣∣dr

� 2
d
2 π

(
d∑

| jk|2
) 1

2

‖x − y‖
Rd (38)
k=1
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for all x, y ∈ (0,1)d and all j ∈ J . Hence, we obtain

‖g j‖Cδ((0,1)d,R) � ‖g j‖C((0,1)d,R) + sup
x,y∈(0,1)d

x=y

|g j(x) − g j(y)|
‖x − y‖δ

Rd

� 2
d
2 + sup

x,y∈(0,1)d

x=y

(2 · 2
d
2 )(1−δ)|g j(x) − g j(y)|δ

‖x − y‖δ
Rd

and

‖g j‖Cδ((0,1)d,R) � 2
d
2 + 2( d

2 +1)(1−δ)

(
2

d
2 π

(
d∑

k=1

| jk|2
) 1

2
)δ

� 2
d
2 + 2

d
2 π

(
d∑

k=1

| jk|2
) δ

2

� 2( d
2 +1) π

(
d∑

k=1

| jk|2
) δ

2

(39)

for all δ ∈ (0,1] and all j ∈ J . Therefore, we get

∑
j∈J

μ j‖g j‖2
Cδ((0,1)d,R)

�
∑
j∈Nd

ν( j1 + · · · + jd)
−ρ2(d+2) π2

(
d∑

k=1

| jk|2
)δ

= ν 2(d+2) π2
( ∑

j∈Nd

(| j1|2 + · · · + | jd|2)δ
( j1 + · · · + jd)

ρ

)
< ∞

for all δ ∈ (0,
ρ−d

2 ) and hence, (10) holds for all δ ∈ (0,
ρ−d

2 ). Furthermore, since g j|∂(0,1)d =
e j|∂(0,1)d = 0 for all j ∈ J here, (18), (19) and (27) yield that B(v)u ∈ Vr and that

∥∥B(v)u
∥∥

Vr
�

(
q|Cr |2(3d)2d

(δ − 2r)2

)( ∑
j∈J

μ j‖g j‖2
Cδ((0,1)d,R)

) 1
2 (

1 + ‖v‖Vr

)‖u‖U0 (40)

for all v ∈ Vr , r ∈ (0,
ρ−d

4 )\{ 1
4 } and all u ∈ U0. This implies that B(v) ∈ L(U0, Vr) for all v ∈ Vr and all

r ∈ (0,
ρ−d

4 )\{ 1
4 }. Hence, (20) and (26) give

∑
j∈J

(
μ j

∥∥B(v)g j
∥∥2

Vr

)
�

(
q|Cr |2(3d)2d

(δ − 2r)2

)2( ∑
j∈J

μ j‖g j‖2
Cδ((0,1)d,R)

)(
1 + ‖v‖Vr

)2
< ∞ (41)

for all v ∈ Vr and all r ∈ (0,
ρ−d

4 )\{ 1
4 }. Assumption 3 is thus fulfilled for all α ∈ [0,

ρ−d
4 )\{ 1

4 } here.
Theorem 1 therefore yields that the SPDE

dXt(x) = [
κ�Xt(x) + f

(
x, Xt(x)

)]
dt

+
∑
j∈Nd

[√
ν2d sin( j1πx1) · . . . · sin( jdπxd)

( j1 + · · · + jd)
ρ
2

b
(
x, Xt(x)

)]
dβ

j
t (42)
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with Xt |∂(0,1)d ≡ 0 and X0(x) = x0(x) for all t ∈ [0, T ] and x ∈ (0,1)d enjoys an up to modifications

unique predictable solution process X : [0, T ] × Ω → Vγ fulfilling (42) for any γ ∈ [0,
ρ−d+2

4 ).

5. Proof of Theorem 1

Throughout this section the notation

‖Z‖L p(Ω;E) := (
E

[‖Z‖p
E

]) 1
p ∈ [0,∞]

is used for an R-Banach space (E,‖ · ‖E ) and an F /B(E)-measurable mapping Z : Ω → E . The real
number p ∈ [2,∞) is as given in Assumption 4. Next a well-known estimate for analytic semigroups
is presented (see, e.g., Lemma 11.36 in Renardy and Roggers [10])

Lemma 1. Assume that the setting in Section 2 is fulfilled. Then there exist real numbers cr ∈ [1,∞), r ∈ [0,1],
such that

∥∥(
t(η − A)

)r
e At

∥∥
L(H)

� cr (43)

and

∥∥(
t(η − A)

)−r(
e At − I

)∥∥
L(H)

� cr (44)

for all t ∈ (0, T ] and all r ∈ [0,1].

