
Design of a Framework for Automated Service Mashup Creation and Execution
Based on Semantic Reasoning

Anna Hristoskova, Bruno Volckaert, Filip De Turck, Bart Dhoedt

IBBT, Department of Information Technology
Ghent University

9050 Ghent, Belgium
{Anna.Hristoskova|Bruno.Volckaert|Filip.DeTurck|Bart.Dhoedt}@intec.UGent.be

Abstract—Instead of building self-contained silos, applica-
tions are being broken down in independent structures able to
offer a scoped service using open communication standards and
encoding. Nowadays there is no automatic environment for the
construction of new mashups from these reusable services. At
the same time the designer of the mashup needs to establish the
actual locations for deployment of the different components.

This paper introduces the development of a framework
focusing on the dynamic creation and execution of service
mashups. By enriching the available building blocks with
semantic descriptions, new service mashups are automatically
composed through the use of planning algorithms. The com-
posed mashups are automatically deployed on the available
resources making optimal use of bandwidth, storage and
computing power of the network and server elements. The
system is extended with dynamic recovery from resource and
network failures. This enrichment of business components and
services with semantics, reasoning, and distributed deployment
is demonstrated by means of an e-shop use case.

Keywords-Service Mashups; Semantic Web; planning algo-
rithms; runtime adaptation; Quality of Service

I. INTRODUCTION

Dynamics and efficiency are concepts of the future. The

World Wide Web is undergoing an evolution from a static

environment to a dynamic world in which service mashups

will play a central role. A service mashup is a new service

that combines functionality or content from existing sources,

where the service offered by the mashup is greater than

the individual participating components. These sources can

be Web services, software components capable of being

accessed via standard network protocols such as but not

limited to SOAP over HTTP.

The arrival of these services to the ICT scene revolution-

ized the software architecture in the public Internet space

but also in the enterprise sector. For businesses, creating a

catalogue of reusable components means agile creation of

new services and faster adaptation to the changing business

environment. This gave birth to Software-Oriented Architec-

tures (SOAs) [1] composed of software components, more

specifically Web services. The current infrastructure for Web

services has however as downside that service interfaces

specify only the syntax of the provided operations without

offering support for the semantics.

This issue is covered by the Semantic Web [2], [3] em-

ploying ontologies and semantic languages offering several

degrees of expressiveness to describe concepts and Web

services. Ontologies focus on specifying inputs, outputs, pre-

and post conditions (IOPEs), and non-functional properties

of services. The interaction model of the semantic languages

supports choreography and/or peer-to-peer (P2P) orchestra-

tion for Web services. It enables users and software agents to

automatically discover, invoke, compose, and monitor Web

resources offering services, under specified constraints.

Using the semantic technologies different reasoning meth-

ods with varying complexity can be applied on Web services.

At the lower level are the Matchers [4], comparing service

interfaces and assigning a score depending on the extent to

which services meet the requested service profile. At the

level above one can find the Composers [5]–[8] adopting

AI planning to accomplish a complete service composition

resolving a defined goal. The highest level belongs to the

Middle Agents [9]. These entities not only execute a fully

automatic composition of Web services, but also take care

of tasks like transformation of questions and answers, and

Quality of Service (QoS).

Building on these principles, this paper proposes a mashup

creation and execution environment allowing for the con-

struction of new services departing from available function-

ality found on the Web or within enterprises. The developed

framework disposes of a user interface (UI) for the manage-

ment of semantically annotated services and the definition of

user requests. Planning algorithms are designed constructing

service mashups achieving these user requests. An important

aspect is the runtime behavior of the framework anticipating

changes (new services, failure, etc) and personalizing each

request through business logic rules defined by the user.

