3,151 research outputs found

    A QoS-Control Architecture for Object Middleware

    Get PDF
    This paper presents an architecture for QoS-aware middleware platforms. We present a general framework for control, and specialise this framework for QoS provisioning in the middleware context. We identify different alternatives for control, and we elaborate the technical issues related to controlling the internal characteristics of object middleware. We illustrate our QoS control approach by means of a scenario based on CORBA

    Byzantine Fault Tolerance for Nondeterministic Applications

    Full text link
    All practical applications contain some degree of nondeterminism. When such applications are replicated to achieve Byzantine fault tolerance (BFT), their nondeterministic operations must be controlled to ensure replica consistency. To the best of our knowledge, only the most simplistic types of replica nondeterminism have been dealt with. Furthermore, there lacks a systematic approach to handling common types of nondeterminism. In this paper, we propose a classification of common types of replica nondeterminism with respect to the requirement of achieving Byzantine fault tolerance, and describe the design and implementation of the core mechanisms necessary to handle such nondeterminism within a Byzantine fault tolerance framework.Comment: To appear in the proceedings of the 3rd IEEE International Symposium on Dependable, Autonomic and Secure Computing, 200

    Context-aware Authorization in Highly Dynamic Environments

    Get PDF
    Highly dynamic computing environments, like ubiquitous and pervasive computing environments, require frequent adaptation of applications. Context is a key to adapt suiting user needs. On the other hand, standard access control trusts users once they have authenticated, despite the fact that they may reach unauthorized contexts. We analyse how taking into account dynamic information like context in the authorization subsystem can improve security, and how this new access control applies to interaction patterns, like messaging or eventing. We experiment and validate our approach using context as an authorization factor for eventing in Web service for device (like UPnP or DPWS), in smart home security

    Distributed Simulation of Heterogeneous and Real-time Systems

    Get PDF
    This work describes a framework for distributed simulation of cyber-physical systems (CPS). Modern CPS comprise large numbers of heterogeneous components, typically designed in very different tools and languages that are not or not easily composeable. Evaluating such large systems requires tools that integrate all components in a systematic, well-defined manner. This work leverages existing frameworks to facilitate the integration offers validation by simulation. A framework for distributed simulation is the IEEE High-Level Architecture (HLA) compliant tool CERTI, which provides the infrastructure for co-simulation of models in various simulation environments as well as hardware components. We use CERTI in combination with Ptolemy II, an environment for modeling and simulating heterogeneous systems. In particular, we focus on models of a CPS, including the physical dynamics of a plant, the software that controls the plant, and the network that enables the communication between controllers. We describe the Ptolemy extensions for the interaction with HLA and demonstrate the approach on a flight control system simulation

    Semantic-based policy engineering for autonomic systems

    No full text
    This paper presents some important directions in the use of ontology-based semantics in achieving the vision of Autonomic Communications. We examine the requirements of Autonomic Communication with a focus on the demanding needs of ubiquitous computing environments, with an emphasis on the requirements shared with Autonomic Computing. We observe that ontologies provide a strong mechanism for addressing the heterogeneity in user task requirements, managed resources, services and context. We then present two complimentary approaches that exploit ontology-based knowledge in support of autonomic communications: service-oriented models for policy engineering and dynamic semantic queries using content-based networks. The paper concludes with a discussion of the major research challenges such approaches raise

    Design of a framework for automated service mashup creation and execution based on semantic reasoning

    Get PDF
    Instead of building self-contained silos, applications are being broken down in independent structures able to offer a scoped service using open communication standards and encoding. Nowadays there is no automatic environment for the construction of new mashups from these reusable services. At the same time the designer of the mashup needs to establish the actual locations for deployment of the different components. This paper introduces the development of a framework focusing on the dynamic creation and execution of service mashups. By enriching the available building blocks with semantic descriptions, new service mashups are automatically composed through the use of planning algorithms. The composed mashups are automatically deployed on the available resources making optimal use of bandwidth, storage and computing power of the network and server elements. The system is extended with dynamic recovery from resource and network failures. This enrichment of business components and services with semantics, reasoning, and distributed deployment is demonstrated by means of an e-shop use case
    corecore