Moreover, we would like to note the following remark.

Remark 1. Assume that the setting in Section 2 is fulfilled and let Y : [0, T ] × Ω → H S(U0, H) be a
predictable stochastic process. Then we obtain e At Ys(ω) ∈ ⋂

u∈[0,∞) V u for all ω ∈ Ω, s ∈ [0, T ] and

all t ∈ (0, T ] since the semigroup e At ∈ L(H), t ∈ [0,∞), is analytic (see Assumption 1). In particular,
if

∫ t
0 E[‖e A(t−s)Ys‖2

H S(U0,Vr)
]ds < ∞ for all t ∈ [0, T ] and some r ∈ [0,∞), then the stochastic process∫ t

0 e A(t−s)Ys dW s , t ∈ [0, T ], has a Vr -valued adapted modification.

Using Lemma 1 and Remark 1 we now present the proof of Theorem 1.

Proof of Theorem 1. The real number R ∈ (0,∞) given by

R := 1 + ∥∥(η − A)−1
∥∥

L(H)
+ ∥∥F (0)

∥∥
H + sup

v,w∈H
v =w

(‖F (v) − F (w)‖H

‖v − w‖H

)

+ ∥∥B(0)
∥∥

H S(U0,H)
+ sup

v,w∈H
v =w

(‖B(v) − B(w)‖H S(U0,H)

‖v − w‖H

)
(45)

is used throughout this proof. Due to Assumptions 1–3 the number R is indeed finite. Moreover, let
Vr for r ∈ [0,∞) be the R-vector space of equivalence classes of Vr -valued predictable stochastic
processes Y : [0, T ] × Ω → Vr that satisfy

sup
t∈[0,T ]

E
[‖Yt‖p

Vr

]
< ∞ (46)
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where two stochastic processes lie in one equivalence class if and only if they are modifica-
tions of each other. As usual we do not distinguish between a predictable stochastic process
Y : [0, T ] × Ω → Vr satisfying (46) and its equivalence class in Vr for r ∈ [0,∞). Then we equip these
spaces with the norms

‖Y ‖Vr ,u := sup
t∈[0,T ]

(
eut‖Yt‖L p(Ω;Vr)

)

for all Y ∈ Vr , u ∈ R and all r ∈ [0,∞). Note that the pair (Vr,‖ ·‖Vr ,u) is an R-Banach space for every
u ∈ R and every r ∈ [0,∞). In the next step we consider the mapping Φ : Vα → Vα given by

(ΦY )t := e Atξ +
t∫

0

e A(t−s) F (Ys)ds +
t∫

0

e A(t−s)B(Ys)dW s (47)

P-a.s. for all t ∈ [0, T ] and all Y ∈ Vα . In the following we show that Φ : Vα → Vα given by (47) is
well defined.

To this end note that Assumptions 1 and 4 yield that e Atξ , t ∈ [0, T ], is an adapted Vγ -valued
stochastic process with continuous sample paths. Hence, e Atξ , t ∈ [0, T ], is a Vγ ⊂ Vα-valued pre-
dictable stochastic process (see Proposition 3.6(ii) in [4]). Additionally, we have

sup
t∈[0,T ]

E
[∥∥e Atξ

∥∥p
Vγ

]
�

(
sup

t∈[0,T ]
∥∥e At

∥∥p
L(H)

)
E

[‖ξ‖p
Vγ

]
� |c0|p

E
[‖ξ‖p

Vγ

]
< ∞, (48)

which shows that e Atξ , t ∈ [0, T ], is indeed in Vγ ⊂ Vα .
We now concentrate on the second summand on the right-hand side of (47). First observe that the

mapping F |Vα : Vα → H given by F |Vα (v) = F (v) for all v ∈ Vα is B(Vα)/B(H)-measurable. Indeed,
the Kuratowski theorem gives Vα ∈ B(H) and B(Vα) = B(H) ∩ Vα which in turn implies the asserted
Borel measurability of F |Vα . Next Lemma 1 and Jensen’s inequality yield

t∫
0

E
[∥∥e A(t−s) F (Ys)

∥∥
Vγ

]
ds �

t∫
0

∥∥(η − A)γ e A(t−s)
∥∥

L(H)
E

[∥∥F (Ys)
∥∥

H

]
ds

� Rcγ

t∫
0

(t − s)−γ
(
1 + E

[‖Ys‖H
])

ds

�
Rcγ T (1−γ )