The remainder of this paper is structured as follows:

Section II presents the general concept of the mashup

platform. A discussion of the current research in the field is

given in Section III. Section IV exposes the development

process of the platform which is evaluated based on an

e-shop use case analyzed in Section V. Finally, the main

conclusions are presented in Section VI and new possibilities

for enhancing the platform are explored.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55823211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Semantic Service
Composer

Execution
Engine

Planning
Engine

Visualiser

Figure 1. Dynamic Composer for Web Services

II. GENERAL CONCEPT

The main objective of this research is to design a

framework for supporting at runtime creation and execution

of new service mashups without the intervention of and

programming by the ICT department. Starting with a brief

description of the previous system, the Dynamic Composer

for Web services [10], the general idea of the developed

framework is outlined. Section IV presents a more detailed

discussion on its architecture.

A. Dynamic Composer for Web services

Figure 1 presents the architecture of the Dynamic Com-

poser for Web services built around the Semantic Service
Composer, which in turn communicates with the Visualiser,
Planning Engine and Execution Engine.

The Semantic Service Composer processes initial state,

goal and service descriptions annotated using OWL-S and

based on semantic matching of service outputs to inputs

and service effects to preconditions constructs a semantic

description of the composite service mashup. The automatic

composition is covered through QoS-aware planning algo-

rithms implemented by the Planning Engine. Afterwards,

this composition is presented by the Visualiser, enabling the

user to manually tune it to his needs and change user pref-

erences such as planning algorithm, execution method (e.g.,

sequence, parallel), etc. Subsequently, the Execution Engine
handles the execution of the service mashup. In case of a

failure, a recovery procedure is set in motion constructing

an alternative execution keeping state information in mind.

B. Mashup Creation and Service Orchestration

The key difference between the Dynamic Composer and

the presented platform in this article is the partitioning

of the Planning Engine into a Workflow Reasoner and

a Service Mapper. Instead of the immediate creation of

a concrete service mashup from a defined goal, first an

abstract composition is created by the Workflow Reasoner
using the semantic service descriptions. The Service Mapper
links the semantic mashup components to concrete service

instances offering minimum required QoS (e.g., execution

time, cost). An Execution Environment component is added

acting as a blackboard connecting information processed by

the Reasoner, Mapper and Execution Engine. In this way

the mashup in construction is at runtime tuned by the three

components and adapted to user defined business logic rules.

The UI was improved with an administrator’s interface

for the management of the service pool and extended with a

logging component continually sending status updates of the

different request processing stages. The user of the system

may be an administrator or an end user. The service pool can

be defined by the administrator but the end user is also able

to add his own services. The same holds for the definition

of a request. The idea of this platform is to transform into a

software agent making it possible for the end user to define

his own requests and select his preferred services.

III. RELATED WORK

As mentioned in Section I the Semantic Web offers more

access not only to content but also to Web services and

resources. Since the information is presented in a formal

way, a computer can reason about it and new knowledge can

be inferred. This way the wide range of business components

can be dynamically and more efficiently combined through

semantic reasoning, accomplishing new service mashups.

Today there are a number of popular standards and imple-

mentations [11], such as BPMN, WFF, BPEL4WS, XLANG,

WSFL which define workflows. However they still exhibit a

number of shortcomings: no automatic or dynamic deploy-

ment support, limited reliability guarantees, etc.

Several research projects among which some within the

European Union Sixth Framework Programme for Research

and Technological Development aim at creating platforms

supporting the creation, management and execution of ser-

vice mashups. The SODIUM [12] and OPUCE [13] projects

consist of a set of languages and tools as well as related

middleware, for the creation and execution of workflows

composed of heterogeneous services. The MoSCA [14]

middleware facilitates the development and deployment of

workflows and provides for at runtime selection of the

service providers that are capable of collectively delivering

the composite service with the highest reliability. Unforeseen

changes to such patterns are monitored, potentially trigger-

ing re-bindings during service execution.

Although these platforms focus on the runtime behavior

of the composite services, the design time composition is

usually a manually created workflow. Platforms like IN-

FRAWEBS [15] and Amigo [16] propose approaches, in

which the process of finding appropriate services is guided

by algorithms for decomposition of user goals into sub-goals

and discovering the existing services able to satisfy these

sub-goals. MashWeb [17] goes further than goal matching

through the creation of dataflows controlling the output-input

flows and workflows controlling the execution sequence of

the specific services.

