88,198 research outputs found

    Remote Data Retrieval for Bioinformatics Applications: An Agent Migration Approach

    Get PDF
    Some of the approaches have been developed to retrieve data automatically from one or multiple remote biological data sources. However, most of them require researchers to remain online and wait for returned results. The latter not only requires highly available network connection, but also may cause the network overload. Moreover, so far none of the existing approaches has been designed to address the following problems when retrieving the remote data in a mobile network environment: (1) the resources of mobile devices are limited; (2) network connection is relatively of low quality; and (3) mobile users are not always online. To address the aforementioned problems, we integrate an agent migration approach with a multi-agent system to overcome the high latency or limited bandwidth problem by moving their computations to the required resources or services. More importantly, the approach is fit for the mobile computing environments. Presented in this paper are also the system architecture, the migration strategy, as well as the security authentication of agent migration. As a demonstration, the remote data retrieval from GenBank was used to illustrate the feasibility of the proposed approach

    Cost-Effective Location Management for Mobile Agents on the Internet

    Get PDF
    Many mobile agent system-related services and applications require interacting with a mobile agent by passing messages. However, an agent’s mobility raises several challenges in delivering messages to a mobile agent accurately. Consisting of tracking and message delivery phases, most mobile agent location management schemes create or receive many update messages and interaction messages to ensure the effectiveness of the schemes. In addition to downgrading the overall performance of a mobile agent location management scheme, excessive transmission of messages increases the network load. The migration locality of a mobile agent and the interaction rate between mobile agents significantly affect the performance of a mobile agent location management scheme with respect to location management cost. This work presents a novel Dual Home based Scheme (DHS) that can lower the location management costs in terms of migration locality and interaction rate. While the DHS scheme uniquely adopts dual home location management architecture, a selective update strategy based on that architecture is also designed for cost-effective location management of mobile agents. Moreover, DHS is compared with available schemes based on formulations and simulation experiments from the perspective of location management costs. Simulation results demonstrate that the proposed DHS scheme performs satisfactorily in terms of migration locality and interaction rate

    A Mobile Agent Framework to Support Parallel Computing: Application to Multi-product Planning and Scheduling Problems

    Get PDF
    This paper focuses on an extensible framework for the development of parallel/distributed population-based algorithms. This framework uses mobile agents launched into different hosts on available networked PCs and cooperating among them to solve large combinatorial problems efficiently. The execution environment used to realize our framework is based on the JADE technology. In addition, we define a new information exchange strategy based on a dynamic migration window method and a selective migration model. A parameters adaptation model is also proposed. This model is used to adjust different parameters/operators of the genetic algorithm executed by each mobile agent. The proposed framework has been experimented on an extended set of Earliness and Tardiness Production Scheduling and Planning Problem (ETPSP). Several experiments are carried out on different computer networks of different sizes. Results obtained show the advantages and efficiency of our approach

    An approach to rollback recovery of collaborating mobile agents

    Get PDF
    Fault-tolerance is one of the main problems that must be resolved to improve the adoption of the agents' computing paradigm. In this paper, we analyse the execution model of agent platforms and the significance of the faults affecting their constituent components on the reliable execution of agent-based applications, in order to develop a pragmatic framework for agent systems fault-tolerance. The developed framework deploys a communication-pairs independent check pointing strategy to offer a low-cost, application-transparent model for reliable agent- based computing that covers all possible faults that might invalidate reliable agent execution, migration and communication and maintains the exactly-one execution property

    CODEWEAVE: exploring fine-grained mobility of code

    Get PDF
    This paper is concerned with an abstract exploration of code mobility constructs designed for use in settings where the level of granularity associated with the mobile units exhibits significant variability. Units of mobility that are both finer and coarser grained than the unit of execution are examined. To accomplish this, we take the extreme view that every line of code and every variable declaration are potentially mobile, i.e., it may be duplicated or moved from one program context to another on the same host or across the network. We also assume that complex code assemblies may move with equal ease. The result is CODEWEAVE, a model that shows how to develop new forms of code mobility, assign them precise meaning, and facilitate formal verification of programs employing them. The design of CODEWEAVE relies greatly on Mobile UNITY, a notation and proof logic for mobile computing. Mobile UNITY offers a computational milieu for examining a wide range of constructs and semantic alternatives in a clean abstract setting, i.e., unconstrained by compilation and performance considerations traditionally associated with programming language design. Ultimately, the notation offered by CODEWEAVE is given exact semantic definition by means of a direct mapping to the underlying Mobile UNITY model. The abstract and formal treatment of code mobility offered by CODEWEAVE establishes a technical foundation for examining competing proposals and for subsequent integration of some of the mobility constructs both at the language level and within middleware for mobility

    Mobile object location discovery in unpredictable environments

    Get PDF
    Emerging mobile and ubiquitous computing environments present hard challenges to software engineering. The use of mobile code has been suggested as a natural fit for simplifing software development for these environments. However, the task of discovering mobile code location becomes a problem in unpredictable environments when using existing strategies, designed with fixed and relatively stable networks in mind. This paper introduces AMOS, a mobile code platform augmented with a structured overlay network. We demonstrate how the location discovery strategy of AMOS has better reliability and scalability properties than existing approaches, with minimal communication overhead. Finally, we demonstrate how AMOS can provide autonomous distribution of effort fairly throughout a network using probabilistic methods that requires no global knowledge of host capabilities

    Reliability of Mobile Agents for Reliable Service Discovery Protocol in MANET

    Full text link
    Recently mobile agents are used to discover services in mobile ad-hoc network (MANET) where agents travel through the network, collecting and sometimes spreading the dynamically changing service information. But it is important to investigate how reliable the agents are for this application as the dependability issues(reliability and availability) of MANET are highly affected by its dynamic nature.The complexity of underlying MANET makes it hard to obtain the route reliability of the mobile agent systems (MAS); instead we estimate it using Monte Carlo simulation. Thus an algorithm for estimating the task route reliability of MAS (deployed for discovering services) is proposed, that takes into account the effect of node mobility in MANET. That mobility pattern of the nodes affects the MAS performance is also shown by considering different mobility models. Multipath propagation effect of radio signal is considered to decide link existence. Transient link errors are also considered. Finally we propose a metric to calculate the reliability of service discovery protocol and see how MAS performance affects the protocol reliability. The experimental results show the robustness of the proposed algorithm. Here the optimum value of network bandwidth (needed to support the agents) is calculated for our application. However the reliability of MAS is highly dependent on link failure probability

    Security Policies as Membranes in Systems for Global Computing

    Get PDF
    We propose a simple global computing framework, whose main concern is code migration. Systems are structured in sites, and each site is divided into two parts: a computing body, and a membrane which regulates the interactions between the computing body and the external environment. More precisely, membranes are filters which control access to the associated site, and they also rely on the well-established notion of trust between sites. We develop a basic theory to express and enforce security policies via membranes. Initially, these only control the actions incoming agents intend to perform locally. We then adapt the basic theory to encompass more sophisticated policies, where the number of actions an agent wants to perform, and also their order, are considered
    • …
    corecore