(1 − γ )

(
1 + sup

s∈[0,T ]
E

[‖Ys‖H
])

�
Rcγ T (1−γ )

(1 − γ )

(
1 + sup

s∈[0,T ]
‖Ys‖L p(Ω;Hα)

)
< ∞

for all t ∈ [0, T ] and all Y ∈ Vα . This shows that
∫ t

0 e A(t−s) F (Ys)ds, t ∈ [0, T ], is a well-defined Vγ -
valued (and in particular Vα-valued) adapted stochastic process for every Y ∈ Vα . Moreover, we have

∥∥∥∥∥
t2∫

e A(t2−s) F (Ys)ds −
t1∫

e A(t1−s) F (Ys)ds

∥∥∥∥∥
L p(Ω;Vr)
0 0
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�
∥∥∥∥∥

t2∫
t1

e A(t2−s) F (Ys)ds

∥∥∥∥∥
L p(Ω;Vr)

+
∥∥∥∥∥(

e A(t2−t1) − I
) t1∫

0

e A(t1−s) F (Ys)ds

∥∥∥∥∥
L p(Ω;Vr)

�
t2∫

t1

∥∥(η − A)re A(t2−s)
∥∥

L(H)

∥∥F (Ys)
∥∥

L p(Ω;H)
ds

+ ∥∥(η − A)(r−γ −ε)
(
e A(t2−t1) − I

)∥∥
L(H)

t1∫
0

∥∥e A(t1−s) F (Ys)
∥∥

L p(Ω;Vγ +ε)
ds

and Lemma 1 thus shows

∥∥∥∥∥
t2∫

0

e A(t2−s) F (Ys)ds −
t1∫

0

e A(t1−s) F (Ys)ds

∥∥∥∥∥
L p(Ω;Vr)

� cr

t2∫
t1

(t2 − s)−r
∥∥F (Ys)

∥∥
L p(Ω;H)

ds

+ c(γ +ε−r)c(γ +ε)(t2 − t1)
(γ +ε−r)

t1∫
0

(t1 − s)−(γ +ε)‖F (Ys)‖L p(Ω;H) ds

� R

(
cr(t2 − t1)

(1−r)

(1 − r)
+ c(γ +ε−r)c(γ +ε)(t2 − t1)

(γ +ε−r)T (1−γ −ε)

(1 − γ − ε)

)

·
(

1 + sup
s∈[0,T ]

‖Ys‖L p(Ω;H)

)

for all t1, t2 ∈ [0, T ] with t1 � t2, ε ∈ [0,1 − γ ), r ∈ [0, γ ] and all Y ∈ Vα . This finally shows

∥∥∥∥
t2∫

0

e A(t2−s) F (Ys)ds −
t1∫

0

e A(t1−s) F (Ys)ds

∥∥∥∥
L p(Ω;Vr)

� R

(
T (1−γ −ε)

(1 − γ − ε)

)(
1 + sup

s∈[0,T ]
‖Ys‖L p(Ω;H)

)
(cr + c(γ +ε−r)c(γ +ε))(t2 − t1)

(γ +ε−r) (49)

for all t1, t2 ∈ [0, T ] with t1 � t2, ε ∈ [0,1 − γ ), r ∈ [0, γ ] and all Y ∈ Vα . Proposition 3.6(ii) in [4]
thus yields that the stochastic process

∫ t
0 e A(t−s) F (Ys)ds, t ∈ [0, T ], has a modification in Vγ ⊂ Vα for

every Y ∈ Vα .
In the sequel we concentrate on the third summand on the right-hand side of (47). First observe

that Kuratowski’s theorem shows Vα ∈ B(H), H S(U0, Vα) ∈ B(H S(U0, H)), B(Vα) = B(H) ∩ Vα and
B(H S(U0, Vα)) = B(H S(U0, H)) ∩ H S(U0, Vα). This implies that the mapping B̃ : Vα → H S(U0, Vα)

given by B̃(v) = B(v) for all v ∈ Vα is B(Vα)/B(H S(U0, Vα))-measurable. Next Lemma 1 gives
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t∫
0

E
[∥∥e A(t−s)B(Ys)

∥∥2
H S(U0,Vγ )

]
ds

�
t∫

0

∥∥(η − A)(γ −α)e A(t−s)
∥∥2

L(H)
E

[∥∥B(Ys)
∥∥2

H S(U0,Vα)