The presented platform adopts mashup creation and ex-

ecution techniques from both worlds. Planning algorithms

generate a service mashup starting from goal conditions

through matching of service effects to required service pre-

conditions. The platform automatically defines the service

providers offering the minimum defined QoS for execution.

Several iterations of mashup configuration and execution

are possible as intermediary results are used as feedback

to further tune the designed service mashup. The novelty of

the platform is the use of business logic rules defined by the

user which enable further tuning and personalization of the

user’s request.

IV. PLATFORM DESIGN AND IMPLEMENTATION

This section focuses on the design of the presented plat-

form. Firstly, a discussion on the different building blocks of

a semantic mashup is presented. Afterwards, we look more

closely into the different modules needed for the mashup

creation and execution process.

A. Mashup building blocks

There are two types of components present in the sys-

tem: abstract semantic types and concrete service instances.

Existing services instances are enriched with semantic an-

notations using OWL-S. As several semantically equivalent

services (matching inputs, outputs, and if necessary precon-

ditions and effects) can exist, their semantic descriptions are

grouped into one semantic type referring to all the equivalent

service instances.

During the reasoning process, the semantic types are

used to construct the composition of a new mashup type.

Hereafter, the mapping process selects the concrete ser-
vice instances corresponding to the utilized semantic types,

which are capable of offering minimum required QoS.

1) Semantic Types: The semantic types used by the

system are goal types, service types and mashup types.

The intention is to find a common way of presenting their

semantic description (IOPEs) so that the Workflow Reasoner

has a general way of working with them.

• The goal type defines initial (inputs and valid condi-

tions) and goal (required outputs and conditions) state

information of a workflow provided by the user. Based

on these, a mashup type is composed out of semantic
types taking the initial state information as input while

reaching the specified goal state.

• The service type consists of a definition of its IOPEs

in terms of OWL concepts and properties. Services

with effects are world-altering services. In contrast

with information providing services (only outputs, e.g.,

sensors) which can be executed at any time especially

during the planning process, world-altering services are

only executed at composition execution time as they

alter the state of the world.

• The mashup type is a composite service description

using control constructs that can be represented by a

goal type. To the outside world, it is just another service

with its IOPEs. In this way, this new service type is

used as part of other mashup compositions.

All three semantic types are expressed in the same manner

by defining their IOPEs. In this way a flexible platform is

created where a semantic mashup is used as a building block

for other mashup constructions.

2) Service Instances: A semantic type is an abstract

entity. In order for a service to be executed, at least one

concrete service instance must be available at service re-

quest time. After the reasoning process, the semantic types
are mapped to the concrete service instances, collectively

delivering the composite service mashup, with a defined

minimum of QoS.

B. Architectural Modules

Figure 2 presents the main components of the architecture.

All requests (goal types and if necessary business logic rules)

pass through the Frontend and are handled by the Core. The

requests are sent to the Request Scheduler which in turn

dispatches them to the Request Portal for further mashup

creation and execution.

The Request Portal keeps track of the whole reasoning,

mapping and execution process for a single user request.

This object presents the user with the composite mashup, the

utilized resources for execution, intermediary results, etc.

The Workflow Reasoner accepts a semantic type together

with case specific business logic rules and creates a mashup
type. This semantic type can be a defined goal, a service

type or a mashup type as they are all expressed in terms

of IOPEs. The following functionality is provided by the

Workflow Reasoner:

• Mapping of parts of a type description to existing

service types. This is useful during mashup type recon-

figuration as we might not want to perform reasoning

on the whole mashup again.

• Construction of a mashup type through semantic

matching of IOPEs: a service provides outputs used

as inputs for another service and effects accomplishing

preconditions required for the execution of services.

• Adaptation of the designed mashup to user defined

business logic rules. These rules are defined using

SWRL and OWL concepts.