]
ds

� 2c2|c(γ −α)|2
t∫

0

(t − s)(2α−2γ )
(
1 + E

[‖Ys‖2
Vα

])
ds

�
(

2c2|c(γ −α)|2T (1+2α−2γ )

(1 + 2α − 2γ )

)(
1 + sup

s∈[0,T ]
E

[‖Ys‖2
Vα

])
< ∞

for all t ∈ [0, T ] and all Y ∈ Vα . Therefore, Remark 1 shows that
∫ t

0 e A(t−s)B(Ys)dW s , t ∈ [0, T ], is a
well-defined Vγ -valued (and in particular Vα-valued) adapted stochastic process for every Y ∈ Vα

(cf. the heuristic calculation (6) in the introduction). Moreover, the Burkholder–Davis–Gundy type
inequality in Lemma 7.7 in [4] gives

∥∥∥∥∥
t2∫

0

e A(t2−s)B(Ys)dW s −
t1∫

0

e A(t1−s)B(Ys)dW s

∥∥∥∥∥
L p(Ω;Vr)

�
∥∥∥∥∥

t2∫
t1

e A(t2−s)B(Ys)dW s

∥∥∥∥∥
L p(Ω;Vr)

+
∥∥∥∥∥(

e A(t2−t1) − I
) t1∫

0

e A(t1−s)B(Ys)dW s

∥∥∥∥∥
L p(Ω;Vr)

� p

( t2∫
t1

∥∥e A(t2−s)B(Ys)
∥∥2

L p(Ω;H S(U0,Vr))
ds

) 1
2

+ p
∥∥e A(t2−t1) − I

∥∥
L(H,V (r−γ −ε))

( t1∫
0

∥∥e A(t1−s)B(Ys)
∥∥2

Lp(Ω;H S(U0,Vγ +ε))
ds

) 1
2

and Lemma 1 therefore shows

∥∥∥∥∥
t2∫

0

e A(t2−s)B(Ys)dW s −
t1∫

0

e A(t1−s)B(Ys)dW s

∥∥∥∥∥
L p(Ω;Vr)

� p

( t2∫
t1

∥∥(η − A)(r−α)e A(t2−s)
∥∥2

L(H)

∥∥B(Ys)
∥∥2

Lp(Ω;H S(U0,Vα))
ds

) 1
2

+ pc(γ +ε−r)c(γ +ε−α)(t2 − t1)
(γ +ε−r)

·
( t1∫

(t1 − s)(2α−2γ −2ε)
∥∥B(Ys)

∥∥2
Lp(Ω;H S(U0,Vα))

ds

) 1
2

(50)
0
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for all t1, t2 ∈ [0, T ] with t1 � t2, ε ∈ [0, 1
2 + α − γ ), r ∈ [0, γ ] and all Y ∈ Vα . In the case r ∈ [α,γ ]

we have

∥∥(η − A)(r−α)e As
∥∥

L(H)
� c(r−α)s(α−r) (51)

for all s ∈ (0, T ] (see Lemma 1) and in the case r ∈ [0,α) we have

∥∥(η − A)(r−α)e As
∥∥

L(H)
�

∥∥(η − A)(r−α)
∥∥

L(H)
c0 � c0 R (52)

for all s ∈ (0, T ]. Combining (51) and (52) shows

( t∫
0

∥∥(η − A)(r−α)e As
∥∥2

L(H)
ds

) 1
2

�
( t∫

0

(|cmax(r−α,0)|2s(2α−2r) + |cmax(r−α,0)|2 R2)ds

) 1
2

� cmax(r−α,0)R

(
t(1/2+α−r)

√
1 + 2α − 2r

+ t1/2
)

(53)

and hence

( t∫
0

∥∥(η − A)(r−α)e As
∥∥2

L(H)
ds

) 1
2

� cmax(r−α,0)R(t(1/2+α−r) + t1/2)√
1 + 2α − 2γ − 2ε

� cmax(r−α,0)R(T (1/2+α−γ −ε)t(γ +ε−r) + t1/2)√
1 + 2α − 2γ − 2ε

(54)

for all t ∈ [0, T ], ε ∈ [0, 1
2 + α − γ ) and all r ∈ [0, γ ]. Using (54) in (50) then gives

∥∥∥∥∥
t2∫

0

e A(t2−s)B(Ys)dW s −
t1∫

0

e A(t1−s)B(Ys)dW s

∥∥∥∥∥
L p(Ω;Vr)

�
((

2pcmax(r−α,0)R max(T ,1)(t2 − t1)
min(γ +ε−r, 1

2 )√
1 + 2α − 2γ − 2ε

)

+
(

pc(γ +ε−r)c(γ +ε−α) max(T ,1)(t2 − t1)
min(γ +ε−r, 1

2 )√
1 + 2α − 2γ − 2ε

))

·
(

sup
t∈[0,T ]

∥∥B(Yt)
∥∥

L p(Ω;H S(U0,Vα))

)
(55)

for all t1, t2 ∈ [0, T ] with t1 � t2, ε ∈ [0, 1
2 +α −γ ), r ∈ [0, γ ] and all Y ∈ Vα . Proposition 3.6(ii) in [4]

thus yields that
∫ t

0 e A(t−s)B(Ys)dW s , t ∈ [0, T ], has a modification in Vγ ⊂ Vα for every Y ∈ Vα and
this finally shows the well definedness of Φ : Vα → Vα in (47) (see (48), (49) and (55)).

In the next step we show that Φ : Vα → Vα is a contraction with respect to ‖ · ‖Vα,u for an
appropriate u ∈ R. The Banach fixed point theorem will then yield the existence of a unique fixed
point for Φ : Vα → Vα . More formally, Lemma 7.7 in [4] gives
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∥∥(ΦY )t − (Φ Z)t
∥∥

L p(Ω;Vα)

�
∥∥∥∥∥

t∫
0

e A(t−s)(F (Ys) − F (Zs)
)

ds

∥∥∥∥∥
L p(Ω;Vα)

+
∥∥∥∥∥

t∫
0

e A(t−s)(B(Ys) − B(Zs)
)

dW s

∥∥∥∥∥
L p(Ω;Vα)

�
t∫

0

∥∥(η − A)αe A(t−s)
∥∥

L(H)

∥∥F (Ys) − F (Zs)
∥∥

L p(Ω;H)
ds

+ p

( t∫
0

∥∥(η − A)αe A(t−s)
∥∥2

L(H)

∥∥B(Ys) − B(Zs)
∥∥2

Lp(Ω;H S(U0,H))
ds

) 1
2

and the definition of R and Lemma 1 yield

∥∥(ΦY )t − (Φ Z)t
∥∥

L p(Ω;Vα)
� Rcα

t∫
0

(t − s)−α‖Ys − Zs‖L p(Ω;H) ds

+ pRcα

( t∫
0

(t − s)−2α‖Ys − Zs‖2
Lp(Ω;H) ds

) 1
2

� Rcα

( t∫
0

(t − s)−αe−us ds

)
‖Y − Z‖V0,u

+ pRcα

( t∫
0

(t − s)−2αe−2us ds

) 1
2

‖Y − Z‖V0,u

for all t ∈ [0, T ], Y , Z ∈ Vα and all u ∈ R. The Cauchy–Schwartz inequality therefore implies

∥∥Φ(Y ) − Φ(Z)
∥∥

Vα,u � Rcα(
√

T + p)

( T∫
0

s−2αe2us ds

) 1
2

‖Y − Z‖V0,u

� Rcα(
√

T + p)

( T∫
0

e2us

s2α
ds

) 1
2

‖Y − Z‖Vα,u (56)

for all Y , Z ∈ Vα and all u ∈ R. This shows that Φ : Vα → Vα is a contraction with respect to ‖ · ‖Vα,u
for a sufficiently small u ∈ (−∞,0). Hence, there is an up to modifications unique predictable stochas-
tic process Y : [0, T ] × Ω → Vα ∈ Vα with Φ(Y ) = Y , i.e.

Yt = e Atξ +
t∫

0

e A(t−s) F (Ys)ds +
t∫

0

e A(t−s)B(Ys)dW s (57)

P-a.s. for all t ∈ [0, T ]. Moreover, (48), (49), (55) and Proposition 3.6 (ii) in [4] then show that there
exists a predictable modification X : [0, T ] × Ω → Vγ of Y : [0, T ] × Ω → Vα .
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Additionally, note that the inequality ‖B(v)‖p
H S(U0,Hα) � 2pcp(1 + ‖v‖p

Hα
) for all v ∈ Hα (see As-

sumption 3) implies

sup
t∈[0,T ]

E
[∥∥B(Xt)

∥∥p
H S(U0,Vα)

]
� 2pcp

(
1 + sup

t∈[0,T ]
E

[‖Xt‖p
Vα

])
< ∞. (58)

It remains to establish the temporal continuity properties asserted in Theorem 1. To this end note
that Lemma 1 gives

∥∥e At2ξ − e At1ξ
∥∥

L p(Ω;Vr)
= ∥∥e At1(η − A)(r−γ )

(
e A(t2−t1) − I

)
(η − A)γ ξ

∥∥
L p(Ω;H)

�
∥∥e At1

∥∥
L(H)

∥∥(η − A)(r−γ )
(
e A(t2−t1) − I

)∥∥
L(H)

‖ξ‖L p(Ω;Vγ )

� c0c(γ −r)‖ξ‖L p(Ω;Vγ )(t2 − t1)
(γ −r) (59)

for all t1, t2 ∈ [0, T ] with t1 � t2 and all r ∈ [0, γ ]. Combining (49), (55) and (59) then yields (8).