• Mashup types can be cached for reuse. In case of

repeating goals the performance of the reasoning is

improved and the mashup can be used as building block

for new compositions.

Frontend

Backend

Execution Environment

Workflow Reasoner

Request Scheduler

Execution Engine

Service Mapper

Service ManagerRequest Portal

Core

Figure 2. Main building blocks of the mashup creation and execution environment.

The Service Mapper instantiates the mashup type by

mapping service types to service instances keeping in mind

the required QoS (in this case minimal execution time and

cost). The Mapper should be able to execute alternative

service instances depending on the existing network and load

of the available resources.

The QoS of a specific service instance consists of a QoS

type, QoS Value, QoS Comparator. A QoS Type can be

the cost for executing a service, the execution time, etc.

Each QoS Type disposes of a QoS Value and a specific QoS

Comparator for comparing the actual QoS Values.

The Execution Engine handles the execution of the

mashup through the execution of the separate service in-

stances. State information of the mashup is stored in case of

failure in the Execution Environment. This state information

is present in the effects of the world-altering services.

The Execution Environment acts as storage for business

logic rules, inputs, goals, results, composite mashups, etc.

Data is gathered by the Workflow Reasoner and Service

Mapper to guide the reasoning and mapping process of

the new service mashup at design and runtime. In case

information-providing services should be evaluated during

the construction of the mashup, the Execution Engine stores

their intermediary results in the Execution Environment.

State information from world-altering services is stored in a

similar fashion during the effective execution of the mashup

in case of failure. Figure 3 presents a basic matching princi-

ple where services are executed using inputs and conditions

from the Execution Environment and service effects and

outputs are produced and added to this Environment. This

results into a dynamic system where new knowledge is

evaluated and added at runtime.

C. Scenario description

The composition and execution process is presented in

Figure 4 using a pipes & filter flow. Starting from a definition

of a general goal, an abstract mashup type is constructed by

the Workflow Reasoner providing the needed calculations

for achieving this goal. Next the Service Mapper maps the

different components of the composition to concrete service

Figure 3. Inference through matching of service preconditions and inputs
and returning service effects and outputs.

Figure 4. Workflow of the composition and execution process.

instances keeping in mind QoS constraints and requirements.

The whole is executed by the Execution Engine where the

recovery procedure kicks in in case of external errors, such

as network failure or a service delivering erroneous results.

The reasoning and mapping process gather the needed

information through the Execution Environment where case

specific business logic rules and intermediary results are

stored for further adaptation of the composite mashup.

A Request Portal keeps track of the whole process for a

single user request. Information stored into this module is

used to present the service mashup to the user, which he

can further tune to his specific needs, present the utilized

resources for execution, return intermediary results, etc.

The idea for this system is to resemble an expert system.

This offers a framework able to dynamically react at runtime

to changing context, optimizing the composition and execu-

tion process. This divides the reasoning process into two

steps. First through backward chaining a general composi-

tion of service types is achieved specifically resolving user

defined goals. A forward chaining procedure further tunes

this composition utilizing the defined business logic rules

and the intermediary results of already executed information-

providing services.

V. USE CASE EXAMPLE

This section describes functionality provided by an e-

shop system including the different iteration steps of the

reasoning and execution process. For this purpose an e-shop

ontology was created defining the different concepts needed

for the annotation of the service IOPEs. Next, we developed

the e-shop services needed for the use case and from their

WSDL interfaces created OWL-S descriptions using the e-

shop ontology.

A. E-shop description

A sale consists of a customer buying one or more prod-

ucts. Traditionally, this means that:

1) The customer orders the products, selected from a list

of possible products (the catalogue).

2) An amount of the customer’s money, equal to the

price, is transferred to the e-shop.

3) The products are delivered to the customer. This can

happen in several ways:

• Digital products, such as music and software, are

conveyed over the Internet.

• Physical products are transported to the cus-

tomer’s delivery address or to a proxy point of the

customer’s choice (usually close to his location)

where they can be collected.

B. Design of the e-shop workflow

1) Trigger: A potential customer browses to the e-shop

handled by the service WebShopCatalogue.