Finally, (48), (49) and (55) show that Xt , t ∈ [0, T ], is continuous with respect to (E[‖ · ‖p
Vγ

]) 1
p . This

completes the proof of Theorem 1. �
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[3] Z. Brzeźniak, J.M.A.M. van Neerven, M.C. Veraar, L. Weis, Itô’s formula in UMD Banach spaces and regularity of solutions of
the Zakai equation, J. Differential Equations 245 (1) (2008) 30–58.

[4] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia Math. Appl., vol. 44, Cambridge University
Press, Cambridge, 1992.

[5] P. Kotelenez, A submartingale type inequality with applications to stochastic evolution equations, Stochastics 8 (2)
(1982/1983) 139–151.

[6] N.V. Krylov, A W n_2-theory of the Dirichlet problem for SPDEs in general smooth domains, Probab. Theory Related
Fields 98 (3) (1994) 389–421.

[7] N.V. Krylov, B.L. Rozovskiı̆, Stochastic evolution equations, in: Current Problems in Mathematics, vol. 14, Akad. Nauk SSSR
Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1979, pp. 71–147, 256 (in Russian).

[8] A. Lunardi, Interpolation Theory, second ed., Appunti. Sc. Norm. Super. Pisa (N. S.) (Lecture Notes. Scuola Normale Superiore
di Pisa (New Series)), Edizioni della Normale, Pisa, 2009.

[9] C. Prévôt, M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics,
vol. 1905, Springer-Verlag, Berlin, 2007.

[10] M. Renardy, R.C. Rogers, An Introduction to Partial Differential Equations, Texts Appl. Math., vol. 13, Springer-Verlag, New
York, 1993.

[11] B.L. Rozovskiı̆, Stochastic Evolution Systems, Math. Appl. (Soviet Ser.), vol. 35, Kluwer Academic Publishers Group, Dor-
drecht, 1990, Linear theory and applications to nonlinear filtering, translated from the Russian by A. Yarkho.

[12] G.R. Sell, Y. You, Dynamics of Evolutionary Equations, Appl. Math. Sci., vol. 143, Springer-Verlag, New York, 2002.
[13] S. Tindel, C.A. Tudor, F. Viens, Sharp Gaussian regularity on the circle, and applications to the fractional stochastic heat

equation, J. Funct. Anal. 217 (2) (2004) 280–313.



136 A. Jentzen, M. Röckner / J. Differential Equations 252 (2012) 114–136
[14] H. Triebel, Theory of Function Spaces. II, Monogr. Math., vol. 84, Birkhäuser Verlag, Basel, 1992.
[15] L. Tubaro, An estimate of Burkholder type for stochastic processes defined by the stochastic integral, Stoch. Anal. Appl. 2 (2)

(1984) 187–192.
[16] J.M.A.M. van Neerven, M.C. Veraar, L. Weis, Stochastic integration in UMD Banach spaces, Ann. Probab. 35 (4) (2007) 1438–

1478.
[17] J.M.A.M. van Neerven, M.C. Veraar, L. Weis, Stochastic evolution equations in UMD Banach spaces, J. Funct. Anal. 255 (4)

(2008) 940–993.
[18] D. Werner, Funktionalanalysis, extended ed., Springer-Verlag, Berlin, 2005.
[19] X. Zhang, Regularities for semilinear stochastic partial differential equations, J. Funct. Anal. 249 (2) (2007) 454–476.


	Regularity analysis for stochastic partial differential equations with nonlinear multiplicative trace class noise
	1 Introduction
	2 Setting and assumptions
	3 Main result
	4 Examples
	4.1 A one dimensional stochastic reaction diffusion equation
	4.2 More regularity for a one dimensional stochastic reaction diffusion equation
	4.3 Stochastic reaction diffusion equations with commutative noise

	5 Proof of Theorem 1
	Acknowledgments
	References