2) Initial state: The e-shop and customer info is known.

This includes account information necessary to make pay-

ments to the e-shop.

3) Goal description: The composition is successfully

executed, when the following effects are reached:

• The customer selected product(s).

• The customer paid the price of the product(s).

• The product(s) is(are) delivered to the customer.

4) Design of the workflow: Figure 5 presents a workflow

of the different e-shop services from selection to payment

and delivery of the selected products. The effect of the

selection is implied in the output of the WebShopCatalogue,

which is the set of selected products. If the customer

fails to select one or more products, the execution of

the composition is prematurely ended. Otherwise a FOR
step is required iterating over each product. A decision is

made whether the product is in stock or should be ordered

Web Shop
Catalogue

Order

Delivery To ProxyPayment Delivery With
Payment On Delivery

Download Delivery Pick Up

For all products

Proxy Payment

Y N
Product in stock

Delivery method

END:
Paid and Delivered

END:
Nothing bought

START:
User browses to web shop

Check Stock

Empty product set
Y N

DIGITAL PHYSICAL
Product type

Figure 5. Workflow of an e-shop.

followed by payment and delivery. A Delivery method is

added having as result one or more payment and delivery

options in which, according to the configurable rules, the

purchase is made. This result is not known at composition

time but can be defined through business logic rules by

the user, being a customer or an e-shop manager. If the

result is one delivery method defined by the e-shop manager,

the purchase is made in that way. If it is more than one,

the customer chooses amongst all the possibilities and the

execution path depends on his decision. The result of this

interactive choice cannot always be known at composition

time: the customer makes a choice after being presented with

the different execution paths. Consequently, the complete e-

shop composition exposes a decision point with multiple

possible branches. When the composition is executed, the

correct branch is chosen and followed.

C. Automatic optimization of the workflow execution

Before execution, the e-shop workflow is further pruned

through the execution of information-providing services. De-

pending on their output, further decisions are made, reducing

the execution paths. For example, by executing the Web-
ShopCatalogue service, the Reasoner decides whether there

are any selected products and if they are digital or physical.

Then, the CheckStock service verifies whether the physical

products if any are in stock. This way the Download or

Delivery and/or Order services are automatically removed.

D. Runtime adaptation of the workflow

In order to execute the e-shop composition, the e-shop

manager needs to define business logic rules expressing

which Payment and Delivery method should be chosen or

the customer should choose from the offered possibilities.

Once the choice is made, the reasoning process configures

the e-shop composition automatically at runtime through

the removal of the decision point and the selection of only

one Payment and Delivery path. For example if one selects

Payment followed by Delivery all the other options like

Payment on Delivery and Delivery to Proxy are excluded.

VI. CONCLUSION AND FUTURE WORK

This paper focuses on the study of an framework for

dynamic composition and execution of the building blocks of

service mashups. Based on semantic descriptions of Web ser-

vices, reasoning algorithms are developed for automatically

composing new service mashups realizing defined goals.

These algorithms construct for a planning system satisfying

several QoS constraints and requirements. This system is

optimized for the dynamic response to changing context

such as new business logic, failure or overload of network

elements or services. We implemented an e-shop system to

validate this framework and illustrate the workflow execution

optimizations.

In the future the planning and execution system will be

extended with a distributed deployment component which

will execute the different service instances depending on

the available resources making optimal use of bandwidth,

storage and computing power of the network and server

elements. Furthermore, techniques will be studied to take

into account trends in user and resource behavior, in order

to optimally design context-aware service mashups.

ACKNOWLEDGMENT

Anna Hristoskova would like to thank the Special Re-

search Fund of Ghent University (BOF) for financial support

through her PhD grant. This work is partly funded by

WTEPlus, an IWT project on the definition of an open archi-

tecture that allows the creation, sharing and composition of

service mashups, seamlessly combining functionality found

on the Web, the enterprise or within the ’walled garden’ of

the telecom operator.

REFERENCES

[1] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
”Service-Oriented Computing: State of the Art and Research
Challenges”, IEEE Computer Society, 2007, 40(11): 38-45.

[2] Semantic Web, ”Providing a common framework that allows
data to be shared and reused across application, enterprise, and
community boundaries.”, http://www.w3.org/2001/sw/ (online)
08.02.2010.

[3] T. Berners-Lee, J. Hendler, and O. Lassila, ”The Semantic
Web: A New Form Of Web Content That Is Meaningful To
Computers Will Unleash A Revolution Of New Possibilities”,
Journal of the Scientific American, 2001, 284(5): 34-43.

[4] M. Klusch, B. Fries, and K. Sycara, ”Automated Semantic Web
Service Discovery with OWLS-MX”, In Proceedings of 5th
International Conference on Autonomous Agents and Multi-
Agent Systems, AAMAS 2006.

[5] E. Sirin, B. Parsia, and J. Hendler, ”Filtering and Selecting
Semantic Web Services with Interactive Composition Tech-
niques”, IEEE Intelligent Systems, 19(4):42-49, 2004.

[6] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau, ”HTN
planning for web service composition using SHOP2”, Journal
of Web Semantics, 1(4):377-396, 2004.

[7] M. Klusch, A. Gerber, and M. Schmidt, ”Semantic Web Ser-
vice Composition Planning with OWLS-Xplan”, Proceedings
of the First International AAAI Fall Symposium on Agents
and the Semantic Web, 2005.

[8] S. McIlraith and T. C. Son, ”Adapting Golog for Composition
of Semantic Web Services”, Eighth International Conference
on Principles of Knowledge Representation and Reasoning, pp.
482-496, 2002.

[9] A. Lopes and L. Botelho, ”Executing Semantic Web Services
with a Context-Aware Service Execution Agent”, SOCASE
2007 (AAMAS Workshop) held in Honolulu, HW, United
States of America, 2007.

[10] A. Hristoskova, B. Volckaert, and F. De Turck, ”Dynamic
Composition of Semantically Annotated Web Services through
QoS-Aware HTN Planning Algorithms”, Proceedings of the
Fourth International Conference on Internet and Web Applica-
tions and Services (ICIW 2009), pp. 377-382.

[11] W. M. P. Van der Aalst, M. Dumas, and A. H. M. ter Hofstede,
”Web service composition languages: Old wine in new bottles”,
Proceeding of the 29th EUROMICRO Conference: New Waves
in System Architecture, pp. 298305, 2003.

[12] A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou, C. Pau-
tasso, T. Heinis, R. Grønmo, H. Hoff, A. J. Berre, M. Glittum,
and S. Topouzidou, ”Developing scientific workflows from
heterogeneous services”, ACM Sigmod Record, 35(2):pp. 22-
28, 2006.

[13] J. C. Yelmo, R. Trapero, J. M. del Álamo, J. Siene,
M. Drewniok, I. Ordás, and K. McCallum, ”User-Driven
Service Lifecycle Management - Adopting Internet Paradigms
in Telecom Services”, Lecture Notes in Computer Science,
4749:pp. 342-352, 2009.

[14] L. Del Prete and L. Capra, ”MoSCA: seamless execution of
mobile composite services”, Proceedings of the 7th Workshop
on Reflective and Adaptive Middleware, pp. 5-10, 2008.

[15] G. Agre and Z. Marinova, ”An INFRAWEBS Approach to
Dynamic Composition of Semantic Web Services”, Cybernet-
ics and Information Technologies, 7(1):pp. 45-61, 2007.

[16] M. Valle, F. Ramparany, and L. Vercouter, ”Dynamic service
composition in ambient intelligence environments: a multi-
agent approach”, Proceeding of the First European Young
Researcher Workshop on Service-Oriented Computing, 2005.

[17] H. Pfeffer, ”A Underlay System for Enhancing Dynamicity
within Web Mashups”, International Journal On Advances in
Software, 2(1):pp. 63-75, 2009